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Morphological networks constructed with structural magnetic resonance imaging (sMRI) images have
been widely investigated by exploring interregional alterations of different brain regions of interest
(ROI) in the spatial domain for Alzheimer’s disease (AD) classification. However, few attentions are
attracted to construct a subband-based individual network with the sMRI image in the frequency domain.
In order to verify the feasibility of constructing individual networks with subbands and extract features
from the subband-based individual network for AD classification, in this study, we propose a novel
method to capture correlations of the abnormal energy distribution patterns related to AD by construct-
ing nonsubsampled contourlet subband-based individual networks (NCSINs) in the frequency domain.
Specifically, a 2-dimensional representation of the preprocessed sMRI image is firstly reshaped by down-
sampling and reconstruction steps. Then, the nonsubsampled contourlet transform is performed on the
2-dimensional representation to obtain directional subbands, and each directional subband at one scale
is described by a column energy feature vector (CV) regarded as a node of the NCSIN. Subsequently, edge
between any two nodes is weighted with connection strength (CS). Finally, the concatenation of node and
edge features of the NCSINs at different scales is used as a network feature of the sMRI image for AD clas-
sification. Meanwhile, the support vector machine (SVM) classifier with a radial basis function (RBF) ker-
nel is applied for categorizing 680 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. Experimental results demonstrate that it is feasible to construct the subband-based individual
network in the frequency domain and also show that our NCSIN method outperforms five other state-of-
the-art approaches.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

It is widely accepted that the human brain is a complicated net-
work and a healthy adult brain has about 100 billion neurons with
long and branching extensions [1–3]. Researches associated with
the human brain show that a majority of brain diseases are closely
related to the broken connections of neurons distributed different
tissue regions [4–11], such as AD and its prodromal stage, mild
cognitive impairment (MCI). As a progressive and currently incur-
able neurodegenerative disease, AD has been a leading cause of
dementia [12]. In 2006, AD had affected 26.6 million people world-
wide and by 2050, it will affect one in 85 people [13]. Moreover,
taking the United States as an example, in 2017, more than 16 mil-
lion family members and other unpaid caregivers provided an esti-
mated 18.4 billion hours of care to people with AD or other
dementias; In 2018, total payments for health care for people age
P 65 years with dementia are estimated to be $277 billion [14].
It is obvious that AD can make a great impact on caregivers and
society. We have noted that MCI is widely regarded as the transi-
tional stage between healthy control (HC) and AD. Patients with
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MCI are only characterized by memory impairment, but general
cognitive and functional abilities are usually retained. Unfortu-
nately, a comparison between subjects with MCI and HC demon-
strates that a conversion rate occurs at an annualized rate of 1%
to 2% for HC, whereas for MCI the conversion to full AD occurs at
a rate of 10% to 15% per year [15,16]. Therefore, early diagnosis
of AD could have important personal and financial benefits.
Because a mathematical model has estimated that early and accu-
rate AD diagnosis could save up to $7.9 trillion in medical and care
costs [14].

With the identification of AD biomarkers in recent years, a great
deal of studies have been proposed to research structural changes
of the human brain, indicating that gray matter atrophy can be
obviously identified in MCI and AD patients [17,18]. And these
structural changes are reflected in the sMRI image by brain volume
atrophy or cortical thickness thinning [19,20]. There is no doubt
that the feasibility of discovering clinical biomarkers from the neu-
roimaging has been demonstrated by these studies [21–23]. Cur-
rently, many efforts have been made to analyze atrophy patterns
of the brain and extract features from the sMRI image in the spatial
domain for AD classification [24–31]. In general, AD classification
methods using spatial analysis techniques can be roughly divided
into three categories: voxel-based, regions of interest (ROI)-
based, and patch-based approaches. In the voxel-based method,
features are simply extracted based on statistic or selection for
voxels. Such as, Ju et al. [32] used deep learning with brain network
and clinical information to make early diagnosis of AD. However,
the voxel-based features usually have much higher dimensionality
and noise, whose dimensionality need be reduced. In the ROI-
based method, the sMRI image is segmented into different ROIs,
and then an ROI-based feature vector is used to describe the sMRI
image. Such as, Li et al. [33] developed a deep learning method
using hippocampal MRI data to predict MCI subjects’ progression.
However, the dimensionality of the ROI-based features are also rel-
atively high. For the patch-based method, a patch containing mul-
tiple ROIs is selected to extract features. Such as, Zhang et al. [34]
utilized stationary wavelet entropy to extract texture features of an
MRI for AD classification. Jha et al. [35] proposed a novel
computer-aided diagnosis cascade model for AD classification.
Clearly, multi-resolution techniques, for instance, wavelet and
nonsubsampled contourlet transforms which decompose images
into low and high frequency components, have been successfully
used in medical image analysis [36–38], such as Nazrudeen et al.
[39] proposed a framework to fuse CT and MRI from persons
affected with Alzheimer, stroke and recurrent tumor.

Nowadays, many efforts have been made to construct a network
architecture of the human brain by defining the connection
between voxels, vertices, ROIs, or patches in the spatial domain
[40–42]. Thus, researches about the brain connectivity have been
more and more popular [43], and the purpose of which is to ana-
lyze the brain network by means of graph theoretical approaches
[44–47]. Generally speaking, methods of constructing the brain
network for AD classification can be categorized into: the group-
based and the individual-based. In the group-based method, a net-
work for a group of subjects is constructed to investigate the
abnormality of network measures. Such as, Liu et al. [48] employed
a whole brain hierarchical network for AD classification. In clinic,
patients with MCI can be divided into converted (who will convert
into AD in their follow-up and are denoted as MCIc in this study)
and non-converted (who will not convert into AD in their follow-
up and are denoted as MCInc in this study) categories. The MCIc
has more AD-like atrophies, while the MCInc has more HC-like
atrophies. Moreover, for HC individuals, the extent of brain atro-
phies varies depending on their age, and for early and later AD
patients, the extents of their brain atrophies are also different.
Hence, subjects in AD, MCI and HC groups are anisotropic, it is hard
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for a network to accurately measure relationships between differ-
ent atrophy patterns in a group. In the individual-based method, a
network for each subject (namely, the individual network) is estab-
lished to be used as a representation of the sMRI image. Such as,
Liu et al. [49] proposed a framework of the combination of multiple
kernels to combine edge and node features for AD classification.
Even though, all of these studies argue that individual network-
based features are more reliable due to the informative network
topology, the dimensionality of features extracted from these mor-
phological networks is very high, which makes structural stability
of the individual network-based feature poor. Considering that
brain is a complex network, we can confirm that the sMRI image
cannot be sufficiently described by features extracted from a net-
work constructed in the spatial domain.

In Dong’s work [50], they proposed a texture classification and
retrieval methods that model adjacent shearlet subband depen-
dances using linear regression in the frequency domain, and in
Liu’s work [48], they constructed a whole brain hierarchical net-
work using features extracted in the spatial domain. According to
the two works, it is feasible to construct subband-based individual
networks using features of the sMRI image extracted in the fre-
quency domain for AD classification. Therefore we propose a novel
method to construct nonsubsampled contourlet subband-based
individual networks (NCSINs) for capturing abnormal energy dis-
tribution patterns related to AD. Firstly, after preprocessing to
the sMRI image, we can get its 3-dimensional gray matter (GM),
white matter (WM) and cerebrospinal fluid (CSF) images. The GM
image that is mostly related to AD is selected to construct the
NCSIN in the following. Considering that the nonsubsampled con-
tourlet is a tool that can efficiently transform a 2-dimensional
image, the downsampling and reconstruction steps to the GM
image are performed so that we can obtain a 2-dimensional repre-
sentation of the GM image. We denote the 2-dimensional repre-
sentation of a GM image as the RGM image. Then, the
nonsubsampled contourlet transform is performed on the RGM
image to obtain its directional subbands at different scales. For
each of the directional subbands at one scale, three energy features
of each column of the directional subband are extracted to capture
the abnormal energy distribution patterns related to AD, and a col-
umn energy feature vector (CV), regarded as a node, is formed to
represent the directional subband by concatenating the energy fea-
tures, following that we use the nodes at one scale to build a
NCSIN. The edge between any two nodes in a NCSIN is weighted
with connection strength (CS) which is measured by Pearson’s cor-
relation coefficient (PCC). Finally, the concatenation of node and
edge features of the NCSINs at different scales is used as a network
feature of the MRI image. Meanwhile, the support vector machine
(SVM) classifier with a radial basis function (RBF) kernel is applied
for categorizing 680 subjects (200 AD, 280 MCI, and 200 HC) from
the ADNI database. Experimental results demonstrate that it is fea-
sible to construct the subband-based individual network in the fre-
quency domain, and show that our NCSIN method outperforms five
other state-of-the-art approaches in terms of accuracy, sensitivity,
and specificity. The results also indicate that the NCSIN-based fea-
ture can be a promising imaging marker for AD identification.

Three contributions have been made in the construction of a
nonsubsampled contourlet subband-based individual network
(NCSIN) in this study, which are listed as follows: First of all, we
propose a novel method to construct a subband-based individual
network in the frequency domain, at the same time demonstrating
the feasibility of constructing the NCSIN for each subject by AD
classification experiments. Second, instead of extracting structural
features directly from the morphological networks in the spatial
domain, the nonsubsampled contourlet is introduced to transform
the 2-dimensional representation of a sMRI image for obtaining its
directional subbands in the frequency domain, and the NCSINs are
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constructed with these subbands for extracting features represent-
ing the sMRI image. Third, in order to effectively analyze the
energy distributions and precisely capture the abnormal patterns
related to AD in the directional subbands, we firstly propose to
construct the column energy feature vector by concatenating three
energy features of all columns to represent a directional subband.

The rest of this study is organized as follows. Meterials and
methods are introduced in Section 2. Experimental settings and
results are given in Section 3. In the end, a brief conclusion to this
study is shown in Section 4.
2. Materials and methods

In this section, materials and their preprocessing are introduced
firstly, followed by the proposed method of constructing the non-
subsampled contourlet subband-based individual network.

2.1. Materials

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–
private partnership, led by Principal Investigator Michael W. Wei-
ner, MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychologi-
cal assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD).

At present, the structural magnetic resonance imaging (sMRI) is
one of the widely used modalities as an assistance to diagnose AD
and MCI patients from health control (HC) individuals in clinics. At
the diagnosis stage, patients with MCI can also be divided into sub-
jects who will convert to AD after 18 months and subjects who will
be stable after 18 months, in this study, these two subcategories
are separately denoted as MCIc and MCInc. To evaluate the perfor-
mance of our proposed NCSIN method, 680 sMRI images, including
200 AD, 120 MCIc, 160 MCInc, and 200 HC, are selected from the
ADNI database. More detail demographic information about these
selected sMRI images are summarized in Table 1. Moreover, MMSE,
F, M, and D in Table 1 are abbreviations of Mini Mental State Exam-
ination, Female, Male, and Deviation, respectively.

For those selected sMRI images, a four-step preprocessing,
including motion correction, registration and skull strap, segmen-
tation, and smoothing, is performed using statistic parametric
mapping (SPM8) [51] and voxel-based mapping (VBM8) [52] to
remove unrelated tissues and ensure that a certain brain region
of different subjects is at the same position. After preprocessing
steps, the original sMRI image changes into 121� 145� 121 gray
matter (GM), cerebrospinal fluid (CSF), and white matter (WM) tis-
sue images, and the voxel volumes are 1:5� 1:5� 1:5mm3. For a
visual comparison of the original and the preprocessed sMRI
images, an example of four scans of the raw and the GM images
is given in Fig. 1. At the experimental stage, the GM image that is
Table 1
The detail demographic information of the 680 subjects selected from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database.

Type Gender Number Age MMSE
(F/M) (Mean�D) (Mean�D)

AD 78/122 200 76.85 � 7.01 22.15 � 3.17
MCIc 67/53 120 78.65 � 9.73 26.38 � 3.76
MCInc 71/89 160 73.59 � 7.68 26.21 � 2.67
MCI 138/142 280 75.76 � 8.96 26.28 � 3.17
HC 84/116 200 76.21 � 4.97 29.09 � 1.15
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mostly related to AD is selected to extract its NCSIN-based fea-
tures, and four data sets consisted of subjects with AD and HC, sub-
jects with AD and MCI, subjects with MCI and HC, and subjects
with MCIc and MCInc are constructed to perform experiments.
The four data sets used in this study are described as follows:

1. AD/HC: containing 200 AD subjects and 200 HC subjects;
2. AD/MCI: containing 200 AD subjects and 280 MCI subjects;
3. MCI/HC: containing 280 MCI subjects and 200 HC subjects;
4. MCIc/MCInc: containing 120 MCIc subjects and 160 MCInc

subjects.

Obviously MCIc and MCInc subjects are patients with MCI, it
can be confirmed that differences between their sMRI images are
subtle. Hence, MCIc/MCInc is a challenging data set for our pro-
posed NCSIN method in identifying a patient wether converts into
AD or not.

2.2. Extracting the NCSIN feature

Before doing the nonsubsampled contourlet transform on the
GM images, downsampling and reconstruction steps are performed
to each of these GM images for getting a 2-dimensional represen-
tation. At the step of downsampling, the 121� 145� 121 GM
image is downsampled by factor 2 for its each dimensionality, so
the GM image convert into a 60� 72� 60 GM image. At the step
of reconstruction, non-zero voxels of the 60� 72� 60 GM image
are taken out by column, and then each M selected voxels are
regarded as a column of an M � D representation of the downsam-
pled GM image, where M and D is the number of row and column
of the 2D representation, respectively, meanwhile M and D satisfy
M � D 6 121� 145� 121. For these reconstructed GM (RGM)

images, a RGM image set, denoted as RGMi
n o

; i ¼ 1;2; . . . ;N, is

constructed to represent them, in this study, N ¼ 680. In the fol-
lowing, directional subbands of the RGM images contained in

RGMi
n o

set are obtained by performing the non-subsampled con-

tourlet transform.
Multiscale geometric analysis (MGA) is an effective method for

image processing [53–55]. As a kind of implementation of the dis-
crete MGA, the nonsubsampled contourlet transform (NSCT) is
widely used in the fields of image denoising, image fusion and
image enhancement [56,57]. NSCT is fully shift invariant and effi-
ciently performs the multiscale and multi-direction decomposition
of an image, which also resolves the issue of the pseudo Gibbs phe-
nomena effect along the singularities suffered by the contourlet
transform [58]. However, its computational efficiency is limited
by its high redundancy. That is why the downsampling and recon-
struction steps are performed to each of those GM images and get
their 2-dimensional representation.

For the usage of directional and multiscale information of the
sMRI image, the nonsubsampled contourlet transform is per-
formed on these RGMs. Given the i-th M � D representation (i.e.

RGMi), we use the nonsubsampled contourlet with a S-
decomposition-level directional filter bank at each of the L scales

to transform the RGMi, that is, the number of directional subbands
is 2S at each scale, and sizes of the directional subbands at different
scales areM � D. After the nonsubsampled contourlet transform on

the RGMi, we can obtain 2S directional subbands at each of the L
scales and a low frequency subband in total. Fig. 2(b) shows an
example of 25 sbubands of a RGM image that is transformed by
the nonsubsampled contourlet with S ¼ 3 levels and L ¼ 3 scales.
According to Fig. 2(b), only the contour information of the brain
scan is contained in the low frequency subband, which is not
related to AD. Therefore, the low frequency subband is abandoned



Fig. 1. An example of four scans of the raw and the preprocessed sMRI images. The first row is four scans of the raw sMRI image, and the second row is four corresponding
scans of the preprocessed sMRI image.
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in constructing the NCSIN. For brevity and simplicity, a set,

denoted as Sil;jð Þ
n o

, is used to represent all directional subbands

of the RGMi, where i (i ¼ 1;2; . . . ;N) is the i-th subject, l
(l ¼ 1;2; . . . ; L) is the l-th decomposition scale of the i-th subject,
and j(j ¼ 1;2; . . . ;2S) is the j-th directional subband of the i-th sub-
ject at the l-th scale.

Coefficients (CEs) in a directional subband describe the energy
distribution of the spatial structures in the frequency domain. To
precisely represent a directional subband, we propose to use three
energy features, including Mean (ME), Variance (VA) and Origin
moment (OM), to capture the energy distribution patterns of a col-
umn in the M � D directional subband. For a M � 1 column in the
directional subband, the three energy features are separately rep-
resented by

ME ¼ 1
M

XM
i¼1

jCEij; ð1Þ

VA ¼ 1
M

XM
i¼1

jCEij � 1
M

XM
j¼1

jCEjj
 !2

; ð2Þ

OM ¼ 1
M

XM
i¼1

CE2
i : ð3Þ

Therefore, the j-th M � D directional subband of the i-th subject

at the l-th scale Sil;jð Þ can be sufficiently described by ME feature
vector (MV), VA feature vector (VV) and OM feature vector (OV)

MV ¼ ME1;ME2; . . . ;MED½ �; ð4Þ

VV ¼ VA1;VA2; . . . ;VAD½ �; ð5Þ

OV ¼ OM1;OM2; . . . ;OMD½ �: ð6Þ
Then, a column energy feature vector (CV) of the j-th directional
subband is formed by concatenating MV ;VV and OV, which is used
as a node of the NCSIN and is represented by

CV ¼ MV ;VV ;OV½ �: ð7Þ
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Meanwhile, we use a node set, denoted as CVi
l;jð Þ

n o
, to represent

all nodes of the i-th subject at different scales. Obviously, there are
2S nodes at each of the L scales.

For any two nodes CV l;1ð Þ and CV l;2ð Þ at the l-th scale, the connec-
tion strength (CS) (edge weight) between them is measured by
Pearson’s correlation coefficient (PCC)

CS ¼
P3�D

k¼1 CV l;1ð Þ kð Þ � CV l;1ð Þ
� �

CV l;2ð Þ kð Þ � CV l;2ð Þ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3�D
k¼1 CV l;1ð Þ kð Þ � CV l;1ð Þ
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3�D

k¼1 CV l;2ð Þ kð Þ � CV l;2ð Þ
� �2r ;

ð8Þ
where CV l;1ð Þ kð Þ and CV l;2ð Þ kð Þ are the k-th features of the CV l;1ð Þ and

CV l;2ð Þ, and CV l;1ð Þ and CV l;2ð Þ are the mean values of CV l;1ð Þ and CV l;2ð Þ.

According to nodes CV l;jð Þ; j ¼ 1;2; . . . ;2S at the l-th scale and Eq. (8),
we can construct an edge weight matrix (namely, a matrix repre-
sentation of the NSCIN) of nodes at the l-th scale and obtain
2S� 2S�1ð Þ

2 edges. Fig. 2(c) shows a nonsubsampled contourlet
subband-based individual network with S ¼ 3 and L ¼ 1.

By now, an edge feature vector (EV) can be formed by concate-
nating the CSs contained in the upper (or lower) triangular part of
the edge weight matrix, which is represented by

EV ¼ CS1;CS2; . . . ;CS2S� 2S�1ð Þ
2

" #
: ð9Þ

Then, a node feature vector (NV) of the NCSIN is also computed
and is represented by

NV ¼ CV1;CV2; . . . ;CV2S

h i
; ð10Þ

where CV ¼ MV ;VV ;OV
h i

, here MV ¼ 1
D

PD
k¼1MEk;VV ¼ 1

D

PD
k¼1VAk

and OV ¼ 1
D

PD
k¼1OMk. By concatenating EV and NV, a NCSIN-based

feature of the l-th scale is formed by

NCSINl ¼ EVl;NVl½ �: ð11Þ
Subsequently, the NCSIN-based feature of the i-th subject is

constructed by jointing NCSINl; l ¼ 1;2; . . . ; L, which is represented
by



Fig. 2. The flowchart and some detail parts of our proposed method of constructing the nonsubsampled contourlet subband-based individual network (NCSIN). (a) The
completed flowchart of constructing the NCSIN. (b) Transformation of the RGM image by the nonsubsampled contourlet with S ¼ 3 decomposition levels and L ¼ 3
transformation scales. (c) A NCSIN constructed with 23 ¼ 8 nodes at the L-th scale.
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NCSINi ¼ NCSINi
1;NCSIN

i
2; . . . ;NCSIN

i
L

h i
: ð12Þ

For simplicity, a feature set, denoted as NCSINi
n o

; i ¼ 1;2; . . . ;N, is

used to represent those selected sMRI images. And finally the
NCSIN-based feature is used as an input of the support vector
machine (SVM) classifier for AD classification. The SVM classifier
is provided by MATLAB software in this study, and we select the
radial basis function (RBF) as the kernel of the SVM classifier, which
is formulated as

k x1; x2ð Þ ¼ exp � jjx1� x2jj2
2r2

 !
: ð13Þ

It is obvious that for the SVM classifier with RBF kernel, two impor-
tant parameters, the window width of the RBF kernel r and the
penalty coefficient of the SVM classifier C, need to be estimated
based on experiments. r is used to control the number of support
vectors, with the increase of r, the number of support vectors
decreases, and vice versa, the number of support vectors increases.
However, C is used to control the penalty degree for error, with the
increase of C, it is easy to causes over-fitting, and vice versa, it will
causes under-fitting. Therefore, parameters r and C, need to be esti-
mated based on experiments carefully.

In short, to verify the feasibility of constructing the subband-
based individual network in the frequency domain and extract fea-
tures with relatively low dimonsion for AD classification, we pro-
pose a novel method to construct nonsubsampled contourlet
subband-based individual networks (NCSINs) by capturing correla-
tions of abnormal energy distribution patterns related to AD.
Specifically, a 2-dimensional representation of the preprocessed
sMRI image is firstly obtained by downsampling and reconstruc-
tion steps. And then the nonsubsampled contourlet transform is
performed on the M � D representation of the sMRI image to get
its directional subbands at different scales. For directional sub-
bands at one scale, each of these subbands is described by a col-
umn energy feature vector that is regarded as a node of the
NCSIN. Subsequently, the edge between any two nodes contained
in the NCSIN is weighted with connection strength which is mea-
sured by Pearson’s correlation coefficient. Finally, the concatena-
tion of node and edge features of the NCSINs at different scales is
used as a network-based feature of the sMRI image. Meanwhile,
the NCSIN-based features of the sMRI images are used as an input
of the support vector machine (SVM) classifier with the radial basis
function (RBF) kernel for categorizing subjects with AD, MCI and
HC. Fig. 2(a) shows the flowchart of our proposed method of con-
structing the nonsubsampled contourlet subband-based individual
network.

3. Evaluation metrics and experimental results

In this section, we will conduct multiple experiments to evalu-
ate the performance of our NCSIN method for AD classification on
AD/HC, AD/MCI, MCI/HC, MCIc/MCInc data sets. Metrics used in
this study are firstly introduced, followed by experimental results
of our NCSINmethod and comparisons with five other state-of-the-
art approaches.

3.1. Metrics

In order to obtain an unbiased estimation of the classification
performance, ten experiments are conducted on each of the four
data sets. In each experiment, the ten-fold cross validation is done
to reduce the impact of small sample size and guarantee that each
subject can be used as testing. For each ten-fold cross validation,
subjects contained in a data set are randomly divided into ten
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subsets, nine of the ten subsets are used for training the SVM clas-
sifier, and the rest is used as testing. In this study, mean classifica-
tion accuracy (ACC), sensitivity (Se), and specificity (Sp) of the ten
experiments on each of the four data sets are used as the final
results, which can be formulated as

ACC ¼ 1
10

X10
i¼1

TPi þ TNi

TPi þ FPi þ TNi þ FNi
; ð14Þ

Se ¼ 1
10

X10
i¼1

TPi

TPi þ FNi
; ð15Þ

Sp ¼ 1
10

X10
i¼1

TNi

FPi þ TNi
; ð16Þ

where TPi is the number of correctly classified true positive sub-
jects, FPi is the number of incorrectly classified false positive sub-
jects, TNi is the number of correctly classified true negative
subjects, FNi is the number of incorrectly classified false negative
subjects, and the subscript i is the i-th experiment on a data set.

3.2. Results and discussions

In the step of constructing the M � D RGM image, obviously D
determines the number of features contained in a column energy
feature vector (CV, namely, a node of the NCSIN), affecting the sta-
bility of the NCSIN structure. To get an optimal estimation value, as
shown in Fig. 3, we give the ACCs of four experiments on AD/HC,
AD/MCI, MCI/HC, and MCIc/MCInc data sets under the circum-
stances of different D values. According to Fig. 3(a), we can find
that ACCs of the four experiments on AD/HC, AD/MCI, MCI/HC,
and MCIc/MCInc data sets increase gradually when D 6 140 and
slowly decrease when D > 140, that is to say, the optimal D value
may fall into the interval 130;150ð Þ. In order to obtain the optimal
D value, we also show ACCs of the four experiments on AD/HC, AD/
MCI, MCI/HC, MCIc/MCInc data sets in Fig. 3(b) when
130 6 D � 145. It can be clearly seen from Fig. 3(b) that ACCs of
the four experiments with D ¼ 136 on AD/HC, AD/MCI, MCI/HC,
and MCIc/MCInc data sets can consistently outperform the ones
of the other different D values. Therefore, we set D ¼ 136 as the
optimal number of columns of the RGM image in terms of ACCs
shown in Fig. 3 on four data sets.

Decomposition level (S) and transformation scale (L) are two
important parameters for the nonsubsampled contourlet trans-
form. Parameter S controls the number of directional subbands at
each of the L transformation scales, and parameter L determines
the number of transformation scales. In order to find the optimal
combination of S and L, we perform estimation experiments on
AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc four data sets, respec-
tively, and ACCs of each experiment on the four data sets are
shown in Fig. 4. It can be seen from Fig. 4 that ACCs of the exper-
iments on the four data sets increase drastically when S � 3 under
the cases of different decomposition levels, in contrast, ACCs of the
experiments on the four data sets begin to decrease gradually
when S > 3. Meanwhile we can consistently get the best ACCs of
the experiments on the four data sets when the transformation
scale L ¼ 1 with different decomposition levels. In terms of ACCs
shown in Fig. 4, we set S ¼ 3 and L ¼ 1 as optimal parameter values
of the non-subsampled contourlet transform in this study. In other
words, we can totally obtain 2S ¼ 8 directional subbands at L ¼ 1
transformation scale. Therefore, only a NCSIN at the first scale is
constructed to represent the sMRI image and the dimensionality
of the feature extracted from the proposed NCSIN is

2S� 2S�1ð Þ
2 þ 2S

� �
� L ¼ 8�7

2 þ 8
� �� 1 ¼ 36, which also make the
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1 2 3 4 5
Decomposition level (S)

70

75

80

85

90

95

AC
C

(%
)

Parameter evaluation on AD/HC

L=1
L=2
L=3
L=4

1 2 3 4 5
Decomposition level (S)

40

50

60

70

80

90

AC
C

(%
)

Parameter evaluation on AD/MCI

L=1
L=2
L=3
L=4

1 2 3 4 5
Decomposition level (S)

55

60

65

70

75

80

85

AC
C

(%
)

Parameter evaluation on MCI/HC

L=1
L=2
L=3
L=4

1 2 3 4 5
Decomposition level (S)

45

50

55

60

65

70

75

80

85

AC
C

(%
)

Parameter evaluation on MCIc/MCInc

L=1
L=2
L=3
L=4

Fig. 4. ACCs of decomposition level (S) and transformation scale (L) evaluation experiments on AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data sets.
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Fig. 5. ACCs of experiments with different C and r values on AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data sets.
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Table 2
Experimental results of our NCSIN method on AD/HC, AD/MCI, MCI/HC and MCIc/
MCInc data sets with the number of columns in the RGM image D ¼ 136, the
decomposition level S ¼ 3, the transformation scale L ¼ 1, the penalty coefficient of
the SVM classifier C ¼ 8, and the window width of the RBF kernel r ¼ 1:3.

Data sets AD/HC AD/MCI MCI/HC MCIc/MCInc

ACC (%) 94.21 90.03 84.64 79.42
Se (%) 96.58 91.00 89.71 82.30
Sp (%) 92.44 89.50 77.45 76.55

Table 3
Experimental results of the five other state-of-the-art comparison approaches and our
NCSIN method on the AD/HC data set.

Features ACC (%) Se (%) Sp (%)

Hipp-F (2019) [33] 87.51 87.60 87.42
CDTWS-F (2018) [35] 90.16 90.22 90.15
SWE-F (2018) [34] 92.70 93.67 91.77
RSBN-F (2019) [32] 92.92 94.00 89.85
IHN-F (2018) [49] 93.95 91.07 95.66
Our NCSIN 94.21 96.58 92.44

J. Feng, Shao-Wu Zhang, L. Chen et al. Neurocomputing 421 (2021) 260–272

267
situation that the nonsubsampled contourlet is a redundant trans-
form alleviated to a large extent.

For the SVM classifier with the RBF kernel, we also estimate its
optimal penalty coefficient C by experiments on the four data sets
AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc when the windowwidth
of the RBF kernel r ¼ 1 and the optimally estimated parameters of
the nonsubsampled contourlet used. ACCs of the experiments with
different penalty coefficients C on the four data sets are shown in
Fig. 5(a). It can be clearly observed from Fig. 5(a) that the penalty
coefficient of the SVM classifier has few influences on ACCs of the
experiments on the four data sets and ACCs of the four experi-
ments fluctuates within a very small range, except the ACC on
the MCI/HC data set when C � 2. On the whole of Fig. 5(a), ACCs
of the experiments on the four data sets are marginally worse than
the ACC when C ¼ 8. Thus, we set C ¼ 8 as the optimal value of the
penalty coefficient of the SVM classifier in this study.

To obtain an optimal estimation of the windowwidth of the RBF
kernel r, we set the penalty coefficient of the SVM classifier C ¼ 8
and use the optimally estimated parameters of the nonsubsampled
contourlet for the estimation experiments of the window width of
the RBF kernel r. ACCs of experiments with different window
widths of the RBF kernel r are given in Fig. 5(b). As shown in
)
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Table 4
Experimental results of the five other state-of-the-art comparison approaches and our
NCSIN method on the AD/MCI data set.

Features ACC (%) Se (%) Sp (%)

Hipp-F (2019) [33] 79.35 79.44 79.26
CDTWS-F (2018) [35] 78.48 75.35 79.98
SWE-F (2018) [34] 81.89 76.26 80.65
RSBN-F (2019) [32] 82.59 84.26 80.11
IHN-F (2018) [49] 89.31 90.83 87.92
Our NCSIN 90.03 91.00 89.53

Table 5
Experimental results of the five other state-of-the-art comparison approaches and our
NCSIN method on the MCI/HC data set.

Feature ACC (%) Se (%) Sp (%)

Hipp-F (2019) [33] 77.25 95.79 53.23
CDTWS-F (2018) [35] 81.89 75.79 84.18
SWE-F (2018) [34] 80.67 76.79 86.98
RSBN-F (2019) [32] 83.09 83.46 82.31
IHN-F (2018) [49] 84.43 88.61 81.70
Our NCSIN 84.64 89.71 77.45

Table 6
Experimental results of the five other state-of-the-art comparison approaches and our
NCSIN method on the MCIc/MCInc data set.

Features ACC (%) Se (%) Sp (%)

Hipp-F (2019) [33] 69.38 69.47 69.29
CDTWS-F (2018) [35] 69.21 70.74 67.45
SWE-F (2018) [34] 72.86 69.55 75.49
RSBN-F (2019) [32] 72.32 72.21 73.06
IHN-F (2018) [49] 73.96 76.13 72.25
Our NCSIN 79.42 82.30 76.55
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Fig. 5(b), ACCs of the four experiment on AD/HC, AD/MCI, MCI/HC,
and MCIc/MCInc data sets increase gradually when r � 1:3, while,
ACCs on the four data sets are going to stabilize when r > 1:3, but
fluctuating within a small range. According to Fig. 5(b), we can find
that ACCs of the experiments on the four data sets are slightly infe-
rior to the ACC when r ¼ 1:3. With the fact of Fig. 5(b) shown, we
set r ¼ 1:3 as the optimally estimated value of the window width
of the RBF kernel.

Finally, we list the ACCs, Ses and Sps of our NCSIN method on
AD/HC, AD/MCI, MCI/HC and MCIc/MCInc data sets in Table 2 when
the number of columns in the RGM image D ¼ 136, the decompo-
sition level S ¼ 3, the transformation scale L ¼ 1, the penalty
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Fig. 7. ACCs of the five other comparison approaches and our NCSIN
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coefficient of the SVM classifier C ¼ 8, and the window width of
the RBF kernel r ¼ 1:3. According to experimental results listed
in Table 2, ACCs of our NCSIN method on AD/HC, AD/MCI, MCI/
HC, and MCIc/MCInc data sets are 94:21%;90:03%;84:64% and
79:42%, respectively, and Ses of our NCSIN method consistently
outperforms those of Sps, the reason of which is that brain atro-
phies of the patients with AD and MCI can be captured by energy
subband features, and meanwhile, correlations of different sub-
bands are also contained in the NCSIN-based feature. Therefore
patients with AD and MCI can be precisely identified.

Meanwhile, we also compare the discriminant power of the
NCSIN’s node and edge features and the NCSIN-based feature in
terms of ACCs, Ses and Sps. Experimental results of the node, edge
and NCSIN-based features are shown in Fig. 6, respectively. It can
be seen from Fig. 6 that ACCs, Ses and Sps of the proposed
NCSIN-based feature consistently outperform those of the node
and edge features and ACCs, Ses and Sps of the edge feature consis-
tently outperform those of the node feature. Obviously, the node
feature is used to describe information of the directional subbands,
while the edge feature is computed to capture correlations of dif-
ferent directional subbands, that is, the proposed NCSIN-based fea-
ture is constructed by consisting of the information and correlation
of the directional subbands. According to ACCs, Ses and Sps shown
in Fig. 6, it can be confirmed that the node feature is an important
supplement to the edge feature. And that is why the proposed
NCSIN-based feature can achieve a satisfactory result in AD classi-
fication. Therefore, we can draw the conclusions that the subband-
based individual network constructed in the frequency domain is
feasible, correlations and energy distributions of the brain atrophy
patterns can be represented by the NCSIN-based feature, and the
NCSIN-based feature can be a promising imaging marker for the
clinical AD diagnosis via sMRI images.

3.3. Comparisons

In this subsection, we will compare our NCSIN method with five
other state-of-the-art approaches on AD/HC, AD/MCI, MCI/HC, and
MCIc/MCInc data sets. For our NCSINmethod, parameters are set as
the optimal estimated values. For the other state-of-the-art
approaches, parameters are selected based on the authors’ sugges-
tion in their work. In the following, the hippocampus-based deep
learning method proposed by Li et al. [33] is denoted as Hipp-F
and uses a constructed deep learning model for classification, the
complex dual tree wavelet subband-based method proposed by
Jha et al. [35] is denoted as CDTWS-F and uses linear discriminant
analysis for classification, the stationary wavelet entropy-based
MCI/HC MCIc/MCInc
ta sets

Hipp-F
CDTWS-F
SWE-F
RSBN-F
IHN-F
Proposed NCSIN

method on AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data sets.
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method proposed by Zhang et al. [34] is denoted as SWE-F and uses
a single-hidden-layer neural network for classification, the resting-
state brain network-based method proposed by Ju et al. [32] is
denoted as RSBN-F and uses a targeted autoencoder network for
classification, and the individual hierarchical network-based
method proposed Liu et al. [49] is denoted as IHN-F and uses
SVM with default values for classification.

For the AD/HC data set, the experimental results of the five
state-of-the-art comparison approaches and our NCSIN method
are listed in Table 3. According to ACCs, Ses and Sps shown in
Table 3, ACC of our NCSIN method is consistently higher than those
of the five state-of-the-art comparison approaches, and the ACC of
our NCSIN method has reached to 93:57% and is 0:26% higher than
that of the best comparison approach. Additionally, Se of our NCSIN
method also consistently outperform those of the five state-of-the-
art comparison approaches, the Se of our NCSIN method is 96:58%
and is 2:58% higher than that of the best comparison approach.
However, the Sp of our NCSIN method is 3:22% lower than that
of the best comparison approach, which is 92:44%, the reason of
Fig. 8. ROC curves of the five other comparison approaches and our NCS
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which is that with aging, older HC individuals also have the same
brain atrophy patterns with the early AD patient and our NCSIN
method mainly captures brain atrophy patterns by subbands in
the frequency domain, so some older HC individuals are identified
as patients in classification.

For the AD/MCI data set, the experimental results of the five
state-of-the-art comparison approaches and our NCSIN method
are listed in Table 4. It can be obviously seen from Table 4 that
the ACC, Se and Sp of our NCSIN method consistently outperforms
those of the five state-of-the-art comparison approaches. The ACC
of our NCSIN method is 90:03%, which is 0:72% higher than that of
the best comparison approach. The Se of our NCSIN method is
0:17% higher than that of the five state-of-the-art comparison
approaches, which has reached to 91:00%. The Se of our NCSIN
method is 89:53% and is 1:16% higher than that of the best com-
parison approach.

For the MCI/HC data set, the experimental results of the five
state-of-the-art comparison approaches and our NCSIN method
are listed in Table 5. According to ACCs, Ses and Sps shown in
IN method on AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data sets.
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Table 5, ACC of our NCSIN method is consistently higher than those
of the five state-of-the-art comparison approaches, and the ACC of
our NCSIN method has reached to 84:64% and is 0:21% higher than
that of the best comparison approach. However, Se and Sp of our
NCSIN method are 6:08% and 9:53% lower than those of the best
comparison approaches, respectively. The reason is that for AD,
hippocampus is the first brain tissue affected by this disease, and
thus the Hipp-F extracted from the hippocampus can precisely
capture differences between subjects with MCI and HC and obtain
the best Se; additionally, MCIc patients have HC-like atrophy pat-
terns, whose identification is mainly based on more detail informa-
tion, and therefore the SWE-F extracted by multi-level stationary
wavelet transform can get the best Sp. Based on ACCs of our NCSIN
method shown in Tables 4 and 5, we can find that subjects with
MCI have more HC-like and in contrast less AD-like energy distri-
bution patterns in their sMRI images, that is, brain tissues of
patients with MCI are only partly destroyed to a small extent and
this is the best time to benefit from the clinical treatment. There-
fore, MCI is a key stage for the progression of a patient and the
identification of patients with MCI can make significant sense in
clinics.

For the challenging MCIc/MCInc data set, the experimental of
the five state-of-the-art comparison approaches and our NCSIN
method are listed in Table 6. It can be clearly observed from Table 6
that the ACC, Se and Sp of our proposed NCSIN method consistently
outperform those of the five state-of-the-art comparison
approaches. The ACC of our NCSIN method is 79:42%, which is
obviously higher than 73:96% of the best comparison approach.
The Se of our NCSIN method is 6:17% higher than that of the five
state-of-the-art comparison approaches, which has reached to
82:30%. The Sp of our NCSIN method is 76:55% and is 1:06% higher
than that of the best comparison approach.

According to Tables 3–6, we can conclude that identification
performance of the NCSIN method outperforms these of the five
comparison approaches and the individual network constructed
with subbands is feasible, meaning that features extracted from
the NCSIN can capture correlations and energy distributions of
the brain atrophy patterns distributed in the subbands.

For the visual comparison, ACCs of five other comparison
approaches and our proposed NCSIN method on AD/HC, AD/
MCI, MCI/HC, and MCIc/MCInc data sets are shown in Fig. 7.
Obviously, the ACCs of our NCSIN consistently outperform the
five other comparison approaches on the four data sets. For
the AD/HC, AD/MCI and MCI/HC data sets, the ACCs of our NCSIN
marginally higher than those of the five other comparison
approaches. While, the ACC of our NCSIN is significantly higher
than those of the five other comparison approaches on the chal-
lenging MCIc/MCInc data sets, which means that the subtle dif-
ferences of brain atrophy patterns between subjects with MCIc
and MCInc can be easily captured by subbands in the frequency
domain. In order to better evaluate our NCSIN and make the
evaluation indexes more convincing, we show the receiver oper-
ating characteristic (ROC) curves of the five other comparison
approaches and our NCSIN method on AD/HC, AD/MCI, MCI/HC,
and MCIc/MCInc data sets in Fig. 8. It can be clearly observed
from Fig. 8 that areas under the ROC curves of our NCSIN
method are consistently larger than those of the five state-of-
the-art approaches on the four data sets, indicating that the pro-
posed NCSIN feature has relatively high diagnostic accuracy in
terms of AD classification.

In summary, experimental results on four data sets have veri-
fied the feasibility of constructing the individual network with sub-
bands in the frequency domain, and also demonstrate that our
NCSIN method outperforms the five other state-of-the-art
approaches in terms of the accuracies, sensitivities and specifici-
ties, indicating that features extracted from our constructed NCSIN
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can be a promising imaging marker for the clinical AD diagnosis via
MRI images.
4. Conclusions

In this study, we propose a novel method to construct nonsub-
sampled contourlet subband-based individual networks (NCSINs)
by capturing correlations of abnormal energy distribution patterns
related to AD. Firstly, the 2D representation of the preprocessed
sMRI image is obtained by downsampling and reconstruction
steps. Then, the nonsubsampled contourlet transform is performed
on the 2D representation to get its directional subbands at differ-
ent scales. For directional subbands at one scale, each of them is
described by a column energy feature vector that is regarded as a
node of the NCSIN. Subsequently, the NCSIN is constructed using
edges computed by PCC. Finally, the concatenation of node and
edge features of the NCSINs at different scales is used as a
network-based feature of the sMRI image for AD classification.
Experimental results have verified the feasibility of constructing
the subband-based individual network in the frequency domain
for AD classification, which provides a new clue to analyze the
sMRI image in frequency domain. Moreover, features extracted
from the subband-based individual network have the relatively
low dimension, which can be used as an imaging marker for AD
diagnosis via MRI images. However, extracted features with our
NCSIN cannot give a clear biological meaning and have no directly
correlation with brain atrophy regions related to AD. Therefore, in
the future work, we will construct a subband-based individual net-
work that can extract features from brain atrophy regions for AD
classification.
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