ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341936973

Automated MRI-Based Deep Learning Model for Detection of Alzheimer’s
Disease Process

Article in International Journal of Neural Systems - June 2020

DOI: 10.1142/5012906572050032X

CITATION READS
1 124

11 authors, including:

Nicholas Van Halm-Lutterodt n Mohamed Mesregah

Capital Medical University < Keck School of Medicine USC

27 PUBLICATIONS 154 CITATIONS 18 PUBLICATIONS 19 CITATIONS
SEE PROFILE SEE PROFILE

Haibin Li Feng Zhang

Capital Medical University Capital Medical University

43 PUBLICATIONS 129 CITATIONS 19 PUBLICATIONS 116 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et Pathogenesis of Familial Cerebral Cavernous Malformation View project

poject MY papers View project

All content following this page was uploaded by Nicholas Van Halm-Lutterodt on 02 September 2020.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/341936973_Automated_MRI-Based_Deep_Learning_Model_for_Detection_of_Alzheimer%27s_Disease_Process?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/341936973_Automated_MRI-Based_Deep_Learning_Model_for_Detection_of_Alzheimer%27s_Disease_Process?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Pathogenesis-of-Familial-Cerebral-Cavernous-Malformation?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/my-papers-5?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas_Van_Halm-Lutterodt?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas_Van_Halm-Lutterodt?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Capital-Medical-University?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas_Van_Halm-Lutterodt?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed_Mesregah?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed_Mesregah?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Keck-School-of-Medicine-USC?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohamed_Mesregah?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haibin_Li13?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haibin_Li13?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Capital-Medical-University?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haibin_Li13?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Feng_Zhang108?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Feng_Zhang108?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Capital-Medical-University?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Feng_Zhang108?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nicholas_Van_Halm-Lutterodt?enrichId=rgreq-9f70854439e9a1823f7cadb1fc37e7d2-XXX&enrichSource=Y292ZXJQYWdlOzM0MTkzNjk3MztBUzo5MzEzNzg1MjY5NjE2NjVAMTU5OTA2OTM1MzQwNg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Int. J. Neur. Syst. 2020.30. Downloaded from www.worldscientific.com

by UNIVERSITY OF SOUTHERN CALIFORNIA AT LOS ANGELES on 06/07/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

World Scientific

International Journal of Neural Systems, Vol. 30, No. 6 (2020) 2050032 (4] pages) \\’
www.worldscientific.com

© World Scientific Publishing Company
DOI: 10.1142/5012906572050032X

Automated MRI-Based Deep Learning Model for Detection
of Alzheimer’s Disease Process™

Wei Feng
Department of Epidemiology and Health Statistics, School of Public Health
Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
Beijing Municipal Key Laboratory of Clinical Epidemiology
Capital Medical University, Beijing, P. R. China
sharkip @formail.com

Nicholas Van Halm-Lutterodt
Department of Neurosurgery, Beijing Tiantan Hospital
Capital Medical University, Beijing, P. R. China

Department of Orthopaedics and Neurosurgery
Keck Medical Center of USC, Los Angeles, CA, USA

Hao Tang

School of Computer Science and Technology
University of the Chinese Academy of Sciences, Beijing, P. R. China

Andrew Mecum
Department of Psychology, Emory University, Atlanta, GA, USA

Mohamed Kamal Mesregah

Department of Orthopaedics and Neurosurgery
Keck Medical Center of USC, Los Angeles, CA, USA

Yuan Ma, Haibin Li, Feng Zhang and Zhiyuan Wu
Department of Epidemiology and Health Statistics, School of Public Health
Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
Beijing Municipal Key Laboratory of Clinical Epidemiology
Capital Medical University, Beijing, P. R. China
Erlin Yao

School of Computer Science and Technology
University of the Chinese Academy of Sciences, Beijing, P. R. China

Xiuhua Guof
Department of Epidemiology and Health Statistics, School of Public Health
Capital Medical University, You’anmenwai, Xitoutiao No.10, Beijing, P. R. China
Beijing Municipal Key Laboratory of Clinical Epidemiology
Capital Medical University, Beijing, P. R. China
statguo@ccmu. edu.cn

TCorresponding author.
*Data used in the preparation of this article were obtained from the Alzheimers disease neuroimaging ini-

tiative (ADNI) database (http://adniloni.usc.edu). As such, the investigators within the ADNI contributed to
the design and implementation of ADNI and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-
content /uploads/how_to_apply /ADNI_Acknowledgement _List.pdf.

2050032-1


https://dx.doi.org/10.1142/S012906572050032X

Int. J. Neur. Syst. 2020.30. Downloaded from www.worldscientific.com

by UNIVERSITY OF SOUTHERN CALIFORNIA AT LOS ANGELES on 06/07/20. Re-use and distribution is strictly not permitted, except for Open Access articles.

W. Feng et al.

Accepted 19 March 2020
Published Online 27 May 2020

In the context of neuro-pathological disorders, neuroimaging has been widely accepted as a clinical
tool for diagnosing patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The
advanced deep learning method, a novel brain imaging technique, was applied in this study to evaluate
its contribution to improving the diagnostic accuracy of AD. Three-dimensional convolutional neural
networks (3D-CNNs) were applied with magnetic resonance imaging (MRI) to execute binary and ternary
disease classification models. The dataset from the Alzheimer’s disease neuroimaging initiative (ADNI)
was used to compare the deep learning performances across 3D-CNN, 3D-CNN-support vector machine
(SVM) and two-dimensional (2D)-CNN models. The outcomes of accuracy with ternary classification for
2D-CNN, 3D-CNN and 3D-CNN-SVM were 82.57+7.35%, 89.76 +8.67% and 95.74 4 2.31% respectively.
The 3D-CNN-SVM yielded a ternary classification accuracy of 93.71%, 96.82% and 96.73% for NC, MCI
and AD diagnoses, respectively. Furthermore, 3D-CNN-SVM showed the best performance for binary
classification. Our study indicated that ‘NC versus MCI’ showed accuracy, sensitivity and specificity
of 98.90%, 98.90% and 98.80%; ‘NC versus AD’ showed accuracy, sensitivity and specificity of 99.10%,
99.80% and 98.40%; and ‘MCI versus AD’ showed accuracy, sensitivity and specificity of 89.40%, 86.70%
and 84.00%, respectively. This study clearly demonstrates that 3D-CNN-SVM yields better performance
with MRI compared to currently utilized deep learning methods. In addition, 3D-CNN-SVM proved to
be efficient without having to manually perform any prior feature extraction and is totally independent
of the variability of imaging protocols and scanners. This suggests that it can potentially be exploited
by untrained operators and extended to virtual patient imaging data. Furthermore, owing to the safety,
noninvasiveness and nonirradiative properties of the MRI modality, 3D-CNN-SMV may serve as an
effective screening option for AD in the general population. This study holds value in distinguishing AD
and MCI subjects from normal controls and to improve value-based care of patients in clinical practice.

Keywords: Deep learning; convolution neural networks; three-dimensional magnetic resonance imaging;

support vector machine; Alzheimer’s disease; mild cognitive impairment.

1. Introduction

Alzheimer’s disease (AD) reportedly accounts for
nearly 60-70% of all cases of dementia® It currently
remains a progressive neurodegenerative phenotype,
affecting approximately 46.8 million people world-
wide2 Affected persons critically demonstrate sig-
nificant decline in cognitive function, greatly affect-
ing their quality of life and overall health 2 Unlike
other neurological diseases, coping with AD has
also demonstrated to be associated with a substan-
tial burden of cost in Asia®® North America® and
even worldwide D It has also been reported that by
the year 2030, the worldwide estimated total cost
of living with dementia will reach approximately
2.0 trillion USD ™ Therefore, the focus of developing
early interventional strategies to help prevent, diag-
nose, halt the progression and/or alleviate associated
symptoms of dementia has become pertinent facets
in both basic and clinical science research platforms.

One of the promising stages of the disease is
‘mild cognitive impairment’ (MCI), which is par-
ticularly recognized as a preclinical stage of AD
that may serve as a target niche for early inter-
ventional strategies by potentially reverting, halt-
ing, or slowing down the accelerated progression
of the disease® Research studies are indicating
that an approximation of 8-15% of MCI patients
advance into AD stage annually? while about 1-
2% of individuals who were previously considered
as healthy, acquired AD within the same given
time-frame X making early diagnosis an essential
contributor of quality outcomes. Interestingly, evi-
dence from the current literature shows that based
on follow-up durations, the estimated incidences of
reverting from the MCI stage to a normal state
reportedly ranged from 4 to 15% in clinic-based
studies and from 29 to 55% in population-based
studies, respectively™ which further ascertains
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that MCI a plausible interventional window stage to
revert or halt the pathological progression of the dis-
ease process.

Neuro-imaging technology is an essential inter-
ventional strategy and diagnostic tool for the eval-
uation of neurological diseases™13 As the brain
remains a soft tissue organ, MRI proves to be the
gold-standard neuro-imaging modality to evaluate its
anatomic structural-to-functional alterations from
the pathophysiological perspective ™18 In recent
years, MRI has been the primary modality for AD
diagnosis2 and MCI detection™ ™8 due to its pecu-
liar properties™ In the context of clinical screen-
ing of AD, the traditional MRI mode for the diag-
nostic classification of the disease has demonstrated
relatively satisfactory outcomes for readily distin-
guishing between AD and normal controls, but
MRI remains partially insensitive a technique for
distinguishing between normal controls and MCI
subjects2¥ Furthermore, as MRI features of MCI
and AD subjects appear to be very similar, tradi-
tional imaging classifiers cannot effectively distin-
guish between the two stages of the disease, particu-
larly in older age groups2! Therefore, this current
study intended to evaluate the utility of artificial
intelligence (AI)-based classification algorithms to
address this limiting facet associated with the patho-
logical distinction of the different stages involved in
the disease process.

Machine learning and multivariate pattern anal-
ysis serve as powerful conventional tools for build-
ing image-based predictive models in computer-aided
diagnostics®2 Amongst patients with AD, the use
of machine learning for individual-based diagnostic
classification and clinical-score prediction has proven
superior to traditional radiologic evaluation 23
However, the image-related features required for
machine learning cannot be extracted independently
from the source by the machine itself, consequently
requiring manual extraction by well-trained techni-
cians, which clearly stands as a current limitation
that consequently impacts efficiency outcomes in the
screening of AD and MCI subjects 24 This observed
limitation prompts for a more efficient method that
warrants early evaluation, detection and diagnoses of
the pathologically staged spectra of AD.

Interestingly, deep learning methodology appears
to be an advancement in the technology of computer-
aided diagnostics. It mainly differs from machine

Automated MRI-Based Deep Learning Model

learning due to its requirement of little to no image
pre-processing and can automatically integrate opti-
mal representations of data from raw images with-
out having to require any prior manual feature selec-
tion. The results of which are more objective, consis-
tent and less bias-prone2527 Convolutional neural
network (CNN) is known as a sub-type of super-
vised deep learning method that has been recog-
nized with great success in various medical fields,
such as imaging and speech recognition, as well as
natural language processing 2829 More importantly,
CNN has proven to be the most effective algorithm
for imaging-related AD diagnosis 32 Most researchers
have utilized CNN for binary classification based
on two-dimensional (2D)-MRI for the diagnosis of
ADBI but there are currently no established stud-
ies for the multi-classification of AD based on three-
dimensional (3D)-CNN and solely MRI images 2
Some researchers, nonetheless, did incorporate 3D-
CNN-based MRI and positron emission tomography
(PET) scans to diagnose AD regardless of the pos-
sible harm of irradiation exposure2¥ It is clear that
the use of PET scans poses health risks, especially in
vulnerably aged populations, and may not be suit-
able for screening AD in such populations.

Based on previous research, we found that sup-
port vector machine (SVM) is considered as the bet-
ter classifier to the Softmax 24 In this current study,
our goal was to establish a classification model uti-
lizing 3D-CNN with the aid of SVM and solely MRI
samples, which shows direct automated extraction of
features based on available imaging data.

2. Material and Methods
2.1. Database

All cases included in this study were collected at
baseline from the Alzheimer’s disease neuroimag-
ing initiative (ADNI) database with tests results
and imaging outcomes comprising at least two years
of follow-up. Complete patient information includ-
ing demographic information, level of disease sta-
tus, ancillary tests and other associated factors were
summarized. In this study, a subset of 469 sub-
jects having a total of 3127 MRI samples that con-
tained structural 3T T1-weighted images and their
respective anatomical segmentations from the ADNI
dataset were used. 3T Tl-weighted MRI samples
were collected using 3D MPRAGE sequences, and
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the diagnosis of each image sample was from a pro-
fessional radiologist, as described in the ADNTI acqui-
sition protocol 38 We randomly assigned the samples
according to the proportion of 85% in the training
group and 15% in the validation group and ensured
that the proportion of patients in the two groups
was similar. So, a total number of 398 subjects
(NC = 135, MCI = 133, AD = 130) with 2544 image
samples were distributed in the training group while
a total number of 71 subjects (NC = 24, MCI = 24,
AD = 23) with 469 image samples were designated
as the validation group.

The research study proposed statistical method
to compare basic information, recognition tests,
serum and cerebrospinal fluid (CSF) A3, p-Tau and
Tau protein levels in three groups (AD, MCI and
NC). The differences between three groups for quan-
titative data were tested with analysis of variance
(ANOVA), pairwise comparison test adopted LSD;
for qualitative data were tested with the chi-square
test (o = 0.05). Statistical analysis was performed
using SPSS version 25.0 (IBM Corp., Armonk, NY).
Statistical significance was set at P < 0.05.

2.2. Image pre-processing

The Think Server TS560 with Linux (Ubuntu 16.10)
operating system was used for MRI pretreatment and
CNN programs, including high-performance GPU
NVIDIA Tesla P40, with 3840 CUDA cores and
High-Frequency Intel Xeon E5-2650 V4 with 128 GB
overall memory. All methods were implemented in
Python version 2.7.12. The neural network is built
by using the Keras library in deep learning based
on TensorFlow. The analysts were blinded with the
information of all subjects while performing the
imaging data analysis.

To enhance standardization for MRI data, which
needs a few steps to pre-process as follows; all
MRI data were first spatially normalized by Sta-
tistical Parametric Mappingl2 (SPMlQ)BEI to guar-
antee that each image voxel corresponded with the
same anatomical position. Then, the skull and cervi-
cal parts in the imaging were stripped by using the
Computational Anatomy Toolbox12 (CAT12)57 an
extended toolbox of SPM12. The voxel-based mor-
phometric (VBM)38 method was used by CAT12 to
create a grey matter template. In addition, all MRI
images were segmented to grey matter (GM), white

matter (WM) and CSF. The nonlinear affine transi-
tion was used to select and register GM images for
the GM ICBM-152 standard template.

All 3D GMs were averaged and resized to 96 x
96 x 96 voxels with voxel-sizes of 1.5 mm (Sagittal) x
1.5mm (Coronal) x 1.5mm (axial) and concate-
nated into a stack. The Gaussian kernel was used to
smoothen the stack, which approximately resulted
in full width at half maximum (FWHM) of 7mm.
Considering the middle of the stack, 62 slices, con-
tains thalamus, hippocampus and other important
brain tissue about memory, our study used these
(62 x 96 x 96) to train the 3D-CNN. For 2D-CNN,
only axial slices in the axial plane were used to train
the parameters, which means that each subject pro-
vides 62 slices labeled for the same class regardless
of spatial information.

2.3. Convolution neural networks

In this study, CNN, which is a kind of deep learning
method, was used to extract the features from MRI
imaging. CNN imitates the visual system of human
beings to memorize and learn the edges and features
of the graphics, so as to achieve the most effective
recognition effect of such graphicsB? Three special
attributes of CNN are local connectivity, parameter
sharing and invariant representation, which greatly
reduce the computational complexity and thus sim-
plify the network.

The main structures of CNN include a convo-
lutional layer, pooling layer, fully connected layer
and classifier. The convolutional layer was used to
extract image features, which could generate the fea-
ture maps. The pooling layer was used to reduce
the number of features from the convolutional layer.
After the feature maps were optimally minimized,
we reduced and transferred the feature maps into
a column feature map, which in turn simplifies the
parameter into an optimal number. Then, the classi-
fiers were finally used for AD detection.

Based on the mathematical illustration in a previ-
ously reported study®? we based our current study
on the differences between 2D and 3D CNNs. 2D
and 3D CNNs use 2D and 3D convolutional kernels,
respectively, to classify MRI scans based on slices
(for 2D CNNs), or on volumetric patches (for 3D
CNNs). In 2D CNNs, a full volume of MRI pre-
dictions is initially taken one-slice at a time while
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the convolutional kernels achieve the necessary slice
measurements of height and width to enable clas-
sification. Nevertheless, 2D-CNNs can only use sin-
gle slices as inputs; they cannot supply context from
connected slices. This implies that the predictions of
MRI scans could be achieved by voxel information
via connected slices.

3D CNNs resolve this problem by using 3D con-
volutional kernels to classify volumetric patches of
scans. Leveraging inter-slice information can lead
to improved performance, but this comes at an
increased computational cost, since these CNNs uti-
lize numerous parameters.

In 2D convolution, the activation value at spa-
tial position(z,y) in the jth feature map of the ith
layer, denoted as v:'Y, is generated using the follow-
ing equation:

Z]’

di—1 5

,yf 4o, y+p
,U,]* st+§:§:§:w]7—zl‘r ’

T=1 p=—v0=—§
(1)

where ¢ is the rectified linear unit (ReLU) activation
function, b; ; is the bias parameter for the jth feature
map of the ith layer, d;_1is the number of feature
map in (I — 1)th layer and the depth of kernel w; ;
for the jth feature map of the ith layer, 2y + 1 is the
width of kernel, 25 +1 is the height of kernel and w; ;
is the value of weight parameter for the jth feature
map of the ith layer *!

The 3D convolution is a process to form a cube by
stacking multiple consecutive frames and then apply-
ing 3D convolution kernel in the cube. In 3D convolu-
tion, the activation value at spatial position (x,y, z)

Input (MRI scan)
3%62+x96+96

62*94%94
31*%47%47 31*45%45

N=560

> Conv3*3+BN+ReLU

Max Pooling/2+Dropout = Re[U +Dropout

15%22%22
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in the jth feature map of the ith layer, denoted as

v %, is generated as follows:

di—1 n di—a

SARTOIES 35 30 30 30 »

T=1A=—n 7=1 p=—7y0=—46

% wzﬁ,’_)\ « UchrlaTerp,er)\ (2)

2n + 1 is the depth of kernel along spectral
dimension and other parameters are the same as
in Eq. @™ In brief, 3D CNN is an extension
of 2D CNN. The 3D CNN uses the third dimen-
sion to store the temporal information from image
sequences. Contrary to the 2D CNN, the 3D CNN
retains a more computational complexity due to the
additionally added level of dimension.

As shown in Figs. [l and 2 processed MRI imag-
ing of three planes was put in the first layer as the
input layer in our experiment. And then, 560 3 x 3 x 3
sized convolutional kernels were used to extract the
features from the MRI imaging. The ReLU and
batch normalization (BN) were put with the convolu-
tional kernel to ensure more efficient gradient descent
and simplified calculation process. Afterward, a 560
2 x 2 x 2 sized max pooling, BN and ReLU were put
in the pooling layer to reduce the parameters of fea-
ture maps. These steps were repeated four times to
get streamlined feature maps. At the second pooling
layer, we made the dropout function here decreases
by half the number of neurons in CNN to simplify
the architecture and to guarantee a higher comput-
ing speed. Then, the feature maps were compati-
bly created into fully connected layer by the ReLU
and dropout function. At last, we used two classi-

1000 units

15%20%20 200 units
T*10*10 7*8*8

I2NJISSE]D

uonoIpaIg

— Max Pooling/2+BN+ReLU

Fully-connected layer

Fig. 1. The overall architecture for 3D-CNN adopted in this study.
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Fig. 2. The flowchart of the proposed for 3D-CNN
adopted in this study.

Table 1. °The parameters are used in the 3D and
2D CNN.

Model Function Kernel size
3D-CNN Convolutional kernels 3x3x3
3D-CNN Max pooling 2X2x2
2D-CNN Convolutional kernels 3x3
2D-CNN Max pooling 2 x2

fiers combined with 3D-CNN, one is Softmax and the
other is SVM. However, SVM was considered as the
better classifier to the Softmax from prior study34
The parameters used in the 3D and 2D CNN are
shown in Table [l

SVM is a widely applied supervised machining
learning method aiming to solve binary classifica-
tion problem. The mechanism of SVM is mapping
nonlinear data into high dimensional space by kernel
function and obtaining optimal classification plane
for separating the individuals accurately. In this
research, SVM used radial basis function (RBF) ker-
nel (Gaussian kernel), C = 0.9. Standard 10-fold
cross-validation was employed for training SVM with
image features extracted by CNN to optimize the
parameters (gamma and cost), which is not time-
consuming and can obtain higher accuracy3 We
used 3D-CNN to create binary (AD/NC, AD/MCI
and MCI/NC) and ternary (AD, MCI and NC)

classifications. The 2D-CNN was also proposed to
address the above questions for comparison with 3D-
CNN. The CNN was trained by back-propagation
(BP) algorithm with mini-batch gradient descent.
The weights of the hidden layer and the output layer
were randomly initialized.

2.4. Performance evaluation

The above three kinds of CNN models were trained
for 50 epochs to ensure the best execution model
and with the lowest value of objective function after
training, and its performance was evaluated on the
validation group. Specificity, sensitivity, accuracy
and receiver operating characteristic curves (ROCs)
and area under curves (AUCs) were used for pre-
senting the differences between 2D-CNN and 3D-
CNN-SVM and finding out which approach yielded
the most efficient and reliable outcome. All accuracy,
sensitivity and specificity results for binary classifi-
cation were reported at the optimal operating point
of the ROC.

3. Results

We found no significant differences in age and gen-
der among the three groups, as shown in Table
Years of education, Minimum Mental State Exam-
ination (MMSE), Alzheimer’s Discase Assessment
Scale-cognitive subscale (ADAS11) and ADASI3
were significantly different in the three groups, but
not in NC and MCI. The concentration of Tau, p-
Tau and Af is not only different in a three groups
comparison but also in a pairwise comparison.
Results are shown in Table [B] expressing binary
classification accuracy, sensitivity and specificity of
AD. The performance of ternary classification’s accu-
racy for 2D-CNN, 3D-CNN and 3D-CNN-SVM was
82.57 + 7.35%, 89.76 + 8.67% and 95.74 + 2.31%,
respectively. The performance in ternary classifica-
tion of 3D-CNN-SVM was significantly better than
others (P < 0.05). The 3D-CNN-SVM yielded
the best performance relative to other methods for
binary classification (P < 0.05). Our study indi-
cated that ‘NC versus MCI’ showed accuracy, sensi-
tivity and specificity of 98.90%, 98.90% and 98.80%;
‘NC versus AD’ showed accuracy, sensitivity and
specificity of 99.10%, 99.80% and 98.40%; and ‘MCI
versus AD’ showed accuracy, sensitivity and speci-
ficity of 89.40%, 86.70%, and 84.00%, respectively;
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Table 2. Basic information and cognitive indicators of the individuals in this study.

Index NC (n = 159) MCI (n = 157) AD (n = 153) F/X2 P
Age 75.16 £4.12 74.81 £8.15 74.17 £8.21 0.78 0.457
Number of male

participants 65 (40.88) 106 (67.52) 53 (34.64) 10.41 0.600
Education 16.21 £ 2.15* 15.51 4 3.40° 14.31 £3.15 16.55 < 0.001
MMSE 28.38 £+ 2.75% 27.58 4 3.82°¢ 23.08 £2.15 141.13 < 0.001
ADASI11 5.75 +2.27% 6.14 +4.21°¢ 17.77 £5.39 420.53 < 0.001
ADAS13 12.54 4+ 3.25% 14.12 #+ 8.10° 28.12 £ 6.07 278.11 < 0.001
Tau, pg/mL 221.09 + 75.13%P 293.09 + 116.63¢ 355.49 + 112.72 66.544 < 0.001
P-Tau, pg/mL 20.37 + 7.59%P 28.24 4+ 13.02°¢ 36.04 £ 12.08 77.29 < 0.001
AB, pg/mL 1056.52 + 407.33*P 760.53 + 354.99° 601.477 £177.59 76.79 < 0.001

Notes: Quantitative data were expressed as mean + standard deviation; qualitative data were expressed

as number (percentage). MMSE: Mini-Mental State Examination; ADAS: Alzheimer’s Disease Assess-

ment Scale-cognitive subscale; Tau: Tau protein in Cerebrospinal Fluid (CSF); P-Tau: Phosphorylated
Tau protein in CSF; AB: Amyloid B-protein in CSF. Statistically positive significant results at the 5%
level (P < 0.05) are indicated in bold. aNC versus AD is statistically significant; ,NC versus MCI is
statistically significant; - MCI versus AD is statistically significant.

Table 3. The comparison for accuracy, sensitivity, and specificity of three kinds of binary

classification for different CNN models.

Classification Model Accuracy (%) Sensitivity (%) Specificity (%)
AD versus NC 2D-CNN 88.90 + 4.50 84.70 £ 7.30 87.10 £ 4.50
3D-CNN 89.40 £+ 2.20 82.10 £7.30 84.70 £ 4.10
3D-CNN-SVM 99.10 £+ 1.13 99.80 + 0.37 98.40 £+ 1.17
AD versus MCI 2D-CNN 65.20 + 3.40 62.40 + 3.50 67.90 £9.10
3D-CNN 86.50 £ 2.70 74.00 £+ 4.20 78.90 £ 9.10
3D-CNN-SVM 89.40 + 6.90 86.70 £+ 9.10 84.00 + 4.80
MCI versus NC 2D-CNN 61.80 £+ 6.90 55.20 + 8.40 70.30 +9.83
3D-CNN 81.20 £ 5.30 74.70 £ 8.30 80.30 £ 9.83
3D-CNN-SVM 98.90 + 2.78 98.90 + 3.69 98.80 + 0.63
Ternary 2D-CNN 82.57 +7.35 N/A N/A
Classification 3D-CNN 89.76 + 8.67 N/A N/A
3D-CNN-SVM 92.11 + 2.31 N/A N/A

Notes: For each classification, the bolded outcomes represented robust significance of the SVM

model compared to the outcomes of the other two models (P j0.05) N/A: Not applicable to

Sensitivity and Specificity with respect to ternary classification.

however, the performance of the classification for
AD and MCI was not effective. Softmax was used
as a classifier in 2D-CNN with a very poor perfor-
mance in all the binary and ternary classifications
of AD.

AUC is shown in Fig. Bland Table @ of ROC. 3D-
CNN-SVM had the highest AUC in the binary classi-
fication (P < 0.05), AD versus MCI and MCI versus
NC, making the AUC of binary classification 0.930
(0.875-0.985) and 0.998 (0.995-1.000), respectively.

Figure @ illustrates the performance of multi-
classification by 3D-CNN-SVM in the different devel-
opment processes for AD, yielding 95.74% accuracy.
The diagonal represents the number of correct pre-
dictions. The performance of ternary classification
showed that the 3D-CNN-SVM acquired accuracy
scores of 93.71%, 96.82% and 96.73% for NC, MCI
and AD diagnoses, respectively. We found that the
3D-CNN-SVM was less effective in discriminating
between NC and MCI.
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Fig. 3. Receiver Operating Characteristic Curve (ROC) for three different kinds of Deep Learning Model in AD Binary
Classification.
Table 4. The comparison of AUC (95% CI) for binary Although the high performance of ternary classi-

classification in AD with different CNN models.

Classification ~ Model AUC (95%CTI)
AD versus NC  2D-CNN 0.945 (0.8874-1.000)
3D-CNN 0.996 (0.988-1.000)
3D-CNN-SVM  0.999 (0.995-1.000)
AD versus MCI 2D-CNN 0.813 (0.713-0.912)
3D-CNN 0.849 (0.763-0.936)
3D-CNN-SVM 0.930 (0.875—0.985)
MCI versus NC 2D-CNN 0.869 (0.788-0.949)
3D-CNN 0.993 (0.982—-1.000)
3D-CNN-SVM  0.998 (0.995-1.000)

Note: For each classification, the bolded outcomes repre-

sent robust significance of specific models (P < 0.05).
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Fig. 4. Confusion Matrix for 3D-CNN-SVM Model in
Ternary Classification’s Performance.

fication was achieved by the new combination model
(3D-CNN-SVM), overfitting may cause a reduction
of performance when the model is used in other imag-
ing databases. Figure [ shows the accuracy of the
training and validation group across the model utiliz-
ing structural MRI as inputs, which also achieved the
highest classification accuracy. It can be found that
the curves of the accuracy are almost the same in the
training and validation group, illustrating compara-
ble performance during both training and validation,
therefore no significant overfitting.
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Fig. 5. The Iterative Graph of the Training and Vali-

dation Accuracy for Ternary Classification in 3D-CNN-
SVM Model.
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4. Discussion

At present, morphological analyses of medical
imaging scans are operated manually by skilled
radiologists and imaging technicians, which can
potentially result in reduced efficiency and inaccu-
racy, as well as overdependence on the analyst’s
skills3¥ Previous work indicates the potential clin-
ical significance of CNN application in AD screening
and detection ¥4 However, brain MRI and ternary
classification are yet to be considered in this area of
work 28 In the current study, we designed and trained
a patterned classification system combining 3D-CNN
and SVM for ternary classification. Our experimen-
tal outcome indicates that the performance of 3D-
CNN is superior to 2D-CNN, whereas the expres-
sion with 3D-CNN-SVM yielded the best algorithm
for binary and ternary classification of AD. More
importantly, 3D-CNN-SVM performed appreciably
well without any prior feature engineering and was
completely independent of the variability of imaging
protocols and scanner. This suggests that it could be
utilized by untrained operators and potentially gen-
erate analyses of patient-imaging data with higher
efficiency and greatly minimized technical errors.
Certain risk factors aside neuro-imaging have
generally been implicated in the pathological role of
AD such as patient’s educational level 48 age 47 gen-
der 28 cognitive and mental status®® as well as CSF
total-tau (t-Tau), phosphorylated-tau (p-Tau) and
amyloid-beta (Af3) proteins59 In this current study,
we found that the analyses of the number of years
of education, MMSE, ADAS11 and ADAS13 showed
no differences across MCI and NC subjects, implying
that the detection of MCI may be less sensitive with
those clinical variables, probably due to the fine tran-
sitional line between normal control status and MCI
stage. The concentrations of CSF t-Tau, p-Tau and
A are not only different across the three groups but
also in pairwise comparison. There has been quite
a number of reported evidence, where authors uti-
lized CSF t-Tau, p-Tau and AS as important train-
ing data to increase the performance of their diagnos-
tic models 552 However, these diagnostic modalities
may have downsides, due to their potentially harm-
ful effects on health. A critical goal of computer-
aided diagnosis in the field of neuro-imaging is to
improve the approach to the diagnoses of neuro-
logical diseases by means of utilizing less invasive

Automated MRI-Based Deep Learning Model

means, and if possible, nonirradiating neuroimaging
modality 354 To effectively address this needed area
of technology into clinical practicum, we needed to
incorporate a method to clearly distinguish between
AD, MCI and NC in an easier, safer and efficient
way.

Since the invention of the MRI, its applica-
tion has rapidly gained irreplaceable grounds as a
gold-standard for soft tissue imaging > This can be
attributed to its pertaining properties of nonirradi-
ation and noninvasiveness as well as weighted-signal
intensities to tissue and fluid 2@ which warrant this
imaging modality for the replicable screenings of neu-
rological diseases. Based on these imaging proper-
ties, MRI scans were proposed in this study as the
training data for CNN to classify MCI and AD sub-
jects from NC subjects.

Automated classification with different image-
extracting features is an important step in the anal-
ysis of structural to functional morphology in MRI
technology. The traditional diagnosis of AD is usu-
ally based on manual extraction of texture features,
which requires an impractical amount of time and
human resource for image pre-processing57

In special circumstances, some pathological
atrophic changes that occur in certain cerebral
regions (such as the hippocampus and amygdala)
due to large individual differences are not well
distinguished by human-based visual analyses 5359
Das et al®0 proposed a machine learning method
called ‘sparse high-order interaction model with
the rejection phenomenon’. Their reported sensitiv-
ity, specificity and AUC for AD versus NC were
84.00%, 69.00% and 0.860, respectively, which did
not prove superior to our respective CNN outcomes:
(99.80%, 98.40% and 0.999), and moreover, imposed
a much larger work input burden during image pre-
processing. Khazaee et alI applied SVM with ADNT
MRI images to classify three groups (NC, MCI and
AD) with an accuracy of 88.40%, but we are report-
ing a much higher accuracy outcome of 92.10% in
this current study. Furthermore, in their study, their
reported classification accuracies for distinguishing
NC from AD and MCI, AD from NC and MCI and
MCI from NC and AD were 87.30%, 97.50% and
72.00%, respectively. However, in our study, we are
reporting classification accuracies of 93.71%, 96.73%
and 96.82% for distinguishing NC from AD and
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MCI, AD from NC and MCI and MCI from
NC and AD, respectively. Although the classifica-
tion accuracy of AD from NC and MCI is almost
equivalent, their other two accuracies were far less;
compared to the 3D-CNN-SVM results, we obtained.
Compared with the traditional data-driven method,
the deep learning method does not necessarily
require any time demanding to preprocess steps
when selecting the feature, since it is already self-
programmed to acquire the best performance for the
classification 8263 This may be the potential rea-
son why CNN proves superior to machine learning
method in the classification of NC, MCI and AD.

Deep learning is rapidly growing in processing
neuroimaging data® In recent years, a large number
of studies have been reported for their application of
CNN in the diagnosis of AD P65 Wang et a8 pro-
posed an eight-layer CNN with ADNI MRI images
and achieved a sensitivity of 97.96%, a specificity
of 97.35% and an accuracy of 97.65% for the
classification of AD versus NC. In addition, Cui
and colleaguesm also proposed a CNN with ADNI
MRI images to achieve a classification accuracy of
91.33% for AD versus NC, whereas in this study,
the 3D-CNN-SVM improved the sensitivity, speci-
ficity and accuracy to 99.80%, 98.40% and 99.10%,
respectively.

Liu et al88 performed a new classification frame-
work based on a combination of CNN and recur-
rent neural network (RNN) to compare 3D-CNN by
ADNI PET images. The performance of this new
classification framework and 3D-CNN reported accu-
racies of 91.20% and 87.10%, with AUC of 0.953
and 0.935, respectively, for AD versus NC classifi-
cation, while accuracies of 78.9% and 75.60% with
AUC of 0.839 and 0.821 were respectively reported
for the MCI versus NC classification. In this study,
we achieved an accuracy of 99.1%, with an AUC of
0.999 for AD versus NC classification, and an accu-
racy of 98.9%, with an AUC of 0.998 for MCI versus
NC classification, which show higher outcomes com-
pared to Liu et al.’s findings. Ehsan et al® employed
the 3D-CNN to predict AD status with MRI, the
ternary classification accuracy of which was 89.1%;
however, our study reports a much higher accuracy
outcome of 95.74%. The probable reason why 3D-
CNN-SVM performs better image processing than
2D-CNN may be attributed to the properties of 3D

CNN that allows for the extraction of 3D spatial fea-
tures from the images™ In addition, SVMs with low-
dimensional data have been demonstrated to achieve
good prediction effects, but not necessarily for high-
dimensional imaging data™ Therefore, our study
proposed a new classification design based on the
combination of 3D-CNN and SVM to extract 3D
features by making SVM the classifier in order to
achieve the observed rated performance.

There are some strengths to this study. First, a
novel 3D-CNN-SVM was proposed as a model for
the classification of AD. Second, 3D-CNN has also
been confirmed to be useful for the diagnosis of AD
in prior studies but not for the multi-classification
of AD. We utilized this ternary classification with
MRI modality, which means that our algorithm can
assist radiologists and/or imaging technicians with
screening and diagnosis without risk of exposure
to irradiation. In addition, the performance of 3D-
CNN-SVM proves superior to the current models
reported in previous studies. Furthermore, 3D-CNN-
SVM proved to be efficient by not having to manually
perform any prior feature extraction and is totally
independent of the variability of imaging protocols
and scanners, suggesting that it can potentially be
exploited by untrained operators and extended to
virtual patient imaging data.

Our study is not without limitations. First, we
solely utilized baseline MRI images for the deep
learning method, which implies that we did not con-
sider the follow-up MRIs, as well as the predic-
tion of AD outcomes. Second, we did not compare
the radiologist-based diagnoses, which ultimately
suggests the possibility of discrepancy(ies) in the
diagnostic ability between the discussed model of
classification and that of the radiologists, in this
study design. Third, AD is clinically heterogeneous
in nature, which undoubtedly cannot be disputed.
Effective diagnostic models should be developed to
deal with atypical presentations of AD manifesta-
tions, such as those seen with posterior cortical atro-
phy and variants of primary progressive aphasia.
Finally, neurodegeneration due to AD occurs over
years, even decades, before its clinical overtness’2;
therefore, future study goals are encouraged to focus
on how to revert MCI to normal states, predict
AD pathological progression and improve the perfor-
mance of the diagnosis of AD at automated levels.
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AD clearly remains a global health issue amongst
the neurodegenerative diseases despite recent and
modern technological advancements in the medi-
cal field ™ One preventive approach to mitigate its
occurrence and impact can be achieved through
screening methods. 3D-CNN-SMV is expected to
establish models for AD automation, individualiza-
tion and early detection, so as to accelerate the appli-
cation of MRI technology in our mundane practice
and to assist, prevent, or halt the pre-clinical and
pathological stages of the disease from progressing
to MCI and/or AD.

5. Conclusion

Findings from this study illustrate that 3D-CNN-
SVM is superior to reported classification models
for AD-spectrum diagnosis in previously published
studies and holds great potential for employing deep
learning designs by setting new platforms for medi-
cal diagnostic and interventional imaging. These out-
comes further indicate that 3D-CNN has the poten-
tial to capture 3D context of MRI scans, like amyg-
dale, temporal lobe and para-hippocampal regions,
which are associated with AD, while conventional
2D-CNN can only filter scans of 2D local patterns.
Finally, this study makes it more practical and eas-
ier to screen AD and MCI in a general population
at baseline, with the sole purpose of early diagnosis
and potential intervention. Due to the current grow-
ing interest in value-based health care paradigms in
the United States, it will be more fascinating to know
that patients can possibly receive early diagnoses fol-
lowing automated clinical imaging evaluations with
this trained model, for early intervention and quality
outcomes of patients in clinical practice.
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