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A B S T R A C T

Connectomics has proved promising in quantifying and understanding the effects of development, aging and an
array of diseases on the brain. In this work, we propose a new structural connectivity measure from diffusion MRI
that allows us to incorporate direct brain connections, as well as indirect ones that would not be otherwise
accounted for by standard techniques and that may be key for the better understanding of function from structure.
From our experiments on the Human Connectome Project dataset, we find that our measure of structural con-
nectivity better correlates with functional connectivity than streamline tractography does, meaning that it pro-
vides new structural information related to function. Through additional experiments on the ADNI-2 dataset, we
demonstrate the ability of this new measure to better discriminate different stages of Alzheimer's disease. Our
findings suggest that this measure is useful in the study of the normal brain structure, and for quantifying the
effects of disease on the brain structure.
1. Introduction

Neurological diseases affect a large and increasing portion of the
population. Recent studies on brain structural and functional connec-
tivity have focused on the impact of various diseases on the brain con-
nections. Different neurological diseases have been shown to alter brain
connectivity: Alzheimer's disease (AD) (Rose et al., 2000; Buckner et al.,
2005, 2009; Prasad et al., 2015; Yu et al., 2017), late-life major depres-
sive disorder (Smagula and Aizenstein, 2016), epilepsy (Taylor et al.,
2015), Parkinsons's disease (Canu et al., 2015; Shah et al., 2017),
schizophrenia (Arbabshirani et al., 2013; Cabral et al., 2013) and other
psychosis (van Dellen et al., 2015; Mighdoll et al., 2015). Brain con-
nectivity analysis has also proven to be useful in the study of the effects of
aging on the brain (Damoiseaux, 2017; Wu et al., 2013; Salat, 2011; Fjell
et al., 2016).

Brain structural and functional connectivities, as measured by
diffusion-weighted MRI (dMRI) and resting-state functional MRI (rs-
fMRI), respectively, reveal distinct features (Park and Friston, 2013).
While structural connectivity reflects the white-matter axon bundles,
functional connectivity measures the temporal correlation of blood
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oxygenation changes. Functional connectivity is based on the premise
that brain regions that are activated synchronously, and therefore un-
dergo similar oxygenation and deoxygenation variations, are related.
However, functional connectivity may depend on the subject state (e.g.,
time of day, alertness, caffeine levels). Structural connectivity, on the
other hand, is independent of the subject state, and can even be acquired
ex vivo. Despite the fundamental differences in the processes that we
observe via these two distinct measurements, structural and functional
connectivities have been shown to be correlated (Damoiseaux and
Greicius, 2009; Huang and Ding, 2016). Strong functional connections
are, however, commonly observed between regions with no direct
structural connection (Koch et al., 2002; Honey et al., 2009). Part of this
variance has been shown to be due to the impact of indirect structural
connections (Honey et al., 2009; Van Den Heuvel et al., 2009; Deligianni
et al., 2011), i.e. between regions that are physically connected through
multiple direct fiber bundles. Such indirect structural connections are
usually considered only during the network analysis (Sporns, 2013), but
not at the fiber tracking (tractography) step.

Differences in brain connectivity patterns between healthy and
diseased populations are an indicator of change in the brain “wiring” and
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the
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function due to the disease. In particular, AD has been found to impact
connectivity (Rose et al., 2000; Buckner et al., 2005, 2009; Prasad et al.,
2015; Yu et al., 2017). The progressive neurodegeneration suffered in
AD, possibly caused by the spread and accumulation of misfolded pro-
teins along structural connections in the brain (Iturria-Medina et al.,
2014), affects the functional networks detected with rs-fMRI (Buckner
et al., 2005, 2009; Yu et al., 2017) and the brain connections recon-
structed with dMRI (Rose et al., 2000; Prasad et al., 2015). Accurately
modeling structural connectivity could therefore reveal the effects of AD
progression in white-matter degeneration.

The purpose of the present work is to derive a new structural-
connectivity measure that considers all possible pathways, direct and
indirect, with the aim of accessing more of the information that is often
only available through functional connectivity. To that end, we propose a
connectivity computation method that, by exploiting the well-studied
mathematics of electrical circuits, models the white-matter pathways
imaged via dMRI. Although macroscopic electrical models have been
exploited in the context of brain connectivity (Chung et al., 2012, 2017;
Aganj et al., 2014), we take a different approach and use partial differ-
ential equations (PDEs). Our method accounts for all possible
white-matter pathways and is solved globally. It also does not require any
parameter tuning and does not suffer from local minima, thereby pro-
ducing consistent results with respect to the input data.

We evaluate the performance of the proposed conductance measure
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to test two different hypotheses, using a different dataset for each. First,
we check the relationship between structural and functional connectiv-
ities, to test if our structural connectivity measure, which includes indi-
rect connections, is more related to functional connectivity than standard
measures are. Our results on 100 subjects of the WashU-UMN Human
Connectome Project (HCP) (Van Essen et al., 2013) dataset support this
hypothesis. Second, we test if our measure can classify healthy and
diseased populations. Through experiments on data from the second
phase of Alzheimer's Disease Neuroimaging Initiative (ADNI-2) (Jack
et al., 2008; Beckett et al., 2015), our connectivity measure proves useful
in finding differences between the different stages of AD. This could lead
to the discovery of new imaging biomarkers that help us better identify
the disease stage, predict the onset of disease from connectivity patterns,
and deepen our insight into the human brain and how it is affected by
disease.

We present our conductance method for inferring a new structural
brain connectivity measure from dMRI in Section 2 and put it into
perspective with respect to standard tractography methods. We describe
our analysis pipeline for the two datasets in Section 3 and present our
results in Section 4. A discussion and conclusions follow in Sections 5 and
6, respectively. A preliminary abstract of this work has previously been
presented (Frau-Pascual et al., 2018).
Fig. 1. Conductance-based structural connectivity method.
(a) We model brain connectivity globally using differential
circuit laws, with diffusion tensors reconstructed from dMRI.
(b) We first compute the potentials ϕi;s, as depicted for five
sources i (the reddest voxel) and a fixed sink s (the bluest
voxel). (c) Next, potential maps are superposed to generate
voxel-wise conductance maps Ci;j as shown for five voxels i
(the reddest voxel), or ROI-wise conductance maps CI;J as
shown for five ROIs I (indicated by arrows).
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2. Methods

Brain connectivity has previously been modeled with the help of the
established mathematical framework for macroscopic electrical circuits
(Chung et al., 2012, 2017; Aganj et al., 2014). In this work, we make use
of a combination of differential circuit laws, resulting in an equation
similar to the heat equation proposed by O'Donnell et al. (2002). As
illustrated in Fig. 1, we assign to each image voxel a local anisotropic
conductivity value D, which is the diffusion tensor computed from dMRI
(Basser et al., 1994; Tuch et al., 2001). (See Appendix B for a formulation
to use higher-order diffusion models.) By solving the partial differential
equation (PDE) (Haus and Melcher, 1989),

�r ��Drϕi;j

� ¼ γi;j; (1)

for a certain current configuration γi;j between a pair of source (i) and
sink (j) voxels (see below), we find the potential map ϕi;j for that specific
configuration. r and r � are the gradient and the divergence operators,

respectively. The above PDE is the result of combining E
!¼ �rϕi;j (due

to Faraday's law), J
!¼ DE

!
(Ohm's law), and r � J!¼ γi;j (Kirchhoff's

differential current law or continuity equation), where E
!

is the electric

field and J
!

is the current density. The potential map ϕi;j, an example of
which is shown in Fig. 1(b), describes how a current would diffuse from a
source point to a sink point following the orientational information
provided by the gradient of the map and the diffusion tensors. It is
nonetheless important to note that these potentials cannot be directly
interpreted as connectivity. Therefore, in contrast to O'Donnell et al.
(2002), we further compute the electric conductance between each pair
of voxels from potential maps, to which all diffusion paths between the
pair contribute (see Fig. 1(c)). The conductance, computed as the ratio of
the total passed current to the potential difference, reflects the ease with
which the current diffuses from the source to the sink, which we here use
it as a measure of connectivity (more details provided below). The same
measure can also be computed between a pair of regions of interest
(ROIs) instead of voxels, by distributing the currents γ among the ROI
voxels (see Fig. 1(c)).

We solve the PDE for a 1-Ampere current (without loss of generality)
between a pair of voxels i and j: γi;j ¼ δi � δj, where δkðxÞ :¼ δðx� xkÞ,
with xk the position of voxel k and δð�Þ the Dirac delta. To compute ROI-
wise conductance, we distribute the currents among the sets of voxels I
and J (the two ROIs) as: γI;J ¼ 1

jIj
P
i2I
δi � 1

jJj
P
j2J

δj.
2.1. Efficient computation of potentials

For each source/sink current configuration γi;j, we solve the PDE2 in
Eq. (1) to find the potentials (see Fig. 1). We first discretize the linear
diffusion term �r �ðDrϕi;jÞ and γi;j (see Appendix A for details on the
discretization) and write it in the matrix formMϕi;j ¼ γi;j, which we then

invert to solve ϕi;j ¼ M�1 γi;j. We use the Neumann boundary condition,
rϕi;j � e ¼ 0 for all points on the boundary, where e denotes the (typically
exterior) normal to the boundary.

Given N voxels (or ROIs), we need a potential map for each pair of
voxels, leading to N2 potential maps, hence an intractable problem.
However, by exploiting the superposition principle that is a consequence
of the linearity of the derivative operator, we reduce the number of
necessary potential maps to only N. We choose a reference sink voxel, s,
and compute N potential maps, ϕi;s;i ¼ 1;…;N, with i the source and s the
fixed sink. Next, note that for a pair ði; jÞ, we can compute the potential
map ϕi;j by linearly combining the potential maps between i and j and the
2 We used the Finite Volume MATLAB toolbox (Eftekhari and Schller, 2015),
and extended it so it accepts tensor-valued D.
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reference sink voxel (ϕi;s and ϕj;s), since:

�r ��Dr�ϕi;s � ϕj;s

�� ¼ �r��Drϕi;s

�þr��Drϕj;s

�
(2)

¼ ðδi � δsÞ �
�
δj � δs

� ¼ δi � δj ¼ �r ��Drϕi;j

�
: (3)

Given that we consider the same boundary conditions for all the PDEs,
we now compute the potential map for any pair simply as ϕi;j ¼ ϕi;s � ϕj;s.
Note that in the computation of ϕi;j for all pairs ði; jÞ, the inverse matrix
M�1 needs to be computed and saved in memory only once.

2.2. Conductance as a measure of connectivity

The conductance between two points can be computed with Ohm's
law as the ratio of the current to the potential difference. In our case, we
set a 1-Ampere current between two voxels (or ROIs) i and j, and the
potential difference is ϕi;jðxiÞ� ϕi;jðxjÞ. The conductance is therefore
computed, voxel-wise, as:

Ci;j ¼ 1
ϕi;jðxiÞ � ϕi;j

�
xj
�: (4)

Finally, per the aforementioned superposition principle, the conduc-
tance between any pair of voxels ði; jÞ is computed as:

Ci;j ¼ 1�
ϕi;sðxiÞ � ϕj;sðxiÞ

�� �ϕi;s

�
xj
�� ϕj;s

�
xj
��: (5)

For ROI-wise connectivity, given that the potential map between the

two ROIs is ϕI;J ¼ ϕI;s � ϕJ;s, where ϕI;s ¼ M�1

 
1
jIj
P
i2I
δi � δs

!
, we have:

CI;J ¼ 1
1
jIj
P
i2I
ϕI;JðxiÞ � 1

jJj
P
j2J
ϕI;J

�
xj
� (6)

¼ 1
1
jIj
P
i2I

�
ϕI;sðxiÞ � ϕJ;sðxiÞ

�� 1
jJj
P
j2J

�
ϕI;s

�
xj
�� ϕJ;s

�
xj
��

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
using superposition principle

: (7)

High conductance (i.e. low resistance) between two points indicates a
high degree of connectivity. Note in equations (5) and (7) that, as ex-
pected, the conductance is symmetric with respect to the pair of voxels or
ROIs, i.e., Ci;j ¼ Cj;i and CI;J ¼ CJ;I . As shown in Fig. 1(c), by setting the
conductivity (D) to zero outside the white-matter mask, we can compute
voxel-wise conductance maps from a single voxel (in red) to the rest of
the brain, as well as ROI-wise conductance maps from a single ROI (in
red, indicated with arrow) to all the other ROIs.3 Note that the ROIs are
all at least weakly connected, given that indirect connections are all
considered. Nevertheless, these maps can be thresholded to keep only
connections stronger than a desired amount.

2.3. Comparison to standard connectivity computation

In standard connectomic approaches, tractography is often performed
after dMRI reconstruction to extract streamlines that represent connec-
tions between different voxels of the image (see Fig. 2, right). Connec-
tivity matrices are then generated from the streamlines between different
ROIs that are previously determined via segmentation of the brain.
Various connectivity measures can be used to quantify these connections,
leading to different connectivity matrices, e.g.: plain count of the
streamlines, number of the streamlines normalized by the median length,
number of tracts passing through the ROI or only those ending in the ROI,
etc. The optimal choice of the type of connectivity matrix usually
3 Our codes are publicly available at: www.nitrc.org/projects/conductance.
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depends on the tractography algorithm used (choice of seeds, deter-
ministic/probabilistic, whether sharp turns are allowed, etc.). In our
approach, however, only the conductivity input will vary. This reduces
the number of decisions to make (i.e., parameters to tune) in the
computation of the connectivity matrix.

3. Data analysis

We used two publicly available datasets in our analysis, from the
WashU-UMN Human Connectome Project (HCP) (Van Essen et al., 2013)
and the second phase of Alzheimer's Disease Neuroimaging Initiative
(ADNI-2) (Jack et al., 2008; Beckett et al., 2015). These two datasets
allowed us to evaluate the proposed method from different aspects: HCP
data was used to measure the relationship between structural and func-
tional connectivities, and ADNI-2 enabled the assessment of the utility of
our measure in discriminating healthy and diseased populations. We
preprocessed both datasets similarly.

MR processing: We performed tissue segmentation and parcellation
of the cortex into ROIs using FreeSurfer4 (Fischl, 2012). The parcellation
used in this work is the Desikan-Killiany atlas (Desikan et al., 2006).

Diffusion MRI processing: The diffusion preprocessing pipeline
used for ADNI-2 involved the FSL software5 (Jenkinson et al., 2012) and
included BET brain extraction (Smith, 2002) and EDDY (Andersson and
Sotiropoulos, 2016) for eddy current and subject motion correction. For
HCP, there were more steps involved (Glasser et al., 2013), namely: B0
intensity normalization, EPI distortion correction with TOPUP (Ander-
sson et al., 2003), eddy current and subject motion correction with
EDDY, and gradient non-linearity correction. From the preprocessed
dMRI images, we reconstructed the diffusion tensors using the Diffusion
Tensor Imaging (DTI) (Basser et al., 1994) reconstruction of DSI Studio,6

which we then used as input to our conductance approach. To compare
with standard approaches (see Fig. 2), we also ran streamline (SL) trac-
tography (Yeh et al., 2013) using DTI, for direct comparison with our
approach, and using generalized q-sampling imaging (GQI) (Yeh et al.,
2010), which, as opposed to DTI, can model multiple axon populations
per voxel. We generated 10000 fiber tracts and used default values for the
rest of the parameters. Then, we computed connectivity matrices ac-
cording to various connectivity conventions: plain tract count, tract count
normalized by the median length, both considering tracts passing through
the ROI or ending in the ROI.

The computational cost of the proposed conductance-based connec-
tivity method, in terms of memory and runtime, depends on the number
of voxels in the brain mask containing the white and gray matter. The
inversion of the matrix M is computationally expensive, thus so is our
method compared to standard SL approaches. For instance, for an ADNI-2
subject with diffusion images of dimensions 256� 256� 59 and
approximately 120000 voxels in the mask, the conductance method
needed up to 13 GB of RAM and took approximately 6min to run on a
computer with 1 core (Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60 GHz).
For an HCP subject with diffusion images of dimensions 145� 174� 145
and approximately 570000 voxels in the mask, the conductance method
needed up to 94 GB of RAM and took approximately 2 h. DSI Studio
deterministic tractography, on the other hand, took approximately 5 s
and used 4.5 GB of RAM to generate 10000 streamlines from the tensors
and compute the connectivity matrix, for a subject from either of the two
datasets.

rs-fMRI processing: The rs-fMRI data, already projected to the sur-
face and preprocessed as described by Glasser et al. (2013), was
detrended (only linear trends removed), bandpass-filtered at
0.01–0.08 Hz, and smoothed with a kernel with a full width at half
maximum of 6mm. We stacked four sessions of rs-fMRI data, and
4 FreeSurfer, https://surfer.nmr.mgh.harvard.edu/.
5 FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.
6 DSI Studio, http://dsi-studio.labsolver.org.
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computed the matrix of Pearson's correlations among the ROIs. Note that
we used rs-fMRI only in our HCP experiments.

4. Results

We evaluated the performance of the proposed conductance measure
through experiments that answer two different questions:

(a) Relationship between structural and functional connectivity
(Section 4.1): Is our structural connectivity measure, which con-
siders both direct and indirect connections, more correlated to
functional connectivity than standard measures are?

(b) Discrimination of healthy and diseased populations (Section 4.2):
Does our measure provide additional information that better dis-
tinguishes different stages of AD?

In the following subsections, we attempt to answer these questions
using the HCP and ADNI-2 datasets, respectively.
4.1. HCP dataset

We evaluated our method on 100 subjects from the publicly available
WashU-UMN HCP dataset (Van Essen et al., 2013), containing rs-fMRI
and dMRI data, while comparing our approach with standard SL trac-
tography in regards to the relation to functional connectivity.

4.1.1. Relationship with functional connectivity
To test the hypothesis that indirect connections can explain some of

the variability between structural and functional connectivity, we
compared the structural connectivity matrices – computed from our
conductance and the standard approaches – to the functional connec-
tivity matrix. We computed the Pearson's correlation coefficient between
the elements of the structural and functional connectivity matrices per
subject, and then compared the distribution of these correlation values,
as depicted in Fig. 3(a) and reported in Table 1. As can be seen, functional
connectivity is much more strongly correlated with the proposed
conductance-based structural connectivity than with all the conventional
SL-based connectivity methods. Next, to make sure that our method
makes use of the actual white-matter fiber orientations, and not just the
physical distance between ROIs, we repeated the experiments using
isotropic tensors; once with a constant isotropic tensor magnitude
(denoted by ‘distance’), and again by weighting the isotropic tensor with
mean diffusivity (denoted by ‘MD-w distance’). Figure 3(b) shows the
histogram of the correlations of functional connectivity with two SL-
based connectivity approaches (DTI, GQI) subtracted (subject-wise)
from correlations of functional connectivity with the proposed
conductance-based connectivity. This figure, as opposed to Fig. 3(a), is a
paired comparison and preserves the subject-wise information by sub-
tracting the connectivity values subject by subject, and then illustrating
the histogram of the differences. The positive range of values shows how
much more the conductance connectivity is correlated with the func-
tional connectivity than the conventional SL-based metrics are. A two-
tailed paired t-test between these two distributions revealed a statistic
of t ¼ 37 and a significance value of p ¼ 10�60 in the DTI case, and t ¼ 35
and p ¼ 10�58 in the GQI case.

4.1.2. Modeling of inter-hemispheric connections
One of the well-known issues in standard tractography methods is the

mismodeling of inter-hemispheric connections, as such long tracts can be
mistakenly cut short (Sinke et al., 2018). As can be seen in Table 2,
conventional structural connectivity methods model a low quantity of
cortical inter-hemispheric (only 6% of all) connections. Our conductance
method results in a higher ratio of inter-hemispheric connections, close
to that of functional connectivity measures and the MD-w distance.

Next, we again considered the correlation of the different structural
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Fig. 2. Comparison of the structural connectivity computation
by the proposed method vs. standard tractography. The
diffusion tensors and the white and gray matter segmentation
and parcellation are given to both connectivity methods. In
our conductance connectivity approach, the connectivity ma-
trix is computed by solving a PDE for each ROI. In the stan-
dard SL connectivity approach, tractography is performed on
the tensors or higher-order distributions and connectivity
matrices are computed according to certain criteria. Brain
connectivity (C) in this figure is averaged across HCP subjects
and visualized as logð1þ CÞ using the BrainNet Viewer (www.
nitrc.org/projects/bnv) (Xia et al., 2013).
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connectivity measures with functional connectivity, but this time sepa-
rately for three connection groups of cortical inter-hemispheric, cortical
intra-hemispheric, and all subcortical connections, with the results pro-
vided in Table 3 and illustrated in Fig. 4. Regarding the cortical inter-
hemispheric connections, we observe a much lower correlation of the
SL-based measures compared to the conductance-based measure, with no
overlap. Note that our measures of distance have low correlations as well.
This difference decreases for intra-hemispheric connections, although
conductance-based connectivity still correlates much more than the rest.
Although extreme values in the results by our method overlap with those
by some DSI Studio measures, their 25th/75th percentiles are still far from
each other. As for subcortical connections, we observe that the distance
correlates much more with functional connectivity than SL-based con-
nectivity measures do, and that the conductance-based connectivity has a
very large standard deviation. As a result, we can conclude that the de-
viation for our method in Fig. 3 originates mostly from subcortical
connections.
4.2. ADNI-2 dataset

Next, we tested the power of our global conductance-based structural
connectivity measure in the detection of white-matter differences in
populations with different stages of AD and in the classification of dMRI
images according to the AD stage. Amore accurate modeling of structural
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connections could lead to a better understanding of the progression of
this and other diseases, and to the discovery of new imaging biomarkers
for disease study.

We analyzed 213 subjects of the ADNI-2 dataset (http://adni.loni.usc.
edu) in different stages: 78 cognitively normal (CN), 89 with mild
cognitive impairment (MCI), and 47 with AD dementia (Fig. 5). The
ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI
has been to test whether serial MRI, positron emission tomography, other
biological markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early AD.

4.2.1. Disease stage classification
We assessed the suitability of our conductance-based connectivity

matrix for disease stage classification, which would allow inferring the
disease stage from connectivity measures derived from dMRI. We per-
formed the classification of the elements of the ROI-to-ROI connectivity
matrix with a Random Forest classifier with balanced class weight
(Pedregosa et al., 2011). We cross-validated with a shuffle split
cross-validation strategy with 200 splits considering a 10% of the data for
testing (Varoquaux et al., 2017).

We classified each pair of stages, and then all stages together,
reporting the results in Fig. 6. We compare our conductance measure to
different conventional SL-based connectivity measures, using DTI and

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.nitrc.org/projects/bnv
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Fig. 3. Correlation of structural and functional connectivities considering different approaches and metrics. (a) Distribution of correlations across 100 subjects. SL-
based connectivity measures computed using DTI and GQI are compared: ‘count’ means plain count, ‘ncount’ means normalized fiber count by the median length,
‘end’ means that only fibers ending in the ROI are considered, and ‘pass’ that fibers passing through an ROI are also considered. The ‘distance’ method is our approach
ran with constant isotropic tensors, and the ‘MD-w distance’ is our approach ran with isotropic tensors weighted by the mean diffusivity. For each box, the central line
is the median, the left/right edges are the 25th and the 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and the outliers
are plotted individually. (b) Normalized histogram of the difference of structural/functional correlation, for conductance minus DTI SL and GQI SL tractographies. The
SL-based connectivity measure giving the highest correlation with functional connectivity is used: tract count normalized by median length, considering tracts passing
through an ROI.

Table 1
Cross-subject mean correlation of functional and the proposed conductance-based structural connectivities with all structural connectivity metrics. See the legend of
Fig. 3 for keyword definitions.

Conductance DTI SL GQI SL

end pass end pass

count ncount count ncount count ncount count ncount

functional 0.427 0.163 0.152 0.165 0.192 0.141 0.138 0.175 0.195
conductance 1 0.304 0.346 0.353 0.439 0.251 0.336 0.356 0.453

Table 2
HCP inter-hemispheric connection ratios with respect to all connections, for
different connectivities. This ratio was computed as the sum of ROI-to-ROI
connectivity values across inter-hemispheric connections, divided by the sum
of all ROI-to-ROI connectivity values. Reported results were averaged across 100
subjects.

Connectivity ratio of cortical inter-hemispheric to all

MD-w distance connections 0:3278� 0:0131
functional correlations 0:3356� 0:0310
conductance model connections 0:2849� 0:0071
GQI SL pass ncount connections 0:0613� 0:0119
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GQI reconstruction methods. Note that, in general, classification per-
formance is affected by class size, even though we used balanced weights
in the classification. In all cases, our conductance measure has a higher
prediction accuracy than conventional structural connectivity measures
do, especially in the case of CN vs AD. When classifying all stages
simultaneously, one must keep in mind that since we have 3 classes, a
prediction accuracy of 0.5 is still informative. For the case of all-stage
classification, Fig. 7 shows the confusion matrices for our conductance
measure and the conventional structural connectivity measure (here only
considering the measure from GQI with SL tractography, counting the
Table 3
Results of two-tailed paired t-tests between the distributions of the structure-function
tractography using normalized count of tracts passing through an ROI.

all connections cortical inter-hemispheric

DTI t ¼ 37; p ¼ 10�60 t ¼ 43; p ¼ 10�65

GQI t ¼ 35; p ¼ 10�58 t ¼ 41; p ¼ 10�64
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number of tracts passing through an ROI normalizing by the median
length). We observe that our conductance method correctly classifies
45% of the AD cases whereas the conventional SL connectivity measure
does only 12%. For the rest of the disease stages, the two methods had
comparable performance.

4.2.2. Pairwise group comparison
Next, we searched for pairs of regions where the structural connec-

tivity significantly differed between the CN and AD groups. Figure 8
shows, for each pair of ROIs, the p-values resulting from a 2-sample t-test
between the AD and CN groups. Connections with significant differences
(p < 0:05, after Bonferroni correction) between the AD and CN groups
for the conductance measure (Fig. 8(a)) involve regions that are known
to be affected by AD, namely hippocampus and amygdala (Barnes et al.,
2006; Prestia et al., 2011). Regarding differences between the MCI and
AD groups, only the connections of right pars opercularis with insula and
amygdala were significant, and when considering the CN and MCI
groups, no connection was significantly different.

We performed the same analysis on the conventional SL connectivity
measures (Fig. 8(b)), and only some of the DTI measures revealed a few
significantly different connections in the comparison of AD and CN
groups. DTI counting the number of fibers passing through an ROI and the
correlations computed by the conductance connectivity and the SL deterministic

cortical intra-hemispheric subcortical

t ¼ 34; p ¼ 10�56 t ¼ 12; p ¼ 10�21

t ¼ 33; p ¼ 10�55 t ¼ 15; p ¼ 10�26



Fig. 4. Structure/function correlation for three groups of connections: cortical inter-hemispheric, cortical intra-hemispheric and all subcortical connections. Com-
parison of conductance model, the SL-based connectivity measures and distance andMD-w distance. For each box, the central line is the median, the left/right edges are
the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually.

Fig. 5. ADNI-2 data demographics.

Fig. 7. Confusion matrices and prediction accuracy in the classification of dis-
ease stages using a Random Forest classifier on the conductance method con-
nectivity matrix and the conventional SL connectivity matrix with GQI, and the
metric fiber count normalized by the median tract length.
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same normalized by the median length revealed differences in a few
connections, as depicted in Fig. 8(b). When counting the number of fibers
either passing through or ending in an ROI, only the left middle-temporal
to supramarginal connection was significantly different. No differences
were found in the other pairs of groups, and none with any of the GQI SL
measures.

Prior to Bonferroni correction, both methods suggested many signif-
icant connections between all pairs of stages. However, only the pro-
posed method revealed significant p-values in all cases after Bonferroni
correction. This suggests that our method provides a higher statistical
power and might potentially reveal a statistically significant effect with a
smaller sample size.

5. Discussion

We have proposed a new approach to measure structural brain con-
nectivity. Directly from the reconstructed dMRI data, our approach ac-
counts for indirect brain connections that would not otherwise be
inherently considered by standard SL techniques. The proposed meth-
odology is solved globally, and its primary advantage is that it considers
all possible pathways when quantifying connectivity. As such, however,
Fig. 6. Prediction accuracies of different stages of AD, when using a Random Forest c
200 splits considering 10% of the data for testing. See the legend of Fig. 3 for keyw
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it may also be including some implausible paths, as would also be the
case for the conventional SL tractography-based connectivity measures.
Nonetheless, we expect the greater length of erroneous pathways, such as
the ones that involve jumping from one true path onto another, to reduce
the impact of such paths. It is important to note that, although the
diffusion tensor has been shown to be related to the physical conductivity
tensor (Tuch et al., 2001), we do not suggest either that the diffusion
tensors are precise estimates of the conductivity, or that the physical
electrical conductance is an appropriate model for the brain's biological
wiring. We only seek to take advantage of the mathematical framework
provided by electromagnetic models to conveniently account for indirect
white-matter connections, without implying that such a connectivity
measure would explain any physical properties of the brain.

Another advantage of our method is that we have fewer decisions to
make and parameters to tune in the connectivity analysis pipeline.
Standard tractography-based connectivity analysis includes different
steps that require a certain decision making when quantifying connec-
tivity, such as: modeling of one or several fiber bundle populations, the
lassifier, with balanced weights. The cross-validation used was: Shuffle Split with
ord definitions.



Fig. 8. p-values showing significant differences in connectivity per ROI pair between the AD and CN groups, when using (a) the proposed conductance method and (b)
a conventional structural connectivity measure (DTI measure counting the number of fibers passing through an ROI).
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choice of probabilistic or deterministic tractography, number of seeds,
number of streamlines, the allowed turning angle, how we count the
tracts, etc. This introduces a large amount of variability in the results, in a
field where the scarcity of ground truth is one of the biggest challenges
(Cheng et al., 2012; Maier-Hein et al., 2017). Our methodology, how-
ever, computes connectivity from the diffusion tensors without the need
for any parameter tuning. It is worth noting that, even though there is
some variability in the results by conventional connectivity methods, our
method consistently outperformed them.

We have shown in Section 4.1 that by using the proposed conduc-
tance method, which accounts for indirect pathways, one can compute
structural connectivity measures that are significantly more correlated
with functional connectivity than by using more standard approaches,
with the latter showing a very low correlation in line with existing
literature (Fjell et al., 2017). This supports the hypothesis on the role of
indirect connections in the relationship between functional and struc-
tural connectivity; part of the variance between these two connectivity
measures lies within indirect connections, usually not accounted for in
structural connectivity (Honey et al., 2009; Deligianni et al., 2011).
Although the conductance measure was significantly more correlated
with functional connectivity than standard SL measures were, the mean
correlation was merely 0.43 (see Fig. 3). The reason for this may be that
structural and functional connectivities describe different processes:
while the former represents physical connections, the latter reflects how
synchronously different regions in the brain function and considers such
synchrony as a surrogate for connectivity. Nevertheless, increased simi-
larity to functional connectivity – when considering all connections or
only a subgroup of them (see Fig. 4) – implies that the proposed measure
may be more informative about the brain function.

We observed through experiments that our approach reveals more
cortical inter-hemispheric connections (see Section 4.1.2). These con-
nections, which are mostly – but not always (Roland et al., 2017) –

through the corpus callosum (Zarei et al., 2006), have proved challenging
for standard tractography methods (e.g., due to sensitivity to head mo-
tion) (Yendiki et al., 2014). In fact, inter-hemispheric connections have
been shown to be affected by disease (e.g., AD) and correlated with
clinical changes in some disorders (Wang et al., 2013, 2015; Saar--
Ashkenazy et al., 2016; Xue et al., 2018). Further investigation with
experiments on datasets with known ground truth, e.g. from chemical
tracing (Grisot et al., 2018), would be required to find out whether better
revealing of inter-hemispheric connections by our method compared to
deterministic SL tractography is only a consequence of modeling indirect
connections, or also of better capturing of some hard-to-detect direct
ones.

The proposed conductance measure has also proven useful (see Sec-
tion 4.2) in distinguishing normal and AD subjects and in better classi-
fication among AD stages. This could potentially lead to dMRI-derived
connectomic biomarkers for early detection of AD.

Our approach could be employed in a more general-purpose global
connectivity analysis, as an alternative to classic tractography. However,
the conductance values may not fit the definition of either streamlines or
probability measures. As we have shown in Section 2, the proposed
method can also enable the computation of voxel-wise and thus
parcellation-independent connectivity (Moyer et al., 2017), allowing to
compute the connectivity between any pair of points in the white matter.

One of the limitations of the proposed conductance measure is that it
derives from tensors, and therefore does not make use of the information
provided by higher-order models. Even so, we make use of the whole
tensor (not just the main direction of the axon population), which is
informative in distinguishing highly anisotropic fibers from the cases
where fiber crossing or fanning is present. Therefore, our tensors are
actually used as low-order orientation distribution functions (ODFs).
Importantly, we have shown here that our approach outperforms the
conventional SL-based method, even when the latter uses high-order
ODFs. In addition, our approach can be extended to exploit multiple
axon population models to deal with crossing and kissing fibers, using a
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multi-tensor approach or general ODFs (Seunarine and Alexander, 2014;
Aganj et al., 2015) instead. We propose a framework to implement our
method with higher-order models in Appendix B.

6. Conclusion

In this work, we have proposed a new structural connectivity measure
that is directly derived from the dMRI data and accounts for all possible
pathways when quantifying connectivity between a pair of regions. The
method is global, does not produce locally optimal solutions, and has no
parameters to be tuned by the user. Using this methodology, we
computed structural connectivity measures that were significantly more
correlated with functional connectivity, when compared to more stan-
dard approaches. In the study of diseased populations, our novel con-
nectivity measure better classified different stages of Alzheimer's disease.
Our results suggest that the proposed method provides new information
that is not accounted for in standard streamline-based connectivity
measures, and highlights its potential for further development. Future
work includes additional validation, e.g. with chemical tracing as the
ground truth, which may clarify the nature of the new information pro-
vided by our method.
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Appendix A. Discretization of the diffusion term.

For the discretization of r� ðDrϕÞ of Eq. (1), we find the values of D on the mid points of the mesh before computing the divergence, as such mid
points are where the gradient of the potentials are computed.
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Appendix B. Extension for high-angular-resolution diffusion imaging (HARDI).

Assuming that bu is the normalized b-vector and b ¼ τq2 the b-value, with q and τ the q-vector and the diffusion time, the measured diffusion signal
values according to the mono-exponential model are

Sð q!Þ ¼ S0 e�τq2Aðû Þ (B.1)

where q!¼ qbu and A is the apparent diffusion coefficient. Note that

q2AðbuÞ ¼ �1
τ
ln
�
Sð q!Þ
S0

�
:

In DTI, we approximate A as a quadratic function:

A
�bu� � buTDbu (B.2)

q2AðbuÞ � q!T
D q! (B.3)

Deriving with respect to q! results in:
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r q! q2AðbuÞ � 2D q! (B.4)
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For HARDI, we can approximate the left-hand-side of Eq. (1) as follows:
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Equation (B.6) is no longer linear with respect to the potentials, and therefore Eq. (1) cannot be solved as easily with this model as in the case of DTI.
Moreover, due to nonlinearity, the superposition property no longer holds either. Iterative optimization approaches may be used to approximate the
solution to the PDE with Eq. (B.6).
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