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Functional brain architecture is associated with the
rate of tau accumulation in Alzheimer’s disease
Nicolai Franzmeier 1*, Julia Neitzel1, Anna Rubinski1, Ruben Smith 2,3, Olof Strandberg3, Rik Ossenkoppele3,4,

Oskar Hansson 3,5, Michael Ewers1 & Alzheimer’s Disease Neuroimaging Initiative (ADNI)

In Alzheimer’s diseases (AD), tau pathology is strongly associated with cognitive decline.

Preclinical evidence suggests that tau spreads across connected neurons in an activity-

dependent manner. Supporting this, cross-sectional AD studies show that tau deposition

patterns resemble functional brain networks. However, whether higher functional con-

nectivity is associated with higher rates of tau accumulation is unclear. Here, we combine

resting-state fMRI with longitudinal tau-PET in two independent samples including 53 (ADNI)

and 41 (BioFINDER) amyloid-biomarker defined AD subjects and 28 (ADNI) vs. 16 (Bio-

FINDER) amyloid-negative healthy controls. In both samples, AD subjects show faster tau

accumulation than controls. Second, in AD, higher fMRI-assessed connectivity between 400

regions of interest (ROIs) is associated with correlated tau-PET accumulation in corre-

sponding ROIs. Third, we show that a model including baseline connectivity and tau-PET is

associated with future tau-PET accumulation. Together, connectivity is associated with tau

spread in AD, supporting the view of transneuronal tau propagation.
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A lzheimer’s disease (AD) is characterized by the hallmark
pathologies amyloid-beta (Aβ) and hyperphosphorylated
tau, which are associated with neurodegeneration, cogni-

tive decline and dementia1. While Aβ forms extracellular plaques
that accumulate in a rather diffuse and global manner across the
cortex2, the formation of intracellular neurofibrillary tangles fol-
lows a sequential spatio-temporal pattern described by the Braak-
stages3. Extensive post-mortem findings in AD brains suggest that
tau pathology is first confined to the locus coeruleus and
entorhinal cortex and subsequently occurs within the allocortex,
inferior temporal lobe, association cortices and lastly in primary
sensorimotor and visual cortices4. The sequential and organized
spread of pathologic (i.e. hyperphosphorylated) tau species across
anatomically connected brain areas in AD has fostered the idea of
a prion-like tau transmission mechanism5, where neurons carry-
ing pathological tau species transmit pathological tau to their
connected neighbors, thereby triggering a self-propagating tau
spreading cascade6,7. Preclinical studies have shown that patho-
logical tau exhibits prion-like features: First, pathological tau
species have been shown to be capable of seeding, i.e. they can
serve as templates for misfolding of physiological tau species8,
initiating the formation of pathological tau tangles9,10. Second, the
induction of hyperphosphorylated tau seeds in circumscribed
brain regions of rodents has been shown to elicit spread of
pathological tau to anatomically connected regions rather than
simple diffusion to spatially adjacent regions11–13. In vitro studies
have further emphasized that pathological tau spreads specifically
across synapses14 in an activity-dependent manner15, where
greater synaptic connectivity (i.e. shared activity between neurons)
facilitates tau spreading both in vitro and in vivo16. Thus, higher
co-activation of brain regions may facilitate the spreading of tau
between functionally connected brain regions.

The combination of recently developed tau-PET imaging with
resting-state functional MRI (fMRI) has greatly facilitated efforts
to test the relationship between brain connectivity and tau
pathology in living AD patients17. A recent study combining tau-
PET and resting-state fMRI cross-sectionally in a small sample of
AD patients found tau deposition to be preferentially distributed
within the boundaries of fMRI-detected functional brain net-
works, i.e. within regions that are functionally connected18. We
reported previously in cognitively normal elderly individuals and
patients with AD or vascular cognitive impairment that higher
inter-regional tau covariance (i.e. correlation of tau-PET uptake
levels between brain regions) is closely associated with higher
fMRI-assessed functional connectivity between the spatially
matching brain regions. Furthermore, regions that were highly
functionally connected to tau hotspots showed high tau levels,
whereas regions with low functional connectivity to tau hotspots
harbored little tau19. In a similar vein, highly interconnected
brain regions—so called hubs—showed more tau PET uptake
than less well-connected regions in patients with AD, possibly
because their large number of connections increases the like-
lihood to receive pathological tau species from remote brain
regions20. Together, these first in vivo findings on the association
between tau and brain network architecture support the
hypothesis that the accumulation and propagation of pathologic
tau is related to neural activity and inter-regional connectivity.
However, whether functional connectivity between regions is
associated with future tau accumulation rates in connected brain
regions in living AD patients is unknown. Understanding the role
of functional connectivity in the development and spread of tau
pathology is of major clinical importance, paving the way towards
targeting neural activity related mechanisms of tau pathology to
halt clinical AD progression21.

Therefore, we assessed in the current study longitudinal
AV1451 tau-PET data from 53 amyloid-positive subjects at

pre-dementia AD stages and from 28 cognitively normal
amyloid-negative (CN Aβ−) control subjects from the ADNI
study in combination with baseline resting-state fMRI. For
replication of the results, we further included longitudinal tau-
PET data from the BioFINDER cohort (i.e. 41 Aβ+ subjects from
preclinical to AD dementia stages and 16 CN Aβ−) together with
a resting-state fMRI connectome template derived from 500 sub-
jects of the human-connectome project (HCP)22. Using pairwise
ROI-to-ROI correlation analysis within the AD (i.e. Aβ+) sam-
ples, we assessed the covariance in AV1451 longitudinal tau-PET
change among 400 brain regions of interest (ROIs) using a
standard neocortical parcellation atlas23. Based on resting-state
fMRI data, we assessed group-mean functional connectivity
between the same 400 ROIs. By combining functional con-
nectivity and longitudinal tau-PET data, we pursue our major
aim, i.e. we show that the brains’ connectivity architecture is
associated with the future spread of tau. To this end, we first
assessed whether tau deposition at baseline and the rate of tau
accumulation are increased in subjects with AD compared to
controls. Second, we show that highly functionally connected
regions show similar rates of tau accumulation (i.e. covariance in
tau change). Third, we emphasize that future tau accumulation
can be modeled by combining fMRI-assessed functional brain
architecture with baseline tau levels.

Results
Sample characteristics. We included 81 participants from the
ADNI3 study (https://clinicaltrials.gov/ct2/show/NCT02854033)
all with available baseline resting-state fMRI and longitudinal
AV1451 tau-PET data. The sample included 28 CN Aβ− as a
healthy reference group, and 32 CN Aβ+ as well as 21 MCI Aβ+
covering the pre-dementia AD spectrum (see Table 1 for baseline
demographics). Mean tau-PET follow-up time was 1.3 ± 0.52
years in CN Aβ− and, 1.27 ± 0.46 years in CN Aβ+ and 1.37 ±
0.57 years in MCI Aβ+. No significant differences in tau-PET
follow-up time were found across groups (p= 0.817, ANOVA).
As an independent validation sample, we included 57 subjects
from the BioFINDER study with available longitudinal AV1451
tau-PET data (Table 1). This sample included 16 CN Aβ−, 16 CN
Aβ+, 7 MCI Aβ+ and 18 subjects with AD dementia (Aβ+).
Mean tau-PET follow-up time was 2.03 ± 0.47 years in CN Aβ−,
1.91 ± 0.32 years in CN Aβ+, 1.82 ± 0.12 years in MCI Aβ+ and
1.87 ± 0.34 years in AD dementia. For BioFINDER, we used
resting-state fMRI data from 500 subjects of the human-
connectome project (HCP) to determine a group-mean func-
tional connectivity template that was used for combined tau vs.
functional connectivity analyses similar to previous studies24. For
both samples, all tau-PET images were intensity normalized to
the inferior cerebellar grey25. Usage of an alternative reference
region (i.e. eroded white matter) did not change the currently
reported result pattern (data not shown).

Higher baseline tau- and tau-PET change in Aβ+ vs. CN Aβ−.
First, we assessed baseline and follow-up tau-PET levels within
400 ROIs covering the neocortex23, as well as longitudinal tau-
PET change (i.e. ROI-wise SUVR change per year) for each group
and sample. In CN Aβ−, no elevated tau-PET uptake (i.e. sur-
passing a pre-established tau-PET SUVR threshold > 1.3)26 was
found at baseline or follow-up in both ADNI (Fig. 1a) and Bio-
FINDER (Fig. 1d). In CN Aβ+, tau-PET uptake increased across
time especially in inferior temporal regions at follow-up in both
ADNI (Fig. 1b) and BioFINDER (Fig. 1e), surpassing the
threshold for elevated tau-PET of 1.3 in ADNI CN Aβ+ at
follow-up (Fig. 1b). In MCI Aβ+, elevated temporal, parietal and
frontal tau-PET was found at baseline, with increases at follow-up
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(ADNI: Fig. 1c; BioFINDER: Fig. 1f). A spatially similar long-
itudinal tau-PET increase was found in AD dementia subjects of
the BioFINDER sample (Fig. 1g). In CN Aβ−, ROI-wise t-tests on
the longitudinal tau-PET change maps confirmed that there was
no (ADNI: Fig. 1h) or only minor (BioFINDER: Fig. 1j) sig-
nificant tau-PET increase from baseline to follow-up. In contrast,
the Aβ+ groups showed significant and widespread tau accu-
mulation (i.e. ROI-wise t-test, p < 0.005) across temporal, parietal
and frontal regions in ADNI (Fig. 1i) and BioFINDER (Fig. 1k).
These analyses support the notion that AD (i.e. Aβ+) subjects
show elevated tau levels and faster tau accumulation than
controls.

Functional connectivity and covariance in tau accumulation.
We assessed whether regions with strong functional connectivity
show higher covariance in tau pathology accumulation, indicative
of transneuronal tau spread. To this end, we tested the association
between resting-state fMRI functional connectivity between two
given brain regions and the covariance in annual tau-PET change
between the same brain regions. This main analysis was con-
ducted in the AD groups (i.e. 53 Aβ+ subjects in ADNI and 41
Aβ+ subjects in BioFINDER), since there were no (ADNI) or
only minor (BioFINDER) longitudinal tau-PET changes in the
CN Aβ− groups (see Fig. 1d). For ADNI, subject-specific func-
tional connectivity matrices were obtained on preprocessed
resting-state fMRI data using a standardized functional brain atlas
including 400 ROIs23 (Fig. 2a) and subsequently averaged to a
group-mean connectivity matrix (Fig. 2b). For BioFINDER, we
obtained a 400 × 400 template of functional connectivity from
preprocessed resting-state fMRI data from 500 HCP subjects
(Fig. 2b). Within both ADNI and BioFINDER, we determined for
each Aβ+ subject the annual tau-PET change within each of the
400 ROIs. We then computed the across-subject Spearman cor-
relation in tau change, yielding a 400 × 400 matrix of covariance
in tau change (Methods illustrated in Fig. 3a), where higher
correlations indicate similar annual tau change rates within a
given ROI pair (Fig. 3b). To test whether functionally connected

regions show similar tau accumulation rates, we performed spa-
tial regression using the group-average functional connectivity
matrices as a predictor of the covariance in tau change matrix
(Fig. 3b). Supporting our hypothesis, we found a positive asso-
ciation between functional connectivity and covariance in tau
change in both ADNI (β= 0.38, p < 0.001, see Fig. 4a) and Bio-
FINDER (β= 0.30, p < 0.001, Fig. 4b). We repeated the same
analyses 200 times generating in each trial a new connectivity
null-model (i.e. shuffled connectivity matrix with preserved
degree- and weight-distribution), yielding β-value distributions of
M/SD= 0.09/0.002 for ADNI and M/SD=−0.02/0.002 for Bio-
FINDER. Comparing the β-values estimated in the ADNI and
BioFINDER samples with these null-distributions using an exact
test (i.e. the percentage of null-distribution derived β-values
surpassing the true β-value), yielded p-values < 0.001 for both
ADNI and BioFINDER. These analyses support the notion that
higher functional connectivity is associated with more similar
annual tau accumulation rates in AD. Importantly, the associa-
tion between functional connectivity and covariance in tau-PET
change remained consistent when controlling for the Euclidean
distance between each ROI pair (ADNI: β= 0.30, p < 0.001,
BioFINDER: β= 0.22, p < 0.001), or when controlling the
assessment of covariance in tau change for age, sex, education,
ApoE4 status, diagnosis and MMSE (ADNI: β= 0.38, p < 0.001,
BioFINDER: β= 0.24, p < 0.001). These findings support the view
that tau spread is predominantly determined by connectivity
rather than proximity13, and independent of age, sex, education
or ApoE. When exploratorily testing the association between
functional connectivity and covariance in tau-PET change in the
Aβ− control subjects of the BioFINDER cohort, who showed
minor tau accumulation (Fig. 1), we found a less strong but
congruent positive association between functional connectivity
and covariance in tau-PET change (β= 0.10, p < 0.001), which
remained after controlling for Euclidean distance (β= 0.09, p <
0.001).

To exploratorily test whether the association between func-
tional connectivity and covariance in tau-PET change was higher
in Aβ+ than in Aβ−, we iteratively determined covariance in

Table 1 Subject characteristics.

ADNI CN-Aβ− (n= 28) CN-Aβ+ (n= 32) MCI- Aβ+ (n= 21) p-value

Age 74.07 (6.82) 76.88 (5.86) 74.86 (7.57) 0.251
Sex (m/f) 12/16 12/20 11/10 0.564
Education (M/SD) 16.8 (1.94) 15.0 (4.56) 15.62 (2.92) 0.214
MMSE (M/SD) 29.25 (1.02)c 28.5 (2.13)c 26.53 (4.03)a,b 0.010
ADAS-global (M/SD) 7.93 (4.27)c 12.42 (7.16)c 17.61 (10.38)a,b 0.001
ApoE ε4 status (pos/neg) 5/23 19/13 14/7 0.002
Global AV45 SUVR(M/SD) 1.04 (0.04)b,c 1.33 (0.21)a 1.34 (0.13)a <0.001
Mean tau-PET follow-up time in years (M/SD) 1.30 (0.52) 1.27 (0.46) 1.37 (0.57) 0.817

BioFINDER CN-Aβ− (n= 16) CN-Aβ+ (n= 16) MCI- Aβ+ (n= 7) AD dementia (n= 18)

Age 73.88 (5.32) 75.44 (6.09) 72.71 (6.63) 69.83 (10.48) 0.192
Sex (m/f) 10/6 6/10 2/5 11/7 0.245
Education (M/SD) 12.59 (4.06) 10.56 (3.22) 11.14 (2.67) 13.44 (3.26) 0.097
MMSE (M/SD) 29 (1.1)d 29.31 (1.08)d 25.57 (2.94) 22.06 (5.17)a,b <0.001
ADAS-delayed recall (M/SD) 1.81 (1.47)c,d 2.31 (1.49)c,d 6.17 (2.4) 7.62 (2.45)a,b <0.001
ApoE ε4 status (pos/neg) 0/16 10/6 4/3 11/7 <0.001
Global Flutemetamol SUVR 0.52 (0.03)b,c,d 0.77 (0.12)a,d 0.84 (0.14)a 0.97 (0.15)a,b <0.001
Mean tau-PET follow-up time in years (M/SD) 2.03 (0.47) 1.91 (0.32) 1.82 (0.12) 1.97 (0.34) 0.484

p-values were derived from ANOVA for continuous measures and from Chi-squared tests for categorical measures
M male, f female, MMSE Mini-Mental State Exam, ADAS Alzheimer’s disease assessment scale, cognitive subscale
Mean values significantly (p < 0.05) different from—
aCN-Aβ−
bCN-Aβ+
cMCI-Aβ+
dAD dementia
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Fig. 1 Group-average tau-PET levels. Group-average tau-PET levels for the ADNI (a–c) and BioFINDER (d–e) samples, stratified by diagnostic group. Tau-PET
levels are showed as continuous values, where pathological tau-PET levels (i.e., surpassing an SUVR of 1.3)26 are highlighted by white outlines in Panels a–g.
Group-average data are shown in ADNI for 28 CN Aβ− (a), 32 CN Aβ+ (b) and 21 MCI Aβ+ (c) at baseline and follow-up. For BioFINDER, group-average data
are shown for 16 CN Aβ− (d), 16 CN Aβ+ (e), 7 MCI Aβ+ (f) and 18 AD Dementia patients (g). In ADNI, ROI-wise t-tests against zero show no significant
annual tau-PET increases in 28 CN Aβ− (h), but significant (p < 0.005) temporo-parietal tau-PET changes in 53Aβ+ (i). In BioFINDER, t-tests against zero
show minor annual tau-PET increases in the 16 CN Aβ− (j), but widespread temporal, parietal and frontal tau-PET increases in the 41 Aβ+ subjects (k).
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tau-PET change in BioFINDER using 1000 bootstrapping
iterations (i.e. random sampling from the subject pool with
replacement), based on which we re-assessed the association
between functional connectivity and bootstrapped covariance in
tau change for each of the 1000 iterations. The resulting
distribution of β-values (i.e. reflecting the association between
functional connectivity and covariance in tau change) was
significantly higher in Aβ+ (mean/SD= 0.22/0.03) than in
Aβ− (mean/SD= 0.06/0.02) as indicated by a two-sample t-test
(t(1998)= 145.11, p < 0.001).

Due to the availability of both subject-level tau-PET and
functional connectivity data in ADNI, we further assessed the
within-sample robustness of the association between functional
connectivity and covariance in tau change, by repeating the above
described analysis on 1000 bootstrapped samples in the ADNI
Aβ+ group. Specifically, we drew 1000 random samples with
replacement from the entire pool of 53 Aβ+ subjects and

determined within each bootstrapped sample the group-average
functional connectivity and covariance in tau change. For each
bootstrapped sample, we tested the association between func-
tional connectivity and covariance in tau change as described
above and saved the resulting β-values. The distribution of the
1000 resulting β-values (i.e. regression-derived association
between functional connectivity and covariance in tau change),
was significantly greater than zero (t(999)= 238.93, p < 0.001),
where the 95% confidence interval did not include zero (95% CI
= [0.232; 0.360]). This suggests a robust association between
functional connectivity and covariance in tau change within the
ADNI sample. Further, we repeated the above described analyses
by thresholding the ROIs to a subset with highest tau-PET uptake
at baseline (25/50/75% percentile). Here, we found that functional
connectivity was associated with higher covariance in tau-PET
change across different percentile thresholds of tau-PET (ADNI:
25/50/75%, β= 0.43/0.44/0.48, all p < 0.001, BioFINDER: 25/50/
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Fig. 2 Brain parcellation and resting-state fMRI. a Surface rendering of the 400 ROI brain parcellation that was applied to tau-PET and resting-state fMRI
data for ROI based analyses. b Group-average functional connectivity matrices for 28 CN Aβ− and 53 Aβ+ of the ADNI sample, as well as for 500 subjects
from the human-connectome project (HCP). In ADNI, no Bonferroni-corrected differences (p < 0.05) in functional connectivity were found between the
Aβ+ and CN-Aβ− in ANCOVAS controlling for age, sex, education and diagnosis.
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75%, β= 0.34/0.36/0.39, all p < 0.001), where this association
became stronger at higher tau-PET percentile thresholds. Lastly,
we tested whether the association between functional connectivity
and covariance in tau-PET change was consistent across all seven
canonical networks shown in Fig. 2a. Here, we found significant
positive β-values (ranging from 0.46 to 0.64 in ADNI, Fig. 4c, and
0.18 to 0.50 in BioFINDER, Fig. 4d) between functional
connectivity and covariance in tau-PET change within all seven
networks. To further illustrate the association between functional
connectivity and tau accumulation we mapped the group-mean
annual tau change for each ROI in the context of the functional
connectome for each sample (Fig. 5).

Regional tau and tau accumulation in connected regions. In a
follow-up step, we extended this analysis by testing whether the
level of tau-PET change in a given seed ROI is associated with the
tau-PET changes in closely connected regions in Aβ+. This
analysis is based on the idea that if tau spreads as a function of
functional connectivity, then interconnected regions should show
similar tau accumulation rates. To test this hypothesis, we rank-
ordered all ROIs according to their level of annual tau-PET
change. We reasoned that at high levels of tau-PET change in
seed regions, higher seed FC should be associated with higher tau-
PET change in target regions. Vice versa, at lower levels of tau-
PET change in the seed regions, higher seed FC should be asso-
ciated with lower levels of tau-PET change in the target region.

Using linear regression, we tested for each rank-ordered ROI
(seed) within each sample, the group-average FC strength to the
remaining ROIs (target) as a predictor of the group-average level
of tau-PET change in the target ROIs (methods illustrated in
Fig. 6a). As hypothesized, we consistently found in both ADNI
and BioFINDER that depending on the level of tau-PET change
in the seed region, the predictive value of FC for the level of tau
change in the target region changed. Specifically, for seeds with
high tau accumulation rates, higher FC was associated with
higher tau accumulation rates in target regions (i.e. positive β-
values in the regression). Conversely, for seeds with low-tau
accumulation rates, higher FC was associated with lower tau
accumulation rates in target regions (i.e. negative β-values in the
regression). This result pattern was mirrored in a strong positive
association between the seed ROIs’ annual tau-PET change rate
and their FCs’ predictive weight (i.e. regression-derived β-value)
on annual tau-PET change in target ROIs in both the ADNI
(Fig. 6b, β= 0.757, p < 0.001) and BioFINDER sample (Fig. 6e,
β= 0.603, p < 0.001). The same analyses applied to 200 null-
model connectomes, yielded β-distributions of M/SD= 0/0.07 for
ADNI and M/SD= 0.05/0.05 for BioFINDER, yielding exact
p-values of p < 0.001 when comparing the true β-values against
the null-distributions. Again, this analysis was repeated in ADNI
using 1000 bootstrapped samples using the above described
bootstrapping approach, where the resulting distribution of
β-coefficients was significantly different from zero (95% CI=
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Fig. 3 Assessment of covariance in tau-PET change. a Assessment of covariance in tau-PET change. In a first step, annual change in tau-PET was
determined as the ROI-wise difference in tau-PET between baseline and follow-up divided by the time between both tau-PET assessments in years. ROI-
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subjects to a 53 × 400 (ADNI) and 41 × 400 (BioFINDER) matrix, where we assessed the Spearman correlation in tau-PET change between ROIs across
subjects, yielding a (b) 400 × 400 covariance in tau-PET change matrix for each sample that was subsequently Fisher-z transformed.
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[0.660;0.769], t(999)= 655.25, p < 0.001). To illustrate this point
further we display the results for the analysis of seed regions with
peak-level (Fig. 6c for ADNI and 6f for BioFINDER) and
minimum-level of tau-PET change (Fig. 6d for ADNI and 6g for
BioFINDER).

Group-level spreading models of tau-PET change. For our major
aim, we model tau spreading based on baseline tau levels,

functional network architecture and spatial remoteness of con-
nections. In other words, we tested whether tau spreads from
affected regions preferentially along functionally strong and spa-
tially short connections (illustrated in Fig. 7a). To test this
hypothesis in a systematic way, we employed three approaches: As
a first negative control, we tested whether tau spread can be simply
modeled by the tau pattern at baseline and the Euclidean distance
between ROIs. The rationale for this negative control is that tau
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spreads in a diffusive manner to spatially adjacent regions (i.e.
regions with a shorter Euclidean distance) independent of func-
tional connectivity (Fig. 7a, Model 1). Second, we tested whether
tau spread can be better modeled by combining tau at baseline and
functional connectivity. To this end, we assessed tau-weighted
functional connectivity for each ROI, that is we determined the
mean functional connectivity between a given tau-receiving target
ROI and all other tau-seeding 399 seed ROIs (i.e. weighted
degree), after weighting each connectivity value by the respective
seed ROIs baseline tau level (Fig. 7a, Model 2). Here, strong
connections with high tau in the seed ROI have a high weight as
they are assumed to explain more variance in future tau accu-
mulation in a given target ROI. In contrast, strong connections
with low tau in the seed region will be assigned a low weight, as
they are hypothesized to contribute little to explaining future tau
accumulation in a connected target ROI. Third, we tested whether
this model could be further improved by including the Euclidean
distance between each ROI pair as an additional weighting factor,
since we reasoned that tau spread should be fastest across func-
tionally strong and spatially short connections (Fig. 7a, Model 3).

Each approach yielded a 400-element vector for the ADNI and
BioFINDER sample representing (1) tau-weighted by distance, (2)
tau-weighted functional connectivity and (3) tau- & distance-
weighted functional connectivity scores for each ROI (see also the
surface renderings of the predicted tau change in Fig. 8). Using
linear regression, we then tested whether the resulting 400-
element vectors were associated with actual annual tau-PET
changes in the corresponding 400 ROIs. For analyses including
functional connectivity, we again report regular p-values derived
from linear regression as well as exact p-values derived from
comparing the linear-regression-derived β-value with the null-
distribution β-values assessed on 200 null-model connectomes.
For our negative control (Fig. 7a, Model 1: distance-weighted
tau), we found a moderate association with future tau change in
ADNI (β= 0.252, p < 0.001, R2= 0.064, Fig. 7b), where shorter
distance was associated with higher future tau spread. However,
no significant association between distance-weighted tau and tau
change was found for BioFINDER (β= 0.046, p= 0.364, R2=
0.002, Fig. 7e). For tau-weighted functional connectivity as
predictor (Fig. 7a, Model 2) we found a significant effect in ADNI

(β= 0.471, p < 0.001, R2= 0.222, Fig. 7c, β-value null-distribution
M/SD= 0.08/0.02, pexact < 0.001) and BioFINDER (β= 0.400, p <
0.001, R2= 0.160, Fig. 7f, β-value null-distribution M/SD= 0.04/
0.03, pexact < 0.001), where higher tau-weighted functional con-
nectivity was associated with faster longitudinal tau change. The
strength of this association could be further improved by
including Euclidean distance between ROIs as an additional
weighting factor (Fig. 7a, Model 3: ADNI: β= 0.499, p < 0.001,
R2= 0.249, Fig. 7d, β-value null-distribution M/SD= 0.16/0.02,
pexact < 0.001; BioFINDER: β= 0.421, p < 0.001, R2= 0.177,
Fig. 7g, β-value null-distribution M/SD= 0.02/0.02, pexact <
0.001). In ADNI, we again assessed the within-sample robustness
of these associations, by computing bootstrapped β-value
distributions between annual tau-PET change (dependent vari-
able) and each of the three models (distance-weighted tau, tau-
weighted functional connectivity and tau- and distance-weighted
functional connectivity), that were derived on 1000 randomly
drawn (i.e. bootstrapped) samples. When comparing the boot-
strapped β-distributions (Fig. 7h) via ANOVA, we found the
highest values for tau- and distance-weighted functional con-
nectivity (Model 3), followed by tau-weighted functional
connectivity (Model 2) and lastly distance-weighted tau (Model
1, negative control).

Subject-level spreading models of tau-PET change. Using
subject-level functional connectivity and tau-PET data in ADNI
Aβ+, we repeated the above described analyses, testing for each
individual whether (1) distance-weighted tau, (2) tau-weighted
functional connectivity and (3) tau- and distance-weighted
functional connectivity were associated with individual annual
tau change rates (see Fig. 7i). In line with our group-level results,
we found on average the strongest association for tau spreading
(i.e. regression-derived β-values) using tau- and distance-
weighted functional connectivity (Model 3), followed by tau-
weighted functional connectivity (Model 2) and lastly distance-
weighted tau (Model 1, negative control). β-values of Model 1
were lower than those of Model 2 (p < 0.001) and Model 3 (p <
0.001) as shown by an ANOVA. In BioFINDER, we conducted
the same analyses, using subject-level tau-PET data together with
the HCP-derived mean functional connectivity matrix. Here, we
found a congruent result pattern (Fig. 7j), where prediction
performance was highest for tau- and distance-weighted func-
tional connectivity (Model 3), followed by tau-weighted func-
tional connectivity (Model 2) and distance-weighted tau (Model
1, negative control). β-values of Model 1 were lower than those of
Model 2 (p < 0.001) and Model 3 (p < 0.001), and β-values of
Model 2 were lower than those of Model 3 (p < 0.005) as shown
by an ANOVA. These results support the idea that the regional
tau accumulation rates are most strongly associated with the level
of tau in connected regions while also taking into account the
approximate length of the connection. Lastly, we tested whether
the association strength (i.e. β-values) was influenced by age, sex
or ApoE status. Using ANOVAs for sex and ApoE and linear
regression for age, we found no significant effect (p > 0.05) of
either measure on the β-value distributions of Models 1-3 in both
ADNI and BioFINDER, suggesting age, sex and ApoE do not
influence these associations.

Discussion
The major aim of the current study was to test whether func-
tional connectivity is associated with future tau accumulation in
AD. In two independent samples, we found that AD subjects
show stronger tau accumulation than amyloid-negative control
subjects, and that functionally connected regions show corre-
lated tau accumulation rates. Specifically, regions with high-tau

DAN

ADNI

Annual tau-PET change
(node size) and functional network topology

BioFINDER

DMN FPCN Limbic Motor VAN Visual

Fig. 5 Tau-PET change and functional network topology. Force-directed
graphs illustrating ROI-specific annual tau-PET change in the Aβ+ (node
size) subjects (ADNI, N= 53, left panel; BioFINDER, N= 41, right panel)
within the context of functional connectivity (node distance, defined based
on the Fruchtermann-Reingold algorithm applied to group-average
functional connectivity data).
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accumulation rates were preferentially connected to other
regions with high-tau accumulation rates, whereas regions with
low-tau accumulation rates showed high connectivity to regions
with similarly low-tau accumulation rates. Most importantly,
we found that future tau accumulation in AD could be modeled
by a combination of baseline tau levels, functional connectivity
and distance between brain regions. Together, our results
support the view of pathological tau transmission across neu-
ronal connections in AD.

For our first finding, we show significant tau accumulation in
AD subjects that is mostly absent in amyloid-negative controls.
This finding is a core prediction of the amyloid cascade model2

and is in line with previous evidence, showing that tau accumu-
lation is accelerated in the presence of elevated amyloid levels27.

Second, we could show that functionally highly connected
regions show similar tau accumulation rates in AD. This finding
critically extends previous results, showing that cross-sectionally
assessed tau levels covary between functionally connected regions

a

b

e f g

c d

Test the association between functional connectivity and tau-PET change in Aβ+

Group-average
annual tau-PET change

Vectorize
ROI values

0.4

� = 0.757, p < 0.001

� = 0.603, p < 0.001 � = 0.398, p < 0.001 � = –0.397, p < 0.001

� = 0.524, p < 0.001 � = –0.276, p < 0.001

A
D

N
I

B
io

F
IN

D
E

R

Ta
u–

P
E

T
 c

ha
ng

e
in

 c
on

ne
ct

ed
 r

eg
io

ns
Ta

u–
P

E
T

 c
ha

ng
e

in
 c

on
ne

ct
ed

 r
eg

io
ns

Ta
u–

P
E

T
 c

ha
ng

e
in

 c
on

ne
ct

ed
 r

eg
io

ns

A
ss

oc
ia

tio
n 

be
tw

ee
n 

se
ed

–b
as

ed
fu

nc
tio

na
l c

on
ne

ct
iv

ity
 a

nd
 ta

u–
P

E
T

ch
an

ge
 in

 c
on

ne
ct

ed
 r

eg
io

ns

A
ss

oc
ia

tio
n 

be
tw

ee
n 

se
ed

–b
as

ed
fu

nc
tio

na
l c

on
ne

ct
iv

ity
 a

nd
 ta

u–
P

E
T

ch
an

ge
 in

 c
on

ne
ct

ed
 r

eg
io

ns

0.2

–0.2

–0.4

–0.01 0.00 0.01

Tau–PET change in seed ROI

0.02 0.03

0.04

0.03

0.02

0.01

0.00

0.0 0.0 0.2 0.4 0.6 0.80.2

FC of tau hotspot FC of tau coldspot

FC of tau coldspot

0.4 0.6

0.0 0.2

FC of tau hotspot

0.4 0.6 1.00.50.0

–0.01

0.04

0.05

0.03

0.02

0.01

0.00

–0.01

0.04

0.05

0.03

0.02

0.01

0.00

–0.01

Ta
u–

P
E

T
 c

ha
ng

e
in

 c
on

ne
ct

ed
 r

eg
io

ns

0.04

0.03

0.02

0.01

0.00

–0.01

0.04

–0.01 0.00 0.01

Tau–PET change in seed ROI

0.02 0.03 0.04 0.05

0.0

0.6

0.3

0.0

–0.3

–0.6

Minimum tau-PET change

0.1

0.1

0.2

0.2

0.15

0.15

0.31

0.31

0.25

0.25

...

...

0.13

Sort vector (i.e. ROIsi to j)
according to tau-PET change

Maximum tau-PET change

Regress for each ROIi tau-PET change in
ROIj to n-1 onto FC of ROIi to ROIj to n-1

Assess FC of ROIi
to ROIj for j = 1 to N -1

0.13

0.3

0.3

0.5

0.5

0.4

0.4

0.22

0.22

DAN DMN FPCN Limbic Motor VAN Visual

Fig. 6 Associations between functional connectivity and tau-PET change. a Pipeline for testing the association between group-average functional
connectivity and annual tau-PET change in the 53 Aβ+ from ADNI and 41 Aβ+ subjects from BioFINDER. subjects. For both ADNI (b) and BioFINDER (e),
we plotted the association between annual tau-PET change of a seed-ROI (x-axis) and the regression-derived association between its’ functional
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changes. Illustration of the association between seed-based functional connectivity (x-axis) and annual tau-PET change in connected regions (y-axis) for
ROIs with maximum (ADNI: c; BioFINDER: f) and minimum (ADNI: d; BioFINDER: g) annual tau-PET change. Linear model fits are indicated together with
95% confidence intervals. Source data are provided in a Source data file.
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in AD18,19, and that similar tau levels are found within circum-
scribed functional networks28. In a similar vein, others could show
that functional hubs—i.e. brain regions that are highly inter-
connected with the rest of the brain—harbor high-tau levels,
potentially since their large number of connections increases the

likelihood to receive pathological tau species from other regions20.
While previous cross-sectional findings provided first evidence
that tau deposition patterns are related to functional brain
architecture, our results critically substantiate these findings,
showing that higher functional connectivity between brain regions
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is indeed associated with similar tau accumulation rates. This
finding recapitulates in vitro and rodent experiments showing that
optogenetic connectivity enhancement of tau-harboring neurons
leads to faster tau accumulation in connected regions15,16. Similar

to these preclinical findings, we show that higher connectivity of
fast tau accumulating regions is associated with faster tau accu-
mulation in connected regions. In contrast, higher connectivity of
slow tau accumulating regions is associated with slower tau

Fig. 7 Prediction of longitudinal tau-PET change. a Hypothetical network spreading model of tau pathology. Each node within the network represents a
brain region, where color indicates local tau pathology, distance between regions indicates connection length (i.e. Euclidean distance) and edge thickness
indicates functional connectivity strength. Example formulas for models 1–3 illustrate how we computed tau-weighted distance (Model 1), tau-weighted
functional connectivity (Model 2) or tau- & distance-weighted functional connectivity (Model 3) that were used to model group-mean annual tau-PET
change in the 53 Aβ+ADNI (b–d) and 41 Aβ+ BioFINDER subjects (e–g). For ADNI, we computed the association illustrated in (b–d) for 1000
bootstrapped samples (h). Resulting β-value distributions (y-axis) were compared between Models 1–3 using an ANOVA with post-hoc Tukey-test (x-
axis). f Prediction models 1–3 were assessed on the subject-level for 53 ADNI Aβ+ and 41 BioFINDER Aβ+ subjects using subject-level annual tau-PET
change and subject-level connectivity (ADNI) or HCP-derived group-level functional connectivity (BioFINDER). Subject-derived β-value distributions were
compared across Models 1–3 using an ANOVA. Source data are provided in a Source data file. Linear model fits are indicated together with 95% confidence
intervals.

Baseline group-mean
tau-PET in Aβ+

A
D

N
I

B
io

F
IN

D
E

R

0 100Percentile

Annual group-mean
tau-PET change in Aβ+

tau-PET change predicted
by tau weighted-by distance

tau-PET change predicted
by tau-weighted functional

connectivity

tau-PET change predicted
by tau- and distance weighted

functional connectivity

Model 1: Model 2: Model 3:

Visualization of prediction models

a b c d e
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accumulation in connected regions. This finding echoes our pre-
vious cross-sectional findings in AD, where inferior temporal tau
hotspots were preferentially connected to other high-tau regions,
whereas low-tau regions (e.g. in the motor cortex) were pre-
ferentially connected to other low-tau regions19. In a similar vein,
other studies have shown that grey matter atrophy of inferior
temporal regions—i.e. a downstream consequence of accumulat-
ing tau pathology—is associated with atrophy in connected
regions29, and that connectivity based models can in general
predict progression of brain atrophy in AD30. Together, it is thus
possible that functional connectivity of fast tau accumulating
regions may facilitate the spread of tau to their closely connected
neighbors. An alternative explanation is, that network-forming
regions show similar susceptibility for developing tau pathology:
Specifically, previous studies have shown that similar gene
expression is found among functionally connected regions31,32,
where similar gene expression across brain regions is associated
with shared susceptibility to develop AD pathology, including
amyloid, tau and neurodegeneration33–35. Thus, it is possible that
the association between functional connectivity and tau accumu-
lation rates is in part determined by shared genetic susceptibility
for developing tau pathology. Since both explanations are not
exclusive, similar tau accumulation rates may be found pre-
ferentially along functionally connected regions due to both
connectivity-mediated tau spreading as well as shared genetic
susceptibility for developing tau pathology.

Further, we could show that connectivity at baseline is associated
with future tau accumulation both on the group- and subject-level.
Specifically, we could show that the rate of future tau accumulation
of any given target brain region can be modeled by a combination
of its current connectivity strength to other tau-seeding brain
regions, their respective tau load and the approximate length of the
connections. In contrast, taking into account only proximity
between brain regions did not (BioFINDER) or hardly (ADNI)
explain tau accumulation rates. Thus, our result pattern supports
the idea that tau pathology spreads throughout the brain network,
where functionally strong and spatially short connections increase
the likelihood of tau seeding and spread. In other words, our results
support the view that tau spreading is determined primarily by
connectivity and not by proximity13, where tau spreading is
assumed to be an active process along connected brain regions
rather than passive diffusion7. Our findings have important clinical
implications: Knowledge of future tau spread can be critical for
predicting clinical disease progression, since the level of tau is the
strongest predictor of cognitive impairment and cognitive decline
in AD36,37. Here, blocking tau spread by targeting neural activity
related mechanisms of tau spread could be a promising target for
attenuating AD progression21, especially in view of the limited
clinical efficacy of anti-amyloid trials38,39.

Several caveats should be considered, however, when inter-
preting the results of the current study. First, the AV1451 tau-
PET tracer shows considerable unspecific off-target binding in
brain regions like the basal ganglia, hippocampus and choroid
plexus, which may confound the current joint analyses on tau-
PET and functional connectivity40. To address this, we pre-
selected an atlas that excludes these typical AV1451 off-target
binding regions. Still, it is possible, that unspecific AV1451
binding may influence our results, hence our findings await fur-
ther replication once second-generation tau-PET tracers with a
better off-target binding profile are available41,42. Here, it will be
of special interest to study the role of the hippocampus in
connectivity-related tau-spreading, which is a site of early tau
pathology that may be critically involved in tau spread from allo-
to the neocortical regions43,44.

Second, partial-volume-corrected AV1451 tau-PET data were
only available in BioFINDER, given the limited availability of

concurrent longitudinal MRI scans matching the longitudinal
tau-PET acquisitions in ADNI. Thus, all results reported in this
manuscript are nonpartial volume-corrected, and usage of a
single MRI for coregistration of the PET data in ADNI may
introduce asymmetry bias45. However, repeating all analyses in
BioFINDER with partial-volume-corrected data yielded con-
sistent results with results reported in this manuscript (data not
shown). Congruent with this result pattern, previous studies have
shown that longitudinal AV1451 tau-PET changes can be
detected in ROI based analyses without partial-volume correc-
tion, where partial-volume correction simply increases the sen-
sitivity for detecting AV1451 tau-PET changes27. Similarly, recent
studies using voxel-wise approaches have also reported significant
tau accumulation in both aging and AD in nonpartial volume-
corrected tau-PET data46,47. Together, partial-volume correction
may enhance the sensitivity to detect tau-PET changes, but tau-
PET changes can also be detected without partial-volume cor-
rection. Thus, our findings are unlikely to be driven by partial-
volume effects.

Third, the current study focuses solely on functional con-
nectivity, i.e. shared neuronal activity between brain regions,
which is to a large degree but not entirely matched by structural
connectivity as assessed via diffusion tensor imaging48. This
mismatch between functional and structural connections may in
part be determined by technical limitations of DTI to detect
crossing-fibers or short-range cortico-cortical connections49. On
the other hand, the slow temporal resolution of resting-state fMRI
may lead to connectivity between brain regions that exhibit no
direct but multi-synaptic connections50. Thus, it is important to
keep in mind that our current results on functional connectivity
and covariance in tau accumulation likely reflect a mixture of
direct and indirect connections between brain regions. Here,
future studies may combine both DTI and fMRI in order to assess
the joint contribution of structural and functional connectivity to
tau spreading. Importantly, future methodological advances in
MRI-based connectomics may lead to a better matching of
functional and structural connectivity, which may—in combina-
tion with tau PET—further our understanding on the association
between connectivity tau spreading.

In conclusion, the current study demonstrates that connectivity
is associated with future tau spread in AD. Our independently
validated findings provide strong support for the notion that tau
spreads across synaptic connections in an activity-dependent
manner, as suggested by preclinical findings14–16. Our results may
also motivate future studies to investigate tau spreading in other
tauopathies such as primary age-related tauopathy, progressive
nuclear palsy or corticobasal degeneration where tau pathology
may spread via similar mechanisms51–53. Since tau is the stron-
gest driver of cognitive decline in AD, potential interventions
could target connectivity-related spreading mechanisms16 or
silencing of amyloid-induced neuronal hyperactivity that may
promote tau spreading54,55. Together, limiting tau spreading
across brain connections may be a promising approach to slow
AD progression.

Methods
ADNI participants. We included 81 participants from ADNI phase 3 (Clin-
icalTrials.gov ID: NCT02854033) based on availability of baseline T1-weighted &
resting-state fMRI, 18F-AV45 amyloid-PET and at least two 18F-AV1451 tau-PET
visits. The T1-weighted, resting-state fMRI, AV45 amyloid-PET and the first
AV1451 image had to be obtained within the same study visit. Using Freesurfer-
derived global AV45 amyloid-PET SUVR scores normalized to the whole cere-
bellum (provided by the ADNI-PET Core), all subjects were characterized as Aβ+
or Aβ− based on established cut-points (global AV45 SUVR > 1.11)56. For the Aβ-
group, we included 28 cognitively normal subjects (CN, MMSE > 24, CDR= 0,
nondepressed). To cover the spectrum of AD, we included 32 CN and 21 mild
cognitively impaired subjects (MCI; MMSE > 24, CDR= 0.5, objective memory-
loss on the education adjusted Wechsler Memory Scale II, preserved activities
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of daily living) with elevated amyloid deposition (i.e. Aβ+, global AV45 SUVR >
1.11)57. Ethical approval was obtained by the ADNI investigators at each partici-
pating ADNI site, all participants provided written informed consent.

BioFINDER participants. As an independent validation sample, we included 57
participants from the BioFINDER cohort, that were selected based on availability of
amyloid-status, longitudinal AV1451 tau-PET and structural MRI data. Amyloid-
status of all subjects was determined at the baseline visit via Flutemetamol-PET as
described previously58, applying a pons-normalized global SUVR cut-off of 0.57559.
Within this sample, the spectrum of AD was covered by 16 CN Aβ+, 7 MCI Aβ+
and 18 AD dementia subjects. As a control sample, we included 16 CN Aβ-
subjects. Inclusion and exclusion criteria as well as diagnostic criteria within the
BioFINDER cohort have been described previously60. All participants signed a
written informed consent to participate in the study prior to inclusion in the study.
Ethical approval was given by the regional ethics committee at Lund University,
Sweden. Imaging procedures were approved by the Radiation protection committee
at Skåne University Hospital and by the Swedish Medical Products Agency.

MRI and PET acquisition and preprocessing in ADNI. In ADNI, all MRI data
were obtained on 3T scanners using unified scanning protocols (parameter details
can be found on: https://adni.loni.usc.edu/wp-content/uploads/2017/07/ADNI3-
MRI-protocols.pdf). Structural MRI was recorded using a 3D T1-weighted
MPRAGE sequence with 1 mm isotropic voxel-size and a TR= 2300 ms. For
functional MRI, for each subject a total of 200 resting-state fMRI volumes were
recorded using a 3D EPI sequence in 3.4 mm isotropic voxel resolution with a TR/
TE/flip angle= 3000/30/90°.

Tau-PET was assessed in 6 × 5min blocks 75 min after intravenous bolus
injection of 18F-radiolabeled AV1451. All tau-PET images were intensity
normalized using the inferior cerebellar grey as a reference region following a
previously described protocol26. Usage of an alternative reference region (i.e.
eroded white-matter46), yielded consistent results with the analyses presented in
this manuscript. Nonlinear spatial normalization parameters were estimated based
on structural skull-stripped baseline T1-weighted images using Advanced
Normalization Tools (ANTs), to normalize all images to Montreal Neurological
Institute (MNI) standard space. The two AV1451 images were then coregistered to
the native space baseline T1-MRI image and subsequently normalized to MNI
space by applying the ANTs-derived spatial normalization parameters.

For ADNI resting-state fMRI images, we first applied motion correction (i.e.
realignment), regressed out the mean signal from the white matter, cerebrospinal
fluid as well as the six motion parameters that were estimated during realignment
(i.e. three translations and three rotations). Next we applied detrending, band-pass
filtering (0.01–0.08 Hz) and despiking. To further eliminate motion artifacts, we
performed scrubbing, i.e. removal of high-motion frames as defined by exceeding
0.5 mm framewise displacement. Specifically, high-motion volumes together with
one preceding and two subsequent volumes were replaced with zero-padded
volumes to eliminate high-motion volumes but keep the number of volumes
consistent across subjects. Lastly, the preprocessed resting-state fMRI images were
spatially normalized to MNI space by (1) coregistration to the baseline T1-
weighted images followed by applying the ANTs-derived nonlinear transformation
parameters.

Note that we did not perform global signal regression due to some controversies
about potential bias introduced by this preprocessing step61,62. However, when
reanalyzing the data with global signal regression, all results presented in this
manuscript remained virtually the same.

MRI and PET acquisition and preprocessing in BioFINDER. In BioFINDER, 1
mm isotropic T1-weighted MPRAGE (TR/TE= 1900/2.64 ms) and Fluid-
attenuated inversion recovery (FLAIR; 0.7 × 0.7 × 5 mm3, 23 slices, TR/TE= 9000/
81 ms) MRI images were acquired for all participants on a 3T Siemens Skyra
scanner (Siemens Medical Solutions, Erlangen, Germany). Tau-PET imaging was
conducted 80–100 min after bolus injection of 18F-Flortaucipir on a GE Discovery
690 PET scanner (General Electric Medical Systems, Milwaukee, WI, USA).
Radiosynthesis and radiochemical purity for 18F-AV1451 within the BioFINDER
study have previously been described in detail63. The image data were processed by
the BioFINDER imaging core using a pipeline developed at Lund University that
was described previously64. In brief the MRIs were skull stripped using the com-
bined MPRAGE and FLAIR data, segmented into grey and white matter and
normalized to MNI space. PET images were attenuation corrected, motion cor-
rected, summed and coregistered to the MRIs. In line with the ADNI data, stan-
dardized uptake value ratio (SUVR) data were calculated using an inferior
cerebellar grey matter as reference region. Usage of an alternative reference region
(i.e. eroded white matter) yielded consistent results with the analyses reported in
the manuscript. Both nonpartial-volume-corrected data and data corrected for
partial-volume using the geometrical transfer matrix method65 were calculated.
Usage of partial-volume-corrected data yielded consistent results with the results
obtained on nonpartial volume-corrected data that are reported in the current
manuscript.

To determine a functional connectivity template for the BioFINDER sample, we
downloaded spatially normalized (i.e. to MNI space) minimally preprocessed

resting-state fMRI images from 500 subjects of the human-connectome project
(HCP). Congruent with the preprocessing approach in ADNI, we further applied
detrending, band-pass filtering (0.01–0.08 Hz), despiking and motion scrubbing to
the HCP resting-state data.

Functional connectivity and covariance in tau change. FC and covariance in tau
change were estimated in an ROI based manner, using 400 ROIs from the Schaefer
fMRI atlas (see Fig. 2a), that is based on a data driven fMRI brain parcellation23.
The 400 ROIs can be grouped within seven large-scale functional networks that
match well with previously described parcellations66. This atlas is especially well-
suited for joint analyses of AV1451 tau-PET and fMRI, since the 400 ROIs cover
only the neocortex and exclude typical AV1451 off-target binding regions like the
hippocampus or basal ganglia23,67, which may otherwise confound the results.
Prior to all analyses, the Schaefer fMRI atlas was masked with a grey matter
mask68. To later address whether the distance between ROIs can explain any
associations between FC and tau, we further computed the Euclidean distance
between ROIs, defined as the geometric distance between the center of mass of
each ROI.

To ensure that the results reported in this manuscript were not driven by the
nature of the 400 ROI brain parcellation all analyses were using the 200 ROI
variant of the same atlas23. Using the 200-ROI parcellation, the result pattern that
was consistent with all results reported in this manuscript. The results of this
confirmatory analysis can be found in Supplementary Figs. 1–5.

Functional connectivity assessment. In ADNI, FC was estimated for each
subject based on the preprocessed fMRI data from which the mean fMRI time-
course was extracted for each of the 400 ROIs by averaging the signal across
ROI-specific per volume. Using these 400 ROI-specific timecourses, we assessed
functional connectivity as Fisher-z transformed Pearson-moment correlations
between all possible ROI pairs. Autocorrelations were set to zero, positive and
negative connectivity values were retained. For each group (i.e. CN Aβ−, Aβ+),
we then computed group-average FC matrices across subjects. To determine a
functional connectivity template for the BioFINDER sample, we used the above
described methods to determine a group-average functional connectivity matrix
from the preprocessed fMRI data of the 500 HCP subjects. For the group-average
ADNI and HCP functional connectivity matrices, we further determined 200
null-models of functional connectivity respectively, by shuffling the functional
connectivity matrices while preserving the overall degree- and weight-distribu-
tion, using the null_model_und_sign.m function of the brain connectivity
toolbox (https://sites.google.com/site/bctnet/). These shuffled connectivity
matrices were later used to determine whether associations between functional
connectivity and longitudinal tau-PET changes are driven by the topological
structure of functional connectivity and not by the mere statistical properties of
functional connectivity in general. Exploratorily restricting all analyses to
positive connectivity values only yielded congruent results with the analyses
presented in the manuscript.

Assessing covariance in tau change. For both the ADNI and BioFINDER
sample, we assessed the correlation between the levels of tau-PET change in a given
region X and another region Y (see Fig. 3a for an analysis flow-chart). The analysis
pipeline was adopted in a modified way from our previous study where we used
cross-sectional tau-PET data to determine tau covariance. In a similar vein, others
have used this approach to determine FDG-PET (i.e. metabolic connectivity) or
grey matter covariance (i.e. structural connectivity) across brain regions69,70. In a
first step, we computed the mean annual tau-PET change within each of the 400
ROIs for each subject within the ADNI and BioFINDER sample. This was done by
computing for each ROI the baseline vs. follow-up tau-PET difference divided by
the time (in years) between the two AV1451 tau-PET scans, yielding a 400-element
vector of annual tau-PET change per subject. Using these 400-element tau-PET
change vectors, we then assessed within Aβ+ subjects of the ADNI or BioFINDER
across subjects the pairwise ROI-to-ROI Spearman correlation of tau-PET change.
We specifically used Spearman correlation to avoid that the estimation of ROI-to-
ROI covariance in tau change estimation was driven by strong changes in single
subjects or ROIs. This analysis resulted in a single 400 × 400 sized covariance in tau
change matrix for Aβ+ subjects of both the ADNI and BioFINDER sample
(Fig. 3b). Again, autocorrelations were set to zero and all correlations were Fisher-z
transformed, equivalent to the FC matrices. For each sample, an additional cov-
ariance in tau change matrix controlled for age, sex, ApoE4 and education was
obtained using linear regression for each ROI pair.

Statistics. Group differences in baseline demographics were assessed using
ANOVAs for continuous and Chi-squared tests for nominal data. For descriptive
purposes, significant annual tau-PET changes were assessed using ROI-wise one
sample t-tests, applying an uncorrected alpha threshold of 0.005. Group differences
in the 400 × 400 functional connectivity matrices between CN Aβ− and Aβ+
groups in ADNI were assessed using element-wise ANCOVAs controlling for age,
sex, education and diagnosis, applying a Bonferroni-corrected α-threshold of 0.05.

To test our main hypothesis (i.e. association between functional connectivity
and covariance in tau change), we applied linear regression, with the vectorized
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group-average functional connectivity matrix (i.e using ADNI functional
connectivity data for the ADNI sample and HCP functional connectivity data for
BioFINDER) as a predictor of the vectorized covariance in tau change matrix. For
exploratory reasons, we also assessed the association between covariance in tau-
PET change and functional connectivity separately for each of the seven canonical
brain networks. The association between whole-brain functional connectivity and
covariance in tau-PET change was further determined for ADNI and BioFINDER
using the 200 respective shuffled ADNI and HCP functional connectivity null-
models, to obtain a null-distribution of the β-values that was used to compare the
true β−value using an exact test. In ADNI, we further assessed the robustness of
the association between functional connectivity and covariance in tau-PET change
via bootstrapping. Specifically, we drew 1000 random samples with replacement
from the entire group of 53 Aβ+ subjects and assessed for each sample the group-
mean functional connectivity, covariance in tau-PET change, as well as the
association between them. By saving the 1000 bootstrapping derived β-values we
obtained the 95% CI and tested whether the β-value distribution deviated from
zero. Note that this bootstrapping approach was exclusively conducted in ADNI,
since it required availability of both subject-specific functional connectivity and
tau-PET data. The above described whole-brain analyses were further repeated
while additionally controlling the regression model for Euclidean distance between
each ROI pair, to assess whether associations between functional connectivity and
covariance in tau change were independent of distance. Also, we repeated the
whole-brain analyses using covariate controlled (i.e. age, education, sex, ApoE4-
status, diagnosis and MMSE score) covariance in tau-PET matrices, to ensure that
the association between functional connectivity and covariance in tau-PET change
was not driven by these covariates.

In a next step, we tested whether the level of tau-PET change in a given seed
ROI is associated with the tau-PET changes in closely connected regions. The
rationale is that if tau spreads as a function of functional connectivity, then ROIs
with similar tau changes should be connected. To test this, we rank-ordered all
ROIs according to their level of tau-PET change. Using linear regression, we tested
for each rank-ordered ROI (seed), the group-average functional connectivity to the
remaining ROIs (target) as a predictor of the group-average level of tau-PET
change in the target ROIs (Fig. 5a). Again, we performed the same analyses using
the 200 shuffled connectomes, to compare the true β-value with a β-value null-
distribution using an exact test. In ADNI, we further determined the robustness of
this analysis by repeating the entire procedure using the above described
bootstrapping procedure with 1000 randomly drawn samples from the overall pool
of 53 Aβ+ subjects, based on which group-average tau-PET change and functional
connectivity were iteratively determined.

Lastly, we tested whether future tau change can be modeled by functional
connectivity and tau load at baseline, using three approaches. As a negative control,
we tested whether tau spread is a function of baseline tau and the Euclidean
distance between ROIs. Specifically, we determined the mean tau-weighted
Euclidean distance between a given tau-receiving target ROI and all other tau-
seeding 399 seed ROIs, after multiplying each of the 399 distance values by the
respective seed ROIs baseline tau-PET level (Fig. 7a, Model 1). For our second
approach, we tested whether tau spread can be modeled by combining tau at
baseline and functional connectivity. Specifically, we computed the mean
functional connectivity between a given tau-receiving target ROI and all other tau-
sending 399 seed ROIs, after multiplying each of the 399 functional connectivity
values by the respective seed ROIs baseline tau level (Fig. 7a, Model 2). Third, we
tested whether adding Euclidean distance as an additional multiplication factor in
the above listed model could further improve the association strength with future
tau spread (Fig. 7a, Model 3).

Within the ADNI and BioFINDER samples, each approach yielded a 400-
element vector that was tested as a predictor of annual tau-PET changes in the
corresponding 400 ROIs via linear regression. Again, we conducted the same
analyses using the shuffled connectomes to compare the true β-value with a β-value
null-distribution using an exact test. In ADNI, we further performed bootstrapping
using 1000 samples based on which group-average functional connectivity and tau-
PET change were iteratively determined as described above. Within ADNI, the
bootstrapped β-value distributions for each of the three approaches were then
compared using an ANOVA, to determine which approach yielded the most
accurate association with longitudinal tau changes.

Next, we assessed prediction model performance on the subject-level. For
ADNI, we used subject-level tau-PET and functional connectivity data, and for
BioFINDER we used subject-level tau-PET and group-level HCP functional
connectivity data. Prediction model performance (i.e. β-values reflecting the
association between predicted and actual tau-PET changes) was compared across
models using an ANCOVA. Here, we also tested whether prediction performance
(i.e. model-derived β-values) was associated with age (using linear regression) or
with sex and ApoE4 status (using ANOVAs).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that used in this study were obtained from the Alzheimer’s disease
Neuroimaging Initiative (ADNI) and are available from the ADNI database (adni.loni.

usc.edu) upon registration and compliance with the data usage agreement. Data from the
BioFINDER sample are available from the authors upon request. Resting-state data of the
HCP cohort are freely available online (https://db.humanconnectome.org). Source data
underlying Figs. 4, 6, 7 is available as a Source Data file.

Code availability
An example version of the R-Markdown code used for the main analysis can be found
(together with simulated data) in the supplementary.
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