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Abstract

Introduction:Developing cross-validatedmulti-biomarkermodels for the prediction of

the rate of cognitive decline in Alzheimer’s disease (AD) is a critical yet unmet clinical

challenge.

Methods: We applied support vector regression to AD biomarkers derived from

cerebrospinal fluid, structural magnetic resonance imaging (MRI), amyloid-PET and

fluorodeoxyglucose positron-emission tomography (FDG-PET) to predict rates of cog-

nitive decline. Prediction models were trained in autosomal-dominant Alzheimer’s dis-

ease (ADAD, n = 121) and subsequently cross-validated in sporadic prodromal AD

(n= 216). The sample size needed to detect treatment effects when usingmodel-based

risk enrichment was estimated.

Results: A model combining all biomarker modalities and established in ADAD pre-

dicted the 4-year rate of decline in global cognition (R2 = 24%) and memory (R2 =
25%) in sporadic AD. Model-based risk-enrichment reduced the sample size required

for detecting simulated intervention effects by 50%–75%.

Discussion: Our independently validated machine-learning model predicted cognitive

decline in sporadic prodromal AD and may substantially reduce sample size needed in

clinical trials in AD.

K EYWORD S

Alzheimer’s disease, autosomal-dominant Alzheimer’s disease, biomarkers, machine learning, pro-
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1 BACKGROUND

Alzheimer’s disease (AD) is characterized by amyloid-beta (A𝛽) depo-

sition, tau pathology, neurodegeneration, and cognitive decline.1 Diag-

nosing and staging AD has been greatly facilitated by in vivo biomark-

ers including positron-emission tomography (PET) and cerebrospinal

fluid (CSF) markers of A𝛽 and pathologic tau, as well as volumet-

ric magnetic resonance imaging (MRI) and fluorodeoxyglucose (FDG)-

PET measures of neurodegeneration.2 Apart from diagnosing AD, a

clinically important challenge is predicting the worsening of cognitive

impairment.3

Previous studies have shown that markers of primary AD pathol-

ogy (ie, CSF A𝛽1-42, p-tau181, A𝛽1-42/p-tau181 ratio, amyloid-PET), neu-

rodegeneration (structural MRI, FDG-PET), or biomarker combina-

tions can predict future conversion from mild cognitive impairment

(MCI) to AD dementia.4–9 The conversion from MCI to AD dementia

is, however, a binary diagnostic categorization that does not capture

the rate of cognitive change within the AD continuum.10 Biomarker-

based point prediction of cognitive decline is, thus, a challenge to

sufficiently power clinical trials via risk enrichment and to identify

subjects at imminent risk of cognitive deterioration. Previous studies

have shown that higher amyloid-PET,11,12 MRI-assessed hippocampal

atrophy,13 FDG-PET hypometabolism,12 and tau levels14,15 are asso-

ciated with faster cognitive decline. Because biomarker combinations

can enhance the accuracy for predicting clinical progression,16 a crit-

ical yet unresolved question is how to merge multimodal and increas-

ingly complex (eg, voxel-wise PET and MRI) data to maximize the pre-

diction accuracy while keeping the number of assessments and costs

low. Machine learning, which is instrumental for data mining,17 is well

suited to identify biomarker sets for predicting cognitive decline. Here,

recent machine-learning approaches to AD biomarker data showed

that sets of imaging and CSF-derived markers discriminated MCI and

AD patients from healthy controls18 and predicted the rate of future

cognitive decline19,20 and time to symptom onset.21

A limitation of machine learning is, however, that algorithms may

perform well in the sample they were trained on but rarely general-

ize to new data.22,23 To address this, previous studies have applied

within-sample cross-validation (CV), in which a given sample is itera-

tively divided into training and test data to ensure that model train-

ing and testing are conducted on different datasets.18,24 While reduc-

ing the likelihood of overfitting, this approach leaves unaddressed the

question whether the algorithm indeed generalizes to new and unseen

data from independently recruited participants,25 which is considered

the gold standard of evaluatingmachine-learning performance.

Here, we aimed to establish a biomarker-based model to predict

AD-related cognitive change rates, using validation across two inde-

pendently recruited, deeply phenotyped AD samples. To this end, we

first trained and cross-validated a support vector regression (SVR)
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model using amyloid-PET, FDG-PET, structuralMRI, andCSF data from

121autosomal-dominantAlzheimer’s disease (ADAD) subjects for pre-

dicting the estimated years to symptom onset (EYO), a proxy of cogni-

tive decline. ADAD constitutes a unique training sample as the disease

onset is at a relatively young age and the development of AD pathol-

ogy and cognitive decline are not confounded by age-related comor-

bidities (eg, TDP-43, small-vessel disease).26 Because inADADthe time

course of the development of dementia symptoms is strongly geneti-

cally driven, EYO can be used as a surrogatemarker of AD-related cog-

nitive decline.27–29 Here, we first trained biomarker-based machine-

learning models for predicting EYO in ADAD. After model training and

CV in ADAD, we tested whether the best model predicts up to 4-year

cognitive decline when applied to an independent sample of 216 indi-

viduals with sporadic prodromal AD. Last, we tested whether machine

learning–based selection of “at-risk” subjects can enhance the sensitiv-

ity to detect potential intervention effects and can reduce the required

sample size in intervention studies.

2 METHODS

2.1 Participants

2.1.1 Dominantly Inherited Alzheimer Network
(DIAN)

We included 121 carriers of AD causative PSEN1 and 2 or APP muta-

tions (MC, data freeze 10), as well as 54 non-carrier siblings as healthy

reference subjects for biomarker scaling (see supporting information).

Subject inclusion requiredavailability of baseline3TT1-structuralMRI,

amyloid-PET (PiB), FDG-PET, and CSF data. No selection bias (ie, for

age, sex, education) was found between the included and non-included

subjects. EYO were defined as the difference between a participant’s

age at examination and the parental age of symptom onset. All partic-

ipants provided written informed consent; local ethical approval was

obtained at each participating DIAN site.

2.1.2 Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

Three hundred ninety-one individuals meeting Petersen criteria for

amnestic MCI were included from ADNI, based on availability of

baseline 3T T1-structural MRI, amyloid-PET (AV45), FDG-PET, CSF,

and cognitive data (ie, ADNI-MEM and ADAS13), plus at least one

(and up to four) annually consecutive cognitive follow-up assess-

ments. No selection bias for age, sex, or education was found between

the included and non-included ADNI subjects. A𝛽-status was deter-

mined using a pre-established global AV45-PET standard uptake value

ratio (SUVR) cut-off of 1.11.30 Cognitively normal A𝛽+ subjects were

not included, due to the few subjects meeting our inclusion criteria

(N = 50/46/8/0 with 1/2/3/4-year follow-up). As a healthy refer-

ence group for biomarker scaling, we included baseline data of 49

RESEARCH INCONTEXT

1. Systematic review: Prodromal Alzheimer’s disease (AD)

patients are at increased risk to develop AD dementia.

However, there are considerable differences in cogni-

tive decline rates between individuals, posing challenges

for clinical prognostication. While AD biomarkers are

established for diagnostics, there is an unmet need of

biomarker models for predicting the rate of future cogni-

tive decline.

2. Interpretation: Machine learning applied to complex AD

biomarker data (ie, neuroimaging and biofluid) accurately

predicted estimated symptom onset in autosomal-

dominant Alzheimer’s disease and generalized well

to an independent sample of sporadic AD patients

for predicting 1- to 4-year cognitive decline. Machine

learning–based selection of at-risk patients with sporadic

prodromal AD significantly reduced numbers required

for detecting intervention effects by up to 50% to 75%.

These findings suggest that machine learning may help

derive meaningful prognostic indices from increasingly

complex biomarker data.

3. Future direction: Does the addition of tau-positron emis-

sion tomography and neuroinflammatory biomarkers fur-

ther increase prediction accuracy of future cognitive

decline?

cognitively normal A𝛽-negative (ie, global AV45-PET SUVR<1.11) sub-

jects below the age of 70 scoring >28 on the Mini-Mental State Exam

(MMSE).

2.2 Neuroimaging and biomarker assessment

Neuroimaging in DIAN and ADNI was performed using similar proto-

cols initially developed for ADNI. Structural MRI has been recorded on

3T scanners with a spatial resolution of 1.1 × 1.1 × 1.2 mm. FDG-PET

has been acquired consistently in both samples (ie, 30 to 60 minutes

after tracer injection, SUVR normalization to the brainstem), whereas

Amyloid-PET scanning has been conducted using PiB in DIAN (40–

70 minutes after tracer injection, SUVR normalized to the whole cere-

bellum) andAV45 inADNI (50–70minutes after tracer injection, SUVR

normalized to the whole cerebellum). All ADNI31,32 and DIAN29 imag-

ing protocols have been described previously. For the current study,

we used FreeSurfer-processed (Version 5.1) region of interest (ROI)

data (ie, cortical thickness and subcortical volumes for structural MRI

and SUVR values for PET) provided by theDIAN andADNI neuroimag-

ing cores. CSF concentrations of A𝛽1-42, phosphorylated tau at threo-

nine181 (p-tau181), and total tauweremeasuredby theusingmultiplex

xMap Luminex inDIANand via the Elecsys cobas e 601 instrument33 in
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F IGURE 1 Flow-chart of the support vector regression (SVR) analysis pipeline. (A) Selected data from the DIAN-MC and ADNI-MCI sample
are standardized and variance normalized to the respective healthy reference groups to ensure comparability of biomarker scaling across samples.
(B) The SVRmodel is trained based on selectedmodalities in DIAN-MC in a nested cross-validation framework. (C) The trained SVR-models are
blindly applied to the scaled ADNI-MCI biomarker data yielding a SVR score per subject. The SVR score is then evaluated as a predictor of baseline
cognition and longitudinal cognitive decline in ADNI

ADNI. Details on biomarker assessments can be found in the support-

ing information.

2.3 DIAN—support vector regression training
and nested cross-validation

Machine-learning analysiswas conductedusingNeuroMiner, aMatlab-

based machine-learning toolbox (www.pronia.eu/neurominer).34,35

In DIAN, we applied SVR to the neuroimaging/biomarker values

to predict EYO as a proxy of future cognitive decline. Prior to SVR

analysis, all biomarker/neuroimaging values were scaled to a healthy

reference sample within the ADNI and DIAN cohort, to yield compara-

bly interpretable values across samples (see Figure 1A and supporting

information). SVR training in DIAN (see Figure 1B) was conducted via

repeated nested CV to obtain an unbiased SVR performance estimate

in data unseen during SVR training. To this end, the DIAN MC group

was randomly divided into 10 subsamples (ie, outer CV2-folds). During

10 iterations, a respective outer CV2 test fold was held out, while the

remaining nine outer CV2-folds were pooled as SVR training data,

http://www.pronia.eu/neurominer
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and randomly divided into 10 subsamples (inner CV1-folds). For 10

iterations, a respective inner CV1 test fold was held out, while the

remaining inner CV1 data were used for SVR parameter tuning. The

trained SVR parameters were then applied to the held-out inner CV1

test fold to estimate prediction performance in yet unseen data. For

each CV1 iteration, the optimal SVRmodel was selected based on CV1

prediction performance (ie, minimum mean squared error between

actual and SVR-predicted EYO). Last, the selected inner CV1 models

were applied to the held-out outer CV2 test fold to estimate the mean

CV2 prediction performance. This nested CV approach was comple-

mented by repeated double CV, including 10-fold random permutation

of the DIANMC sample and repeating the above-described procedure

for each permutation for CV1 and CV2 levels.36 Together, feature

selection and parameter optimization were performed on the CV1

level, while final SVR prediction performance was assessed exclusively

on CV2 test folds unseen during SVR training (Figure 1B).

To extract the most predictive features (ie, imaging ROI values and

CSF data), we performed feature selection at the CV1 level retaining

the top 35% of features showing the highest Spearman correlation (ie,

to minimize the influence of extreme values or skewed data) with EYO.

Overall feature selection probability was defined as the likelihood of a

given feature tobe includedacross all optimalCV1models. Altering the

feature selection threshold between 25% and 45% did not change the

overall result pattern reported below.

2.4 Out-of-sample validation in ADNI

For our main analysis, we applied the 10000 ADAD-trained optimal

CV1 SVR models to the ADNI MCI biomarker data, and computed the

mean SVR score across all CV1models, which we hypothesized to pre-

dict future cognitive decline (see Figure 1C).

2.5 Statistics

Baseline measures were compared between groups using chi-squared

tests for categorical variables and analysis of variance (ANOVAs;

ADNI) or two-sample t tests (DIAN) for continuousmeasures.

In DIANMC, we estimated SVR prediction performance for all pos-

sible modality combinations, by assessing Pearson-moment correla-

tions between actual and SVR-predicted EYO. Feature selection prob-

abilities were visualized for the SVR model including all modalities (ie,

CSF [C], Amyloid-PET [A], FDG-PET [F], and GM [G]).

Next, we assessedwhether SVR scores predicted baseline cognition

or cognitive decline in the ADNI MCI validation sample. As measures

of interest, we used ADNI-MEM, an established memory composite

and ADAS13, a measure of global cognition.37 Subject-specific cogni-

tive change slopes were determined by fitting subject-specific linear

models with ADNI-MEM or ADAS13 scores as the dependent variable

and time from baseline as the independent variable. Annual cognitive

changes were estimated for baseline to year 1, year 2, year 3, or year

4 for those subjects who had complete annual clinical follow-up data,

respectively. Using linear models controlled for age, sex, and educa-

tion, we testedwhether higher SVR scores predicted (1) stronger base-

line cognitive impairment and (2) faster cognitive decline across 1- to

4-year follow-up. In an additional step, we included baseline cognition

as a covariate toassesswhether SVRscorespredicted cognitivedecline

after accounting for baseline symptom severity. Analyses in ADNIMCI

were stratified by A𝛽-status to test whether SVR–based prediction of

cognition is specific forMCI-A𝛽+ subjects.

Last, we tested whether SVR-based selection of MCI-A𝛽+ subjects

at risk of cognitive decline enhances the sensitivity to detect interven-

tion effects. Using linear mixed models, we assessed the main effect of

time from baseline on cognition (ie, ADNI-MEM or ADAS13) for the

entire MCI-A𝛽+ sample, or for SVR-selected subsamples of MCI-A𝛽+
subjects at highest risk of cognitive decline (ie, showing above median

SVR scores), controlling for age, sex, education, and random intercept.

Following previous work,38 sample size estimates were calculated on

group-mean cognitive changes (ie, ADNI-MEMorADAS13),with hypo-

thetical 10%/20%/30%/40% intervention effects using the R-package

pwr (settings: two-sample t test, two-tailed, type I error rate = 0.05,

power = 0.8). Analyses were conducted for the best-performing SVR

models with one, two, three, or four modality combinations for 1- to

4-year follow up.

All statistical analyses were performed in R statistical software.

Effects were considered significant at a two-tailed alpha threshold of

0.05.

3 RESULTS

Baseline characteristics of the study samples are presented in Table 1.

3.1 SVR training and cross-validation in ADAD

The SVRmodel trained on all availablemodalities (ie, amyloid [A], FDG-

PET [F], gray matter [G], CSF [C], abbreviated as AFGC) in DIAN MC

accurately predicted EYO at the CV2 level (r = 0.726, P <0.0001,

R2 = 0.53, Figure 2A). This model also showed the numerically high-

est predictive performance of EYO, compared to all other possible

modality combinations (Table S1 in supporting information). For the

AFGC model, we mapped the feature selection likelihood for each

modality (Figure 2B). For amyloid-PET, almost the entire neocortex

showed a high feature selection probability (ie, > 90%). For FDG-PET

predominantly medial and lateral parietal and lateral frontal, ROIs

showed high feature selection probability. For GM, mainly medial and

lateral parietal and medial temporal, ROIs such as the hippocampus

showed high feature selection probabilities. For CSF, p-tau181 showed

the highest selection probability, followed by total tau and A𝛽1−42.

When restricting biomarker modalities for SVR training, the best-

performing models for EYO prediction were AFG for three modalities

(r = 0.703, P <0.0001, R2 = 0.49), AG for two modalities (r = 0.677,

P <0.0001, R2 = 0.46), and G for single modality (r= 0.628, P <0.0001,

R2 = 0.39).
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TABLE 1 Baseline demographics

DIAN

MC

(N= 121)

NC (healthy

reference)

(N= 54) P

Age 38.66 (9.98) 38.87

(10.48)

0.8998

Sex (m/f) 49/72 19/35 0.5056

Education 14.27 (3.02) 15.50 (2.23) 0.0081

MMSE 27.74 (7.88) 30.00 (0.00) 0.0365

Logical-

memory

11.44 (5.9) 15.78 (3.45) <0.0001

EYO −7.10
(11.23)

−9.35
(10.94)

0.2185

ADNI

MCI-A𝜷+
(N= 216)

MCI-A𝜷−
(N= 175)

CN (healthy

reference)

(N= 49) P

Age 72.74 (6.69) 70.16 (7.76) 65.76 (2.69) <0.0001

Sex (m/f) 117/99 94/81 23/26 0.6345

Education 16.00 (2.79) 16.47 (2.47) 17.14 (2.27) 0.0139

MMSE 27.68 (1.83) 28.54 (1.44) 29.51 (0.51) <0.0001

ADAS13 17.18 (6.96) 12.21 (5.48) 6.24 (3.83) <0.0001

ADNI-MEM 0.11 (0.63) 0.62 (0.63) 1.46 (0.61) <0.0001

Values are displayed as mean (standard deviation). P-values for group com-

parisons are derived from two-sample t tests for DIAN and ANOVAs for

ADNI for continuous measures and Chi-squared tests for categorical mea-

sures. Abbreviations: EYO, estimated years to symptom onset; MC, muta-

tion carrier; MMSE,Mini-Mental State Exam; NC, non-carrier

3.2 Independent validation in ADNI—Predicting
cognitive decline inMCI-A𝜷+

Next, we applied the ADAD-trained SVR model on all modalities (ie,

AFGC) to ADNI MCI biomarker data. As hypothesized, greater AFGC

scores predicted lower baseline ADNI-MEM (t(211) = −6.692, 𝛽 =
−0.410, P <0.0001) and ADAS13 scores (t(211) = 5.615, 𝛽 = 0.355,

P <0.0001) in the MCI-A𝛽+ group but not in MCI-A𝛽− (ADNI-MEM:

t(170) = −0.239, 𝛽 = −0.017, P =0.812; ADAS13: t(170) = 0.457, 𝛽 =
0.035, P= 0.649).

Most importantly, we found higher AFGC scores in MCI-A𝛽+ to

predict faster decline in ADNI-MEM consistently across all follow-

up intervals, from baseline to year 1 (t(211) = −4.547, 𝛽 = −0.312,
P<0.0001, Figure 3A), year 2 (t(179)=−4.954, 𝛽 =−0.361, P<0.0001,

Figure 3B), year 3 (t(140)=−5.240, 𝛽 =−0.425, P<0.0001, Figure 3C),

and year 4 (t(100) = −5.317, 𝛽 = −0.502, P <0.0001, Figure 3D) where

partial R2-values increased for longer follow-up durations. Similarly,

higherAFGCscores predicted decline inADAS13 frombaseline to year

1 (t(211) = 2.337, 𝛽 = 0.355, P = 0.0204, Figure 3E), year 2 (t(179) =
4.510, 𝛽 = 0.334, P <0.0001, Figure 3F), year 3 (t(140) = 4.756, 𝛽 =
0.391, P <0.0001, Figure 3G), and year 4 (t(100) = 5.143, 𝛽 = 0.492,

P <0.0001, Figure 3H). No association was found between SVR scores

and cognitive changes in MCI-A𝛽-suggesting specificity for A𝛽+ sub-

jects. All results are summarized in Table 2. Further, all above-listed

results remained consistent when additionally controlling for baseline

cognition (ie, ADNI-MEM or ADAS13), suggesting that AFGC scores

predict cognitive decline independent of baseline symptom severity

(see Table S2 in supporting information).

3.3 SVR-based selection ofMCI-A𝜷+ at risk of
decline enhances the sensitivity to detect intervention
effects

Next, we tested whether SVR-based selection of MCI-A𝛽+ subjects

at highest risk of cognitive decline (ie, defined as falling above the

SVR score median) enhances the sensitivity to detect potential inter-

vention effects. We first determined the main effect of time on

longitudinal cognition (ADNI-MEM or ADAS13) in the unselected

MCI-A𝛽+ versus SVR-selected subsamples using linear mixed mod-

els, controlling for age, sex, education, and random intercept. Using

the annual cognitive change scores, we estimated the required sam-

ple sizes to detect intervention effects of 10% to 40% at 1- to 4-year

follow-up with an alpha of 0.05 at a power of 0.8. For the unselected

MCI-A𝛽+ sample,we found small but significantADNI-MEMdecreases

across 1-year follow-up (𝛽 = −0.052, P <0.0001, R2 = 0.01). The sam-

ple size per arm to detect 10%/20%/30%/40% reduction in cognitive

decline was 18984/4301/1737/892. In “at-risk” subjects with above

median AFGC scores, we found a stronger effect of time on ADNI-

MEM (𝛽 = −0.109, P <0.0001, R2 = 0.053). Here, the required N to

detect 10%/20%/30%/40% reduction in cognitive decline was greatly

reduced to 3375/765/310/159. Congruent results were found when

performing these analyses for longer follow-up durations or for the

best-performing three-modality, two-modality, and one-modality SVR

models (AGC, AG, or G) for selection of at-risk subjects (see Table 3).

Congruent results were also found when conducting all above-listed

analyses using ADAS13 as measure of cognition (Table 3). Together,

SVR-based “at-risk” selection may greatly reduce the required sample

size to detect intervention effects.

4 DISCUSSION

Our major aim was to establish a biomarker-based machine-learning

model for point prediction of AD-related cognitive decline. Our first

main finding was that machine-learning (ie, SVR) models trained for

predicting future symptom manifestation in ADAD (ie, EYO) general-

ize well to sporadic AD, where we found high prediction accuracy for

1- to 4-year global cognitive and memory decline. Second, we show

that SVR-based selection of sporadic AD subjects at highest risk for

cognitive decline can drastically reduce patient numbers required for

detecting intervention effects, even when using unimodal biomarkers.

Together, our findings suggest that ADAD-informed and biomarker-

basedmachine learning can accurately predict cognitive decline in spo-

radic AD and can be helpful for subject stratification in clinical trials.

Our findingsmake a significant contribution for identifying subjects

at risk of imminent cognitive decline. Our results are validated across

two independent and deeply phenotyped cohorts. A strength of the
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F IGURE 2 SVR-based prediction of EYO in autosomal-dominant Alzheimer’s disease and feature selection probabilities. (A) Scatterplot show-
ing the association between observed EYO scores and AFGC-predicted estimated years to symptom onset (EYO) scores in DIAN-MC. (B) Selection
probabilities of the AFGCmodel indicate the percentage of final CV1models (see step in Figure 1B) that included the respective region of inter-
est/biomarker. Features were selected in theDIAN-MC cohort during each CV1 cycle based on the correlationwith the outcomemeasure (ie, EYO)

study is that we chose ADAD for model training, as those subjects are

relatively young and age-related comorbidities (eg, small-vessel dis-

ease) are minimal.39 This allowed extracting AD-specific brain changes

that occur early in the disease course. We acknowledge differences

between ADAD and sporadic AD including earlier symptom onset,

higher likelihood of non-memory symptoms,40 and higher prevalence

of psychiatric comorbidities41 in ADAD versus sporadic AD. However,

both sporadic AD and ADAD share core neuropathological features

and biomarker abnormalities including amyloid and tau accumulation,

FDG-PET hypometabolism, and neurodegeneration.28,41 Importantly,
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F IGURE 3 SVR-based prediction of cognitive changes in ADNIMCI-A𝛽+. Scatterplots showing the association between AFGC-derived SVR
scores and longitudinal cognitive change in ADNI-MCI-A𝛽+ for ADNI-MEM (A-D) and ADAS13 (E–H). Standardized 𝛽-values, partial R2, and
P-values are based on linear regressionmodels adjusted for age, sex, and education

TABLE 2 Prediction of baseline cognition and longitudinal
cognitive changes in ADNIMCI-A𝛽+

ADNIMCI-A𝜷+

N 𝜷 T P Partial R2

ADNI-MEM

Baseline 216 −0.410 −6.692 <0.0001 0.168

Year 1 216 −0.312 −4.547 <0.0001 0.097

Year 2 184 −0.361 −4.954 <0.0001 0.130

Year 3 145 −0.425 −5.240 <0.0001 0.180

Year 4 105 −0.502 −5.317 <0.0001 0.252

ADAS-13

Baseline 216 0.355 5.615 <0.0001 0.126

Year 1 216 0.168 2.337 0.0204 0.028

Year 2 184 0.334 4.510 <0.0001 0.112

Year 3 145 0.391 4.746 <0.0001 0.153

Year 4 105 0.492 5.143 <0.0001 0.242

All regressionmodels were controlled for age, sex, and education.

the emergence of cognitive symptoms in ADAD is driven byADpathol-

ogy rather than age-related comorbidities, and thus, provides a good

model for AD-related cognitive decline.27,42

The most predictive features in amyloid-PET included almost the

entire neocortex, sparing primary sensorimotor, and medial tempo-

ral regions that develop amyloid very late in AD.43,44 Further, predic-

tive regions included posterior parietal and medial temporal regions

for MRI and posterior parietal and lateral frontal regions for FDG-

PET, that is, AD-typical predilection sites. Furthermore, the prediction

of cognitive decline was non-significant in MCI-A𝛽- and was indepen-

dent of confounding factors including age, sex, education, or baseline

cognition. Together, these findings support the validity of our predic-

tionmodel to depend on key AD-related brain changes.

Previous studies evaluating biomarker combinations9,12 or

machine learning demonstrated that biomarker combinations can

enhance the accuracy of predicting cognitive decline or conversion to

dementia.20,21 Consistently, we found increasing prediction accuracy

as model estimation was informed by more biomarker modalities. We

guarded against overfitting by first training and cross-validating the

machine-learning algorithmonADAD,41 with subsequent independent

validation in sporadic AD. Importantly, in sporadic AD, we found that

biomarker-based risk enrichment led to drastically lower sample sizes

required to detect intervention effects with cognitive decline as an

endpoint. This finding has several implications: First, screening exami-

nations that are frequently used in intervention trials (eg, amyloid-PET

andMRI) can be used to enrich for “at-risk” subjects to enhance power

and reduce subject numbers and costs for interventions45 or to assess

whether intervention effects depend on individual progression risk.46

Together, knowledge of individual risk for cognitive decline may be

used for more adaptive and cost-efficient intervention research, which

is urgently needed in view of numerous failed clinical trials in AD.47

However, several caveats should be considered when interpreting

our results: First, DIAN and ADNI differ in inclusion criteria (ADAD

vs sporadic AD) and data acquisition protocols (ie, MRI hardware, PET

tracers, and CSF immunoassays), reducing comparability across stud-

ies. To address this, we a priori adjusted all biomarker data to healthy

control subjects within each study, to obtain harmonized and compa-

rably interpretable values. Importantly, however, rather than pooling

data across ADNI and DIAN, where variability across the two studies

may hamper model estimation, we used an independent-validation

approach for assessing external validity of the ADAD-trained SVR

models. The high generalizability from ADAD to sporadic AD supports

the robustness and external validity of the SVR models, suggesting

that our findings are not driven by assessment procedures or study

selection criteria.
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TABLE 3 Sample size estimation for detecting intervention effects based on unselectedMCI-A𝛽+ subject or on SVR selection of at-risk
subjects (defined as falling above themedian of SVR scores)

Main effect of time on cognitive changes in

MCI-A𝜷+
Required N per arm to detect an

intervention effect of

Cognitive test

Group

selection 𝜷 T P
Partial

R2 10% 20% 30% 40%

%Reduction

of required N

1-year follow-up

ADNI-MEM No selection −0.052 −4.021 <0.0001 0.010 18984 4301 1737 892 NA

G-risk −0.084 −4.703 <0.0001 0.028 6937 1572 635 327 63%

AG-risk −0.090 −5.170 <0.0001 0.033 5742 1301 526 271 70%

AGC-risk −0.095 −5.574 <0.0001 0.037 4940 1120 458 233 74%

AFGC-risk −0.109 −6.744 <0.0001 0.053 3375 765 310 159 82%

ADAS13 No selection 0.037 1.764 0.0792 0.002 94800 21475 8672 4453 NA

G-risk 0.070 2.317 0.0224 0.008 27638 6261 2529 1299 71%

AG-risk 0.073 2.326 0.0219 0.009 27392 6205 2506 1287 71%

AGC-risk 0.089 2.933 0.0041 0.013 17335 3927 1586 815 82%

AFGC-risk 0.100 3.149 0.0021 0.016 15086 3418 1381 709 84%

2-year follow-up

ADNI-MEM No selection −0.076 −6.425 <0.0001 0.026 9166 2077 839 431 NA

G-risk −0.131 −8.071 <0.0001 0.080 2741 622 252 130 70%

AG-risk −0.136 −8.372 <0.0001 0.085 2574 584 236 122 72%

AGC-risk −0.140 −8.862 <0.0001 0.095 2370 538 218 112 74%

AFGC-risk −0.144 −8.850 <0.0001 0.097 2293 520 211 109 75%

ADAS13 No selection 0.122 6.421 <0.0001 0.031 8748 1982 801 412 NA

G-risk 0.178 6.208 <0.0001 0.060 4360 988 400 206 50%

AG-risk 0.178 6.137 <0.0001 0.060 4545 1030 417 214 48%

AGC-risk 0.199 6.957 <0.0001 0.075 3526 799 323 166 60%

AFGC-risk 0.209 7.160 <0.0001 0.081 3410 773 313 161 61%

4-year follow-up

ADNI-MEM No selection −0.173 −10.755 <0.0001 0.107 3857 874 354 182 NA

G-risk −0.264 −12.331 <0.0001 0.250 1348 306 124 64 65%

AG-risk −0.291 −14.188 <0.0001 0.307 905 206 84 43 76%

AGC-risk −0.294 −14.303 <0.0001 0.318 900 205 83 43 76%

AFGC-risk −0.264 −12.694 <0.0001 0.256 1295 294 119 62 66%

ADAS13 No selection 0.239 10.750 <0.0001 0.118 3818 866 350 180 NA

G-risk 0.325 10.943 <0.0001 0.222 1778 404 163 84 53%

AG-risk 0.356 11.921 <0.0001 0.348 1462 332 135 69 62%

AGC-risk 0.369 11.919 <0.0001 0.262 1441 327 133 68 62%

AFGC-risk 0.338 11.302 <0.0001 0.235 1728 392 159 82 54%

Second, the sporadic AD group was restricted to MCI; hence,

it remains open whether our findings generalize toward earlier AD

stages. However, previous studies have shown that preclinical AD sub-

jects show only little cognitive change across 1- to 4-year follow-up

intervals;48 hence,we reason that longer follow-ups and large numbers

currently unavailable in ADNI are required to test whether the SVR

model can predict cognitive changes in preclinical AD.

Third, we trained the model on EYO in ADAD, which is only a cross-

sectional proxy of future cognitive decline.27 Computing actual cog-

nitive decline in ADAD would have drastically reduced the sample

size to those with available longitudinal cognitive data. To maximize

sample size, which is critical for training and CV of machine-learning

models within the ADAD group, we thus preferred to use cross-

sectional data.49 When sufficient longitudinal data become available

in DIAN, future studies may assess whether SVR performance can be

further improvedwhen the SVRmodel is trained on actual longitudinal

cognitive decline.

Fourth, due to limited data availability, we did not include tau-

PET, which has been recently shown to be a good predictor of

future cognitive decline in AD.15 However, we included measures of
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tau-related pathology (ie, CSF), which have been previously shown to

correlate with the level of tau-PET uptake50 and to predict future cog-

nitive decline.9 Nevertheless, inclusion of tau-PET in the SVR model

may improve prediction of cognitive decline. Here, our methodologi-

cal framework will easily allow us to include tau-PET as an additional

modality as soon as large enough data become available.

Together, we show that ADAD-informed machine learning can be

powerful for point prediction of future cognitive decline in sporadic

AD. These findings have important implications because our proposed

SVRmodelsmayhelpderive single prognostic indices from increasingly

complex biomarker data. The proposed models allow flexible inclusion

of various biomarkers, rendering them highly adaptable to individual

cohorts. To enhance the external validity of our proposed SVRmodels,

it will be of special importance in the future to determine their pre-

diction performance also across less selective and community-based

samples, as well as across different biomarker combinations and acqui-

sition protocols. Our findings may be critical for clinical AD research

to identify subjects at risk for progression and to evaluate therapeutic

interventions for future cognitive decline.
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