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Abstract

Background: Structural brain connectivity has been shown to be sensitive to the changes that the brain undergoes
during Alzheimer’s disease (AD) progression.
Methods: In this work, we used our recently proposed structural connectivity quantification measure derived
from diffusion magnetic resonance imaging, which accounts for both direct and indirect pathways, to quantify
brain connectivity in dementia. We analyzed data from the second phase of Alzheimer’s Disease Neuroimaging
Initiative and third release in the Open Access Series of Imaging Studies data sets to derive relevant information
for the study of the changes that the brain undergoes in AD. We also compared these data sets to the Human
Connectome Project data set, as a reference, and eventually validated externally on two cohorts of the European
DTI Study in Dementia database.
Results: Our analysis shows expected trends of mean conductance with respect to age and cognitive scores, sig-
nificant age prediction values in aging data, and regional effects centered among subcortical regions, and cingu-
late and temporal cortices.
Discussion: Results indicate that the conductance measure has prediction potential, especially for age, that age
and cognitive scores largely overlap, and that this measure could be used to study effects such as anticorrelation
in structural connections.
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Impact Statement

This work presents a methodology and a set of analyses that open new possibilities in the study of healthy and pathological
aging. The methodology used here is sensitive to direct and indirect pathways in deriving brain connectivity measures from
diffusion-weighted magnetic resonance imaging, and therefore provides information that many state-of-the-art methods do
not account for. As a result, this technique may provide the research community with ways to detect subtle effects of healthy
aging and Alzheimer’s disease.

Introduction

Brain structural connectivity reflects the physical
connections through white-matter (WM) axon bundles

between different regions of interest (ROIs), and can be mea-
sured by diffusion-weighted magnetic resonance imaging
(dMRI). Brain connectivity analysis has been proven to be

useful in the study of many conditions, such as the effects
of aging on the brain (Damoiseaux, 2017; Fjell et al.,
2016; Wu et al., 2013), and in the study of disease.

Differences in brain connectivity patterns between healthy
and diseased populations are potential indicators of changes
in the brain ‘‘wiring’’ due to disease processes. In particular,
Alzheimer’s disease (AD) has been found to impact structural
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connectivity (Daianu et al., 2013; Prasad et al., 2015; Rose
et al., 2000). The changes that the brain undergoes with
aging and AD can be confounded, thereby contributing to a
delay in AD diagnosis. Nonetheless, the spatial and temporal
patterns of changes in connectivity are different in healthy
aging and in AD. Accurate modeling of structural connectivity
may therefore reveal the effects of aging and AD progression
in WM degeneration, and help to differentiate the two.

Brain changes in aging and dementia

Healthy aging is associated with a moderate decline of
some cognitive abilities. AD dementia causes severe deteri-
oration of similar cognitive domains, and also additional
cognitive functions, in such a way that it compromises inde-
pendent living. The abnormal decline preceding AD, with
noticeable alterations in cognition yet short of functional in-
dependence, is termed mild cognitive impairment (MCI)
(Petersen et al., 1999). Both the gray matter (GM) and the
WM undergo changes in volume and integrity in healthy
and pathological aging, but the affected regions vary.

Healthy aging has been found to be related to decline in
the frontal and temporal regions of the GM. An age-related
volume decline has been localized in the prefrontal cortex
(PFC), insula, anterior cingulate gyrus, superior temporal
gyrus, inferior parietal lobule, and precuneus (Ghosh et al.,
2011), as well as in the striatum, caudate, and medial tempo-
ral lobe (hippocampus and adjacent, anatomically related
cortex, including entorhinal, perirhinal, and parahippocam-
pal cortices) (Raz and Rodrigue, 2006). Other regions,
such as the occipital cortex, are mostly unaffected by aging.

In healthy aging, degeneration in WM has been found to
often follow an anterior/posterior gradient of fractional an-
isotropy (FA) reductions, indicating that frontal connections
are especially vulnerable (Toepper, 2017). Small and less
myelinated fibers are particularly vulnerable to age-related
decline, such as fiber tracts whose myelinization is com-
pleted later in life (Salat et al., 2005).

In patients with AD dementia, changes in regional volume
are not uniform. A significant volume reduction has been
found in the hippocampal formation and the entorhinal cortex
bilaterally very early in the disease (Thompson et al., 2004),
followed by a degeneration in the PFC (Ghosh et al., 2011). In
the WM, signal abnormalities (WMSA) have been found in
AD in regions such as rostral frontal, inferior temporal, and
inferior parietal WM, with a greater volume of WMSA in
AD with respect to healthy aging consistently across different
ages. In MCI, frontal and temporal regions have been found
to have greater WMSA volume with decreasing time-to-
AD-conversion (Lindemer et al., 2017).

Brain connectivity changes in aging and dementia

While enabling the segregation and integration of infor-
mation processing, brain networks are also responsible for
the widespread effects resulting from local disease-related
disruptions, thereby complicating relationships between
pathological processes and clinical phenotypes in AD
(Tijms et al., 2013).

The disconnection model of AD has long been discussed
(de LaCoste and White, 1993), with cumulative evidence as-
sociating plaques and tangles with local synaptic disruptions
(Arendt, 2009; Takahashi et al., 2010), as well as linking the

cognitive dysfunction in AD to dysconnectivity between
highly interrelated brain regions (Brier et al., 2014; Delbeuck
et al., 2003; Matthews et al., 2013). Identifying large-scale
brain networks that are vulnerable or resilient in aging and
AD (by studying the human connectome) can therefore re-
veal underlying disease propagation patterns in the brain
and provide connectivity-based biomarkers (Gomez-
Ramirez and Wu, 2014) in prodromal AD.

Network-based analysis of brain WM connections through
dMRI (Basser and Özarslan, 2014; Goveas et al., 2015; Mad-
den et al., 2012) has been proven promising in revealing the
structural basis of cognitive changes in AD, MCI, and aging,
and the discovery of diagnostically and therapeutically im-
portant biomarkers.

Structural networks have been used to predict the process
of disease spread in AD (Raj et al., 2012, 2015), and to dis-
tinguish the groups of cognitively normal (CN), MCI, and
AD (Aganj et al., 2014; Frau-Pascual et al., 2019b; Prasad
et al., 2015; Shao et al., 2012), as well as AD from vascular
dementia (Zarei et al., 2009). Relative to CN controls, AD
patients have been shown to have significantly lower integ-
rity of association fiber tracts (Rose et al., 2000), weaker cin-
gulum connectivity (Huang et al., 2012; Mielke et al., 2009;
Zhang et al., 2007), and structural brain networks with dis-
ruption in their rich club organization (Daianu et al., 2016;
Lee et al., 2018), and reduced local efficiency (Lo et al.,
2010; Reijmer et al., 2013).

The performance in memory and executive functioning of
AD patients has been inversely correlated to the path length
(Reijmer et al., 2013), and network small-worldness has been
shown to predict brain atrophy in MCI (Nir et al., 2015).
Structural brain networks are affected even in individuals
without dementia with the APOE e4 allele (Liu et al.,
2013), a genetic AD risk factor.

Connectivity disruption within a brain network is also oc-
casionally accompanied by hyperconnectivity in a recipro-
cal network. For instance, increased frontal connectivity
may be observed alongside reduced temporal connectivity
in AD (Supekar et al., 2008; Wang et al., 2007), and an in-
verse relationship has been reported between frontal activ-
ity and occipital activity in aging (Davis et al., 2008).

Furthermore, AD has been shown to reduce connectivity in
the default mode network (DMN) but intensify it at the early
stages in the salience network—a collection of regions active
in response to emotionally significant stimuli (Seeley et al.,
2007; Uddin, 2016)—whereas behavioral variant frontotempo-
ral dementia has been shown to attenuate the salience network
connectivity but enhance DMN connectivity (Brier et al., 2012;
Zhou et al., 2010). Even so, most existing studies monitor such
hyperconnectivity with respect to the progression of dementia,
but not with respect to the deterioration of other networks.

Contributions of this work

We have previously introduced a method for inferring struc-
tural brain connectivity from dMRI using an electrical conduc-
tance model (Frau-Pascual et al., 2019b), which accounts for
all possible WM pathways, and is solved globally. This method
was shown to produce structural connectivity measures that
were more strongly correlated with resting-state functional
connectivity and more sensitive to AD-related WM degenera-
tion than standard streamline tractography methods did.
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In this work, we extend our analysis to demonstrate the im-
pact that this new measure of structural brain connectivity
could have in the study of aging and AD dementia. To that
end, we investigate the relationship of structural connectivity
with age and cognitive and volumetric measures, attempt to
predict age and cognitive scores from dMRI data, and identify
some anticorrelated connections that might help to study com-
pensation. This article extends our preliminary conference pub-
lications (Aganj et al., 2020; Frau-Pascual et al., 2019a); in
particular, we have added more data analysis and experiments.

Methods

Conductance model

In our previous work (Frau-Pascual et al., 2019b)1, we ex-
tended the heat equation method proposed by O’Donnell
et al. (2002) with a combination of differential circuit laws.
Our method assigns to each image voxel a local anisotropic
conductivity value D, which is the diffusion tensor computed
from dMRI (Basser et al., 1994). By solving the partial dif-
ferential equation (PDE), �= � (D=/i, j) = ci, j, for a given
current configuration ci, j between a pair of source (i) and
sink (j) voxels, we find the potential map /i, j for that specific
configuration. = and =� are the gradient and divergence op-
erators, respectively.

Our algorithm solves the PDE for a 1-ampere current
(without loss of generality) between a pair of voxels i and
j: ci, j = di� dj, where dk(x) : = d (x� xk), with xk the position

of voxel k and d ( � ) the Dirac delta. To compute ROI-wise
conductance, we distribute the currents among the sets of
voxels I and J (the two ROIs) as follows:

cI, J = 1
jIj+i2I

di� 1
jJj+j2J

dj.

The conductance between two points is then computed
from Ohm’s law as the ratio of the current to the potential dif-
ference. In our case, the potential difference between two vox-
els (or ROIs) i and j is /i, j(xi)�/i, j(xj). The conductance is
therefore computed, for ROI-wise connectivity, as follows:

CI, J =
1

1
jIj+i2I

/I, J(xi)� 1
jJj+j2J

/I, J(xj)
:

The conductance among all N regions can be computed
efficiently in O(N) using the superposition principle (Frau-
Pascual et al., 2019b). High conductance (i.e., low resis-
tance) between two points represents a high degree of
connectivity in our model. Since the ROIs are all at least
weakly connected, these maps can then be thresholded.

Brain connectivity matrix generation

With the conductance method, we model and quantify dif-
fusion data in a nonconventional way. As mentioned in the
Conductance Model section, a 1-ampere current is split
across voxels and the PDE is solved once per ROI to com-
pute a conductance measure between each pair of ROIs
using the superposition principle. This eventually results in
a connectivity matrix per subject that reflects the ease with
which this small current goes from one region to another, fol-
lowing the diffusion tensors. This measure also embeds geo-

metrical information, such as volumes (number of voxels in
each ROI) and distances between ROIs (as implied by the
spatial derivatives in the PDE).

Study of conductance matrices

In this study, we considered the relationship between
the mean conductance and other variables, such as age and
cognitive scores (and cortical/subcortical volumes in the
Supplementary Materials). The cognitive scores considered
here were the Clinical Dementia Rating (CDR) scale
(Morris, 1991) and the Mini–Mental State Examination
(MMSE) score (Pangman et al., 2000), explained in more de-
tail in the Analysis of AD Population section. We fit a linear
function to our data points and report the correlation (r) and
significance ( p) values of the fit, revealing whether conduc-
tance was significantly correlated with these variables.

We also attempted to predict variables such as age and cog-
nitive scores via linear regression. We initially discarded out-
liers in every cohort, while considering an outlier a subject
with mean conductance higher or lower than the average by
two standard deviations. We report r and p values of the cor-
relation between the predicted and the true variable when fit-
ting with a cohort and predicting with a different cohort. The
p-values below 0.05 were considered significant when r was
positive (as a negative r would have indicated the opposite
of the desired effect). We also report the Bonferroni-corrected
p-values ( pb), that is, the original p-values multiplied by the
number of comparisons. Furthermore, we tried fitting and pre-
dicting within the same cohort (which involved fewer compar-
isons), using cross-validation with 20 folds.

We then measured the correlation of the conductance val-
ues between every pair of regions with age and cognitive
scores (CDR and MMSE). For each pair of regions, we cor-
rected the p-value for multiple comparisons using Bonferroni
correction. The results would reveal which regions correlate
more strongly with age and/or cognition.

We further used a general linear model to regress out the
effects of age and sex before correlating the conductance
with CDR or MMSE. This would disentangle the overlap-
ping contributions of age/sex and cognition, and reveal the
residual effects of CDR and MMSE unexplained by age/sex.

Identification of anticorrelated connections

Next, we attempted to identify negative (cross-subject)
interrelationships among brain connections. As opposed to
focusing only on the relationship between connectivity and
the clinical data, we identified pairs of connections that are
significantly negatively correlated with each other, and vali-
dated them on external data sets. Such a connection-wise
correlation approach might help to reveal pathways that are
potentially compensatory and define the resilience mecha-
nism of brain networks against AD.

We first vectorized the lower triangular part of each N · N
connectivity matrix to a vector of length N(N� 1)=2, and re-
duced this vector to keep M corticocortical and cortico/
subcortical connections. Next, we computed the cross-subject
linear correlation coefficient between each pair of connec-
tions, resulting in two symmetric M · M connection-wise ma-
trices of correlations, R, and p-values, P.

We then kept only the elements of R with a correlation value
smaller than a negative threshold, for example, s = � 0:1, as

1Our codes are publicly available at: www.nitrc.org/projects/
conductance
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R� = f(i, j)jRi, j < sg. From that set, we considered the con-
nection pairs whose p-values survived a cutoff threshold,
namely a = 0:05, as L= f(i, j) 2 R� jP�i, j < ag. P� was the
set of p-values corrected for multiple comparisons among
the elements of R� with the Holm/Bonferroni method. We
regarded the surviving set L as the pairs of connections with
significant cross-subject anticorrelation. We kept either the en-
tire L or a most significant subset of it.

Next, to externally test if the surviving set L was anticorre-
lated, we computed Rtest and Ptest for the connection pairs in L
in a different population, and verified both Rtest < 0 and
P�test < a for that set, with P�test being Ptest corrected for mul-
tiple comparisons among the pairs inL. We also tested the hy-
pothesis that the surviving pairs of connections were left/right
symmetric; that is, whether a significant anticorrelation was
also a significant anticorrelation in the mirrored hemisphere.

Lastly, we correlated the identified connections with cog-
nitive performance measures.

MR data processing

The common pipeline for brain connectivity computation is
segmentation of brain ROIs, quantification of brain connec-
tions from dMRI, and aggregation of connectivity values in
a matrix. The constructed brain connectivity matrix describes
how strongly different regions are connected to each other
according to the dMRI acquisition of WM connections. We
processed the MRI data similarly for all data sets.

Structural MRI processing. We performed tissue seg-
mentation and parcellation of the cortex into ROIs using
FreeSurfer2 (Fischl, 2012). The parcellation used in this
work was the Desikan/Killiany atlas (Desikan et al., 2006),
which has 86 regions, among which 68 were cortical and
18 were subcortical or brainstem. The atlas used here has a
moderate number of ROIs, which helps to preserve statistical
power after Bonferroni correction. For stability and replica-
bility, we decided to use the segmentation results already
provided by the database staff (except for European DTI
Study in Dementia [EDSD]), rather than to reprocess all
the structural images with the latest version of FreeSurfer.

Diffusion MRI processing. Diffusion preprocessing was
performed using the FSL software3 ( Jenkinson et al., 2012)
and included BET for brain extraction and EDDY for eddy
current and subject motion correction.4 From the prepro-
cessed dMR images, we reconstructed the diffusion tensors
using the diffusion tensor imaging (Basser et al., 1994) re-
construction module of DSI Studio5, which we then used
as input to our conductance computation algorithm.

Results

Analysis of AD population

We retrospectively analyzed four anonymized and pub-
licly available databases to evaluate how our conductance
method could help in studying AD stage.

For this, we used two publicly available data sets that in-
cluded subjects across the AD dementia spectrum (Fig. 1):
the second phase of Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI-2)6 (Beckett et al., 2015; Jack et al., 2008),
and the third release in the Open Access Series of Imaging
Studies (OASIS-3) (Fotenos et al., 2005), which is a longitu-
dinal neuroimaging, clinical, and cognitive data set for nor-
mal aging and AD. To avoid data heterogeneity, we
divided the OASIS-3 data set into four cohorts, each of
which included more than 100 subjects with similar descrip-
tion in the ‘‘Scans’’ field of the data sheet. These two data
sets, which we used for training and internal validation, en-
abled us to compare structural brain connectivity in different
stages of the disease and correlate neuroimaging data to clin-
ical cognitive scores.

We also compared these two data sets with 100 subjects of
the publicly available Human Connectome Project (HCP)
(Van Essen et al., 2013), which contains data of younger
healthy subjects and provides a reference, helping us to inter-
pret our results in the targeted population.

Lastly, we evaluated our predictive models on held-out
subjects from the EDSD (Brueggen et al., 2017), including
two cohorts imaged in the cities of Freiburg and Rostock,
which were chosen due to their within-cohort consistency
of image acquisition parameters.

The data used in this work, as shown in Table 1, are quite
heterogeneous in terms of acquisition, even though all MR
images were acquired at 3T. Nevertheless, the conductance
method uses only the simple diffusion tensor (as opposed
to a higher order) model, whose performance has been
shown to stabilize after the asymptotic limit of 30 gradient
orientations ( Jones, 2004). As seen in Table 1, the number
of gradient orientations is at least 23 for all our subjects
and we expect the derived diffusion tensors to be robust
enough for a fair comparison.

Demographic and clinical data from these populations
were also available: age, sex, diagnosis, cerebral cortical
and subcortical volumes, and cognitive scores such
as the CDR scale (Morris, 1991) and the MMSE score
(Pangman et al., 2000). CDR measures from 0 to 3 the cog-
nitive capabilities of each subject, with 0 being CN and a
higher number reflecting higher cognitive impairment.
MMSE rates cognitive capabilities from 0 to 30, with
30 being CN and a lower value reflecting higher cognitive
impairment.

Figure 2 shows the relationship between these scores and
the subject diagnosis in ADNI-2 and OASIS-3. It is to be
noted that the ratings differ across diagnoses and data sets.
ADNI-2 rates people with AD diagnosis with CDR scales
of 0.5 and 1, MCI with 0.5, and CN with 0, but the MMSE
scores are overlapping for the three diagnoses. OASIS-3
rates are variable, with MMSE values overlapping across di-
agnoses and CDR scores. Therefore, the ratings across the
data sets are slightly different, and the cognitive scores of
MMSE and CDR are used differently.

2FreeSurfer, https://surfer.nmr.mgh.harvard.edu
3FSL, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
4eddy_openmp command was used in ADNI-2 and eddy_correct

in OASIS-3
5DSI Studio, http://dsi-studio.labsolver.org

6The ADNI (http://adni.loni.usc.edu) was launched in 2003 as a
public/private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial MRI, positron emission tomography, other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD.
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FIG. 1. Demographics of the AD
data sets used here. (a) ADNI-2 cohort
of 213 subjects (77 CN, 89 MCI, 47
AD), (b) OASIS-3 group of 652 sub-
jects, consisting of 4 cohorts, each of
which had more than 100 subjects
with similar description in the
‘‘Scans’’ field of the data sheet: (c)
272-subject cohort (187 CN, 38 AD,
47 other dementias), (d) 139-subject
cohort (86 CN, 33 AD, 20 other de-
mentias), (e) 125-subject cohort (112
CN, 4 AD, 9 other dementias), and (f)
116-subject cohort (103 CN, 6 AD, 7
other dementias). Other dementias
included vascular dementia, or AD
dementia with depression or addi-
tional symptoms (refer to Fig. 2). (g)
EDSD Freiburg cohort (16 CN, 11
MCI, 10 AD). (h) EDSD Rostock-3T
cohort (20 CN, 22 MCI, 15 AD). AD,
Alzheimer’s disease; ADNI-2, second
phase of Alzheimer’s Disease Neuro-
imaging Initiative; CN, cognitively
normal; EDSD, European DTI Study
in Dementia; MCI, mild cognitive
impairment; OASIS-3, third release in
the Open Access Series of Imaging
Studies.

Table 1. Diffusion-Weighted Magnetic Resonance Imaging

Acquisition Parameters for the Data Sets Used

Data set No. gradient orientations b-value (sec/mm2) Voxel size (mm3) Field strength (Tesla)

ADNI-2 41 1000 1.37 · 1.37 · 0.7 3
OASIS-3 23–64 �1000–�1400 1.22 · 1.22–2.5 · 2.5 3

�2– · 4 3
HCP 270 1000 + 2000 + 3000 1.25 · 1.25 · 1.25 3
EDSD-Freiburg 61 1000 2 · 2 · 2 3
EDSD-Rostock 60 1000 0.98 · 0.98 · 2.4 3

ADNI-2, second phase of Alzheimer’s Disease Neuroimaging Initiative; EDSD, European DTI Study in Dementia; HCP, Human Connec-
tome Project; OASIS-3, third release in the Open Access Series of Imaging Studies.
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Correlation of conductance values with clinical data

We computed the correlation between mean conduc-
tance and other variables, such as age, CDR, and MMSE
(shown in Fig. 3), and cortical/subcortical volumes (pro-
vided in the Supplementary Materials). Mean conductance
consistently exhibited a decreasing trend (negative r)

with respect to age and CDR and mostly an increasing
trend (positive r) with respect to MMSE.

Predictive value of conductance matrices

We then assessed the predictive value of our conductance ma-
trices. We used linear regression to fit on one cohort and predict

FIG. 2. Distribution of the MMSE score for each diagnostic category in each dementia database, color-coded by the CDR
values of 0 (blue), 0.5 (green), 1 (orange), 2 (red), and 3 (brown) (refer to Fig. 3, right, for the color map). Diagnostic labels
are quoted from the databases. CDR was not available for HCP and EDSD. CDR, Clinical Dementia Rating; HCP, Human
Connectome Project; MMSE, Mini–Mental State Examination.
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FIG. 3. Correlation of mean conductance with age and cognitive scores of CDR and MMSE, color-coded with respect to
the CDR: 0 (blue), 0.5 (green), 1 (orange), 2 (red), and 3 (brown). CDR was not available for HCP.
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from a different one, or fit and predict on the same cohort using
cross-validation (see the Study of Conductance Matrices sec-
tion). We first discarded outliers—subjects with mean conduc-
tance higher or lower than the average by two standard
deviations—in every cohort. We removed three subjects of the
ADNI-2 cohort, three, six, two, and six subjects of the different
OASIS-3 cohorts, and no subject from the HCP cohort.

In Tables 2 and 3, we show the r and p-values when fitting
and predicting age with the same cohort (within-cohort predic-
tion), and when fitting age with a cohort and predicting with
a different cohort (cross-prediction), respectively. Table 3
shows significant correlation between predicted and true
values of age across ADNI-2 and OASIS-3, but not when fit-
ting using HCP.

When we combined all OASIS-3 data, we got values of
r = 0:212, p = 7 · 10� 8, pb = 2 · 10� 7 for within-cohort pre-
diction, and values of r = 0:383, p = 7 · 10� 9, pb = 4 · 10� 8

when training on OASIS-3 and testing on ADNI-2, and
r = 0:265, p = 10� 11, pb = 6 · 10� 11 when training on
ADNI-2 and testing on OASIS-3, and a negative r when
training with OASIS-3 and testing on HCP and vice versa.
In this comparison (with all of OASIS-3 in a single cohort),
we Bonferroni-corrected ( pb) with a factor 3 in the within-
cohort prediction and a factor 6 in the cross-prediction case.

Tables 4–7 show results when similarly predicting the
MMSE and CDR cognitive scores. Prediction in these cases
yielded less significant p-values, both in within- and cross-
cohort predictions.

When we put all the OASIS-3 data together, we got significant
values for within-cohort prediction: r = 0:132, p = 9 · 10� 4, and
pb = 2 · 10� 3 for CDR, r = 0:091, p = 0:02, and pb = 0:06 for
MMSE. For cross-prediction with ADNI-2: r = 0:321,
p = 2 · 10� 6, pb = 4 · 10� 6 when training on OASIS-3 and
testing on ADNI-2, and r = 0:054, p = 0:17, pb = 0:34 when
training on ADNI-2 and testing on OASIS-3, when using
CDR; r = 0:317, p = 2 · 10� 6, pb = 10� 5 when training on
OASIS-3 and testing on ADNI-2, and r = 0:01, p = 0:83,
pb = 1 when training on ADNI-2 and testing on OASIS-3,
when using MMSE. p-values were significant only in one direc-
tion: when we trained with all OASIS-3 data together.

CDR was notavailable for the HCP subjects, and a factor 2 was
used in the Bonferroni correction in both the within-cohort pre-
diction and cross-prediction. In the case of MMSE, we had the
values for HCP too, and when comparing with all of OASIS-3
in a single cohort, we Bonferroni-corrected ( pb) with a factor
3 in the within-cohort prediction and a factor 6 in the cross-
prediction case. We observed no significant values in all cases
with positive r (as negative r would not indicate prediction).

Table 2. Prediction of Age Within ADNI-2, OASIS-3, and HCP

ADNI-2
OASIS-3

HCP
213 subj 272 subj 139 subj 125 subj 116 subj 100 subj

r = 0.33 r = 0.14 r = 0.34 r = 0.56 r = 0.33 r =�0.06
p 5 8 3 10� 7 p 5 0.02 p 5 6 3 10� 5 p 5 10� 11 p 5 5 3 10� 4 p = 0.55
pb 5 5 3 10� 6 pb = 0.14 pb 5 4 3 10� 4 pb 5 7 3 10� 11 pb 5 3 3 10�3 pb = 1

pb stands for Bonferroni-corrected p-value (for six comparisons). p-values under 0.05 with a positive r are highlighted.
subj, subjects.

Table 3. Prediction of Age in ADNI-2, OASIS-3, and HCP

Predict ADNI-2
OASIS-3

HCP
Fit 213 subj 272 subj 139 subj 125 subj 116 subj 100 subj

ADNI-2, 213 subj r = 0.25 r = 0.22 r = 0.29 r = 0.23 r = 0.07
p 5 4 3 10� 5 p 5 0.01 p 5 10� 3 p 5 0.02 p = 0.51
pb 5 10� 3 pb = 0.33 pb 5 0.03 pb = 0.51 pb = 1

OASIS-3, 272 subj r = 0.34 r = 0.25 r = 0.26 r = 0.29 r =�0.18
p 5 3 3 10� 7 p 5 4 3 10� 3 p 5 4 3 10� 3 p 5 3 3 10� 3 p = 0.08
pb 5 10� 5 pb = 0.11 pb = 0.11 pb = 0.08 pb = 1

OASIS-3, 139 subj r = 0.36 r = 0.26 r = 0.29 r = 0.26 r = 0.12
p 5 6 3 10� 8 p 5 2 3 10� 5 p 5 10� 3 p 5 7 3 10� 3 p = 0.24
pb 5 2 3 10� 6 pb 5 5 3 10� 4 pb 5 0.04 pb = 0.2 pb = 1

OASIS-3, 125 subj r = 0.37 r = 0.2 r = 0.33 r = 0.35 r =�0.02
p 5 2 3 10� 8 p 5 10� 3 p 5 9 3 10� 5 p 5 2 3 10� 4 p = 0.8
pb 5 6 3 10� 7 pb 5 0.03 pb 5 3 3 10� 3 pb 5 5 3 10� 3 pb = 1

OASIS-3, 116 subj r = 0.49 r = 0.41 r = 0.31 r = 0.34 r = 0.28
p 5 2 3 10� 14 p 5 3 3 10� 12 p 5 2 3 10� 4 p 5 10� 4 p 5 4 3 10� 3

pb 5 6 3 10� 13 pb 5 8 3 10� 11 pb 5 7 3 10� 3 pb 5 3 3 10� 3 pb = 0.12
HCP, 100 subj r =�0.33 r =�0.16 r =�0.1 r =�0.19 r =�0.3

p = 5 · 10� 7 p = 8 · 10� 3 p = 0.24 p = 0.03 p = 10� 3

pb = 10� 5 pb = 0.25 pb = 1 pb = 0.93 pb = 0.04

pb stands for Bonferroni-corrected p-value (for 30 comparisons). p-values under 0.05 with a positive r are highlighted.
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Table 4. Prediction of Mini–Mental State Examination Within ADNI-2, OASIS-3, and HCP

ADNI-2
OASIS-3

HCP
213 subj 272 subj 139 subj 125 subj 116 subj 100 subj

r = 0.32 r = 0.11 r = 0.16 r =�0.05 r = 0.28 r =�0.03
p 5 3 3 10� 6 p = 0.08 p = 0.07 p = 0.56 p 5 4 3 10� 3 p = 0.73
pb 5 2 3 10� 5 pb = 0.46 pb = 0.41 pb = 1 pb 5 0.02 pb = 1

pb stands for Bonferroni-corrected p-value (for six comparisons). p-values under 0.05 with a positive r are highlighted.

Table 5. Prediction of Mini–Mental State Examination in ADNI-2, OASIS-3, and HCP

Predict ADNI-2
OASIS-3

HCP
Fit 213 subj 272 subj 139 subj 125 subj 116 subj 100 subj

ADNI-2, 213 subj r =�0.03 r =�0.02 r = 0.02 r = 0.13 r =�0.01
p = 0.6 p = 0.79 p = 0.84 p = 0.17 p = 0.89
pb = 1 pb = 1 pb = 1 pb = 1 pb = 1

OASIS-3, 272 subj r = 0.29 r = 0.21 r =�0.04 r =�0.02 r =�0.14
p 5 2 3 10� 5 p 5 0.02 p = 0.63 p = 0.84 p = 0.16
pb 5 6 3 10� 4 pb = 0.45 pb = 1 pb = 1 pb = 1

OASIS-3, 139 subj r = 0.11 r = 0.18 r =�0.04 r = 0.07 r =�0.05
p = 0.11 p 5 3 3 10� 3 p = 0.67 p = 0.46 p = 0.63
pb = 1 pb = 0.09 pb = 1 pb = 1 pb = 1

OASIS-3, 125 subj r = 0.22 r = 0.1 r = 0.05 r = 0.13 r = 0.1
p 5 10� 3 p = 0.1 p = 0.54 p = 0.2 p = 0.3
pb 5 0.045 pb = 1 pb = 1 pb = 1 pb = 1

OASIS-3, 116 subj r = 0.19 r = 0.04 r = 0.05 r = 0.1 r =�0.07
p 5 5 3 10� 3 p = 0.56 p = 0.59 p = 0.3 p = 0.48
pb = 0.16 pb = 1 pb = 1 pb = 1 pb = 1

HCP, 100 subj r =�0.06 r = 0.05 r =�0.12 r = 0.02 r = 0.0
p = 0.39 p = 0.42 p = 0.17 p = 0.86 p = 0.96
pb = 1 pb = 1 pb = 1 pb = 1 pb = 1

pb stands for Bonferroni-corrected p-value (for 30 comparisons). p-values under 0.05 with a positive r are highlighted.

Table 6. Prediction of Clinical Dementia Rating Within ADNI-2 and OASIS-3

ADNI-2
OASIS-3

213 subj 272 subj 139 subj 125 subj 116 subj

r = 0.2 r = 0.04 r = 0.18 r = 0.1 r = 0.25
p 5 4 3 10� 3 p = 0.54 p 5 0.04 p = 0.29 p 5 8 3 10� 3

pb 5 0.02 pb = 1 pb = 0.18 pb = 1 pb 5 0.04

pb stands for Bonferroni-corrected p-value (for five comparisons). p-values under 0.05 with a positive r are highlighted.

Table 7. Prediction of Clinical Dementia Rating in ADNI-2 and OASIS-3

Predict ADNI-2
OASIS-3

Fit 213 subj 272 subj 139 subj 125 subj 116 subj

ADNI-2, 213 subj r =�0.01 r = 0.03 r = 0.15 r = 0.02
p = 0.83 p = 0.75 p = 0.1 p = 0.85
pb = 1 pb = 1 pb = 1 pb = 1

OASIS-3, 272 subj r = 0.25 r = 0.04 r = 0.08 r = 0.1
p 5 3 3 10� 4 p = 0.62 p = 0.41 p = 0.32
pb 5 5 3 10� 3 pb = 1 pb = 0.82 pb = 1

OASIS-3, 139 subj r = 0.2 r = 0.18 r = 0.07 r = 0.11
p 5 4 3 10� 3 p 5 4 3 10� 3 p = 0.45 p = 0.28
pb = 0.08 pb = 0.08 pb = 1 pb = 1

OASIS-3, 125 subj r = 0.28 r = 0.27 r = 0.08 r = 0.16
p 5 4 3 10� 5 p 5 6 3 10� 6 p = 0.36 p = 0.09
pb 5 8 3 10� 4 pb 5 10� 4 pb = 1 pb = 1

OASIS-3, 116 subj r = 0.33 r = 0.19 r = 0.14 r = 0.13
p 5 9 3 10� 7 p 5 10� 3 p = 0.1 p = 0.16
pb 5 2 3 10� 5 pb 5 0.03 pb = 1 pb = 1

pb stands for Bonferroni-corrected p-value (for 20 comparisons). p-values under 0.05 with a positive r are highlighted.
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Region-specific conductance results

We then correlated the elements of the conductance matrix in-
dividually with age, the MMSE score, and CDR, while correct-
ing for multiple comparisons by multiplying the p-values by the
number of connections. Figure 4 shows many of the connections
being significant (i.e., pb < 0:05) for OASIS-3 and ADNI-2. In
the case of age, 1342 and 1981 connections out of 3655
(Table 8) had p-values under 0:05, respectively. Regarding
the cognitive scores: for CDR, 683 and 807 connections out
of 3655 and for MMSE, 653 and 474 connections out of 3655
had p-values under 0:05, in OASIS-3 and ADNI-2, respectively.
It is worth noting that in general we found more significant val-
ues in OASIS-3, possibly due to the larger sample size.

In OASIS-3, age correlated with connectivity with higher
significance among all subcortical regions, especially thala-
mus and hippocampus, bilaterally, and with regions in the
cortex, mostly transverse temporal, cingulate regions, insula,
and precuneus cortex, bilaterally. In ADNI-2, age also corre-
lated with higher significance in connections involving thal-
amus and hippocampus, bilaterally, and with regions in the
cortex such as middle and superior temporal, lateral orbito-
frontal, posterior cingulate, entorhinal, fusiform, and some
other regions in the occipital and parietal cortices.

In OASIS-3, connections found to most significantly cor-
relate with cognitive scores were similar to those correlating
with age the most, namely connecting hippocampus, amyg-
dala, insula, and transverse temporal. In ADNI-2, the corre-
lation with age and cognitive scores was different: age was
significantly correlated to connections between many re-
gions, whereas the correlation of cognitive scores was signif-
icant with connections from hippocampus and amygdala to
temporal and cingulum lobes, as well as orbitofrontal.

We then regressed out the age and sex effects before cor-
relating the conductance with the CDR and MMSE scores.
By doing so, the general significance levels decreased. The
number of significant connections out of 3655 went down,
in OASIS-3, from 683 to 417 for CDR and from 653 to
282 for MMSE and, in ADNI-2, from 807 to 518 for CDR
and from 474 to 91 for MMSE. The connectivity plots for
this experiment are depicted in Figure 5, showing the most
significant connections to be similar to those in Figure 4,
but with a lower significance level in general.

External validation on held-out data

For a true external validation on unseen data (without fine-
tuning the pipeline), we applied the predictive models that
we trained using ADNI-2, OASIS-3, and HCP on the two
held-out EDSD cohorts. We removed four subjects from
each of the Freiburg and Rostock cohorts due to failure in
structural image processing. The results of the prediction
of age and MMSE are reported in Table 9. CDR was not
available for EDSD.

Anticorrelated connectivity results

For ADNI-2, we computed the cross-subject linear corre-
lation coefficient between all pairs of structural connections,
keeping jR� j = 1978 pairs for which r : = Ri, j < � 0:1.
From those, the correlation between the left cortico/subcorti-
cal insula/caudate connection and the left corticocortical
precentral/entorhinal connection (Fig. 6, top, left) was most
significant (p = 3 · 10� 6, pb = 6 · 10� 3) with the robust (bis-

quare) fit slope m =�0.40. (The top 20 significant pairs all
involved the insula/caudate connection.)

We then tested whether the same two connections were in-
versely correlated also in the right hemisphere, which was
true with high significance (r =�0.15, p = 0:03; m =�0.24;
Fig. 6, top, right). Since here we tested a specific pair of con-
nections in the right hemisphere, correction for multiple
comparisons was not necessary.

Next, for external validation and replication, we tested the
hypothesis that the pair of insula/caudate and precentral/
entorhinal connections are negatively correlated in the first
(largest) OASIS-3 database cohort. This hypothesis was val-
idated on this new data set in both the left (r =�0.26,
p = 2 · 10� 5, m =�0.48) and the right (r =�0.23,
p = 2 · 10� 4, m =�0.28) hemispheres (Fig. 6, bottom).

We then computed the correlation of the caudate/insula
connection with the CDR and the MMSE score in the
OASIS-3 database. While the CDR was negatively corre-
lated with mean connectivity as reported in the previous sub-
section, it was positively correlated with the caudate/insula
connection in the left (r = 0:19, p = 10� 3) and right
(r = 0:22, p = 2 · 10� 4) hemispheres. Likewise, whereas the
MMSE score was positively correlated with mean connectiv-
ity, it was negatively correlated with the caudate/insula con-
nection in the left (r =�0.12, p = 0:046) and right (r =�0.12,
p = 0:04) hemispheres.

Null results. In contrast, we did not observe any negative
correlation between the insula/caudate and precentral/ento-
rhinal connections across the young-adult HCP subjects7.
By reversing the order of ADNI-2 and OASIS-3 databases
in this experiment, the most significantly anticorrelated
pair found in OASIS-3 was not negatively correlated in
ADNI-2. In addition, the anticorrelation between the
insula/caudate and precentral/entorhinal connections was
not observed in OASIS-3 when we included most (652)
OASIS-3 subjects, which had heterogeneous scan descrip-
tions (as opposed to the 272-subject cohort).

Discussion

In this work, we used our previously proposed approach
(Frau-Pascual et al., 2019b) to compute and analyze struc-
tural brain connectivity in dementia populations. This
method models structural connectivity as electric conduc-
tance, computing it as a weighted sum of all possible paths
between two areas, following the information given by the
diffusion tensors. We previously showed (Frau-Pascual
et al., 2019b) that this method outperformed deterministic
tractography in producing structural connectivity that was
more correlated with functional connectivity, possibly due
to the fact that all paths—including direct and indirect8—
were considered.

In this work, we used our conductance method and inves-
tigated its potential in the study of aging and AD. The con-
ductance model was sensitive to AD-related changes in not
only diffusion but also geometric properties of the brain

7The negative correlation was not observed in functional
connectivity either.

8One could think of direct and indirect (multisynaptic)
connections as nonstop and multistop commercial flights,
respectively.
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FIG. 4. Sig-values for the correlation of conductance with age, CDR, and MMSE. We depict the negative logarithm of the
Bonferroni-corrected p-value (sig = � log10 (pb)), and consider significant values above 1.3 (i.e., pb < 0:05). In this figure,
all OASIS-3 cohorts were used together.
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WM. For instance, given that this method takes into account
distances and paths, changes in subcortical volumes and cor-
tical thickness could also affect the measured connectivity.
The conductance might be affected by the GM and WM vol-
ume, as they affect ROI sizes and pathways between a pair of
ROIs, respectively. Shrinkage in volume could also draw
ROIs closer to each other, producing shorter pathways.

Our results were based on the HCP data for healthy young
population, and ADNI-2, OASIS-3, and EDSD data for el-
derly and AD populations. In total, we analyzed 100 young
healthy subjects, and 959 elderly subjects, from whom 153
had been diagnosed with AD dementia, 122 had MCI, and
83 had other types of dementias or pathologies. This was a
heterogeneous pool of subjects with various diagnoses
scanned at different sites with different acquisition

FIG. 5. Sig-values for the correlation of conductance with CDR and MMSE, once the age and sex effects have been re-
moved. We show the negative logarithm of the Bonferroni-corrected p-value (sig = � log10 (pb)), and consider significant
values above 1.3 (i.e., pb < 0:05). In this figure, all OASIS-3 cohorts were used together.

Table 8. Number of Significant (Surviving)

Connections (of 3655)

OASIS-3 ADNI-2

Age 1342 1981
MMSE 653 474
CDR 683 807
MMSE after regressing out age and sex 282 91
CDR after regressing out age and sex 417 518

CDR, Clinical Dementia Rating; MMSE, Mini–Mental State
Examination.
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Table 9. Prediction of Age and Mini–Mental State Examination in the Held-Out

European DTI Study in Dementia Database

EDSD-Freiburg, 37 subj EDSD-Rostock, 57 subj

Predict Fit Age MMSE Age MMSE

ADNI-2, 213 subj r = 0.49 r = 0.16 r = 0.27 r =�0.21
p 5 4 3 10� 3 p = 0.36 p = 0.05 p = 0.13
pb = 0.05 pb = 1 pb = 0.72 pb = 1

OASIS-3, 272 subj r = 0.17 r = 0.45 r = 0.18 r = 0.06
p = 0.35 p 5 9 3 10� 3 p = 0.19 p = 0.64
pb = 1 pb = 0.12 pb = 1 pb = 1

OASIS-3, 139 subj r = 0.51 r = 0.35 r = 0.2 r = 0.07
p 5 3 3 10� 3 p 5 0.04 p = 0.15 p = 0.61
pb 5 0.04 pb = 0.6 pb = 1 pb = 1

OASIS-3, 125 subj r = 0.44 r =�0.3 r = 0.22 r = 0.15
p 5 0.01 p = 0.09 p = 0.12 p = 0.27
pb = 0.15 pb = 1 pb = 1 pb = 1

OASIS-3, 116 subj r = 0.47 r = 0.14 r = 0.19 r =�0.17
p 5 5 3 10� 3 p = 0.45 p = 0.18 p = 0.24
pb = 0.08 pb = 1 pb = 1 pb = 1

OASIS-3, all 635 subj r = 0.25 r = 0.4 r = 0.19 r =�0.01
p = 0.16 p 5 0.03 p = 0.17 p = 0.94
pb = 1 pb = 0.35 pb = 1 pb = 1

HCP, 100 subj r = 0.13 r =�0.08 r = 0.1 r =�0.02
p = 0.47 p = 0.64 p = 0.48 p = 0.89
pb = 1 pb = 1 pb = 1 pb = 1

pb stands for Bonferroni-corrected p-value (for 14 comparisons for each variable). p-values under 0.05 with a positive r are highlighted.

FIG. 6. Negative correlation
between the insula/caudate and
the precentral/entorhinal struc-
tural connections in the left and
right hemispheres, across the
ADNI-2 (top) and 272-subject
cohort of OASIS-3 (bottom)
populations. CDR values are
encoded in the colors of the dots:
0 (blue), 0.5 (green), 1 (orange), 2
(red), and 3 (brown) (refer to
Fig. 3).
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parameters. Such heterogeneity could make the results more
robust and allow for replicability analysis, but also introduce
variability that could reduce statistical power.

We used independent variables such as the subject’s age as
well as the cognitive scores of CDR and MMSE, which quan-
tify the progression of dementia for a subject, even though
they do not clarify whether dementia is due to AD, aging,
or other causes. It is worth noting that, as shown in Figure 2,
the ways CDR is defined and used in ADNI-2 and OASIS-3
are not identical, and neither are the relationships between
CDR and MMSE in these two data sets, as seen when com-
paring with diagnosis. We did not consider diagnosis when
analyzing our data and focused only on these scores (see
however, Fig. 7, left, in the Supplementary Materials for a
diagnosis-specific histogram of mean conductance). Pre-
vious works have modeled the association between dMRI
measures and changes in executive and memory function
scores (Scott et al., 2017).

We first summarized the conductance values by averaging
them across all region pairs. We considered the independent
variables of age, CDR, and MMSE (as well as cortical and
subcortical volumes in Fig. 8 of the Supplementary Materi-
als). As illustrated in Figure 3, we found expected trends al-
ready in the mean conductance: it correlated negatively with
age, negatively with CDR, positively with MMSE, and pos-
itively with the volumes, except for subcortical regions in
ADNI-2. Interestingly, HCP data with healthy young adults
followed the same trends in age and volumes. Similar trends
have been reported for diffusion measures such as FA and
mean diffusivity (Zavaliangos-Petropulu et al., 2019).

Next, we investigated the predictive power of mean con-
ductance when training a model and predicting from it, either
using the same data set or different ones. As seen in Tables 2
and 3, prediction values were significant for age using most
cohorts except for HCP, although in some cases we lost sig-
nificance after the Bonferroni correction. The generally
lower accuracy in cross-prediction compared with within-
cohort prediction could be due to the difference in scanners
and/or inconsistency of imaging protocols used at different
imaging sites. Putting all the OASIS-3 data together, in either
training or testing, produced significant results. Regarding
the HCP, however, most values were not significant, which
may have been because the age range of the HCP subjects
is not only narrow but also very different from those of the
other (dementia) data sets.

Predicting cognitive scores of CDR and MMSE from con-
ductance values, as seen in Tables 4–7, produced significant re-
sults mostly only in cohorts with more than 200 subjects. This
is probably due to unbalanced values/categories, and also the
fact that these scores are variable across data sets and diag-
noses. When we considered all the OASIS-3 data together,
we achieved significant results when training with OASIS-3.
Nonetheless, the fact that the prediction was generally signifi-
cant in data sets with over 200 subjects suggests that sample
size may be playing an important role in the prediction power.

We then considered the region-pairwise connections to see
how correlated individual connections were with changes in
age, and cognitive scores. Previous works have shown corre-
lations of dMRI-derived measures and cognitive scores in the
corpus callosum (Moseley et al., 2002), cingulum (Mito
et al., 2018), and temporal lobe (Nir et al., 2013). As de-
scribed in the Region-Specific Conductance Results section,

in OASIS-3 and ADNI-2 the correlation with age was signif-
icant for more than a third of the connections, whereas the
correlation with cognition was significant in about a fifth
of the connections. However, the affected regions were sim-
ilar in OASIS-3, possibly due to an overlap between cogni-
tion and age effects on brain connectivity, and the
cognitive decline that accompanies aging.

An interesting question here is how much of the correla-
tion of conductance with CDR and MMSE overlaps with
the correlation with age and sex. To clarify this nuance, in
a different experiment, we regressed out the effects of age
and sex and found residual connections that were signifi-
cantly correlated with MMSE and CDR. In ADNI-2, we ob-
served different patterns of correlation between age and
cognitive scores. However, CDR and MMSE correlation pat-
terns did not change when we regressed out the effects of age
and sex. It is worth noting that subject head motion has been
found to bias results when comparing groups (Yendiki et al.,
2014), and that it is likely that in this case it is correlated with
cognitive impairment and age.

Once we were done fine-tuning our analysis pipeline, we
applied our trained models to two cohorts of the held-out
EDSD database for external evaluation. Table 9 shows that
the prediction was fairly successful on the Freiburg cohort,
but not on the Rostock cohort. We noticed a general trend
that the prediction was more accurate among data sets
where age and MMSE strongly negatively correlated, such
as ADNI-2 (r =�0.2, p = 4 · 10�3), OASIS-3 (r =�0.22,
p = 2 · 10�8), and EDSD-Freiburg (r =�0.64, p = 5 · 10�5),
than in other data sets, that is, HCP (r = 0.04, p = 0.67) and
EDSD-Rostock (r = 0.14, p = 0.31). This might mean that
for the best prediction results, models must be trained on
samples that represent the target population demographically
and clinically.

Lastly, we considered the interrelationship among connec-
tions.9 We found anticorrelation between certain connec-
tions, which was consistent across data sets and in both
hemispheres. AD patients are known to suffer from connec-
tivity attenuation, and also characterized by brain reorgani-
zation and plasticity (Dillen et al., 2016; Kim et al.,
2015a). Early in the disease, connectivity within some (i.e.,
frontal) brain regions increases—possibly due to a compen-
satory reallocation of cognitive resources—but eventually
declines as the disease progresses (Brier et al., 2012; Schultz
et al., 2017; Sohn et al., 2014).

The connections that we found to be anticorrelated were
the precentral/entorhinal cortex and the insula/caudate con-
nections; that is, the stronger one connection, the weaker
the other, across the population. Notably, we observed an in-
creasing trend in the caudate/insula connection strength with
respect to CDR.

In fact, there is evidence of increased FA in the left cau-
date in presymptomatic familial AD subjects (Ryan et al.,
2013), increased structural connectivity in the right insula
(Ye et al., 2019), and increased functional connectivity be-
tween the frontal lobe and the corpus striatum (Supekar
et al., 2008) in AD.

In addition, because the conductance method accounts for
indirect paths, a possible enhancement in the thalamus and

9This work has previously been preliminarily presented (Aganj
et al., 2020).
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putamen structural connectivity in AD (Ryan et al., 2013; Ye
et al., 2019) might also have contributed to the increase in the
caudate/insula connectivity. Furthermore, the fact that this
negative correlation was observed consistently in the older
adults and in those on the dementia spectrum (ADNI-2 and
OASIS-3), but not in young healthy adults (HCP), suggests
that this significant anticorrelation might be due to progres-
sion of dementia or aging.

Although these results do not necessarily imply a compen-
satory effect at this stage, our approach may prove useful in a
study to discover compensatory connections. Including all
OASIS-3 subjects (as opposed to only a subset with homoge-
neous scans) did not externally validate the anticorrelation
hypothesis generated from ADNI-2, possibly because the
various acquisition parameters created a large variance in
the data that dominated the putative effects.

It is important to note that an increase in the measured
structural connectivity could stem from factors other than
an actual strengthening of the tract. WM atrophy, volume re-
duction (Ye et al., 2019), and other geometrical variabilities
could make ROIs closer to each other, leading to elevated
measured structural connectivity. To mitigate this effect,
we excluded subcortico/subcortical regions in our study of
anticorrelated connections.

In addition, in regions with fiber crossing, selective axonal
loss can increase the FA and subsequently measured struc-
tural connectivity (Douaud et al., 2011; Kim et al., 2015b;
Ryan et al., 2013).

This article focuses on findings from existing dementia
populations using our conductance-based connectivity com-
putation method. For an evaluation of this method, we refer
the interested reader to our previous comparisons with exist-
ing approaches (Frau-Pascual et al., 2018, 2019a, b; Moham-
madi et al., 2020).

Conclusion

In this work, we focused on the study of the aging and AD
populations through connectomics. We applied our conductance
method to several databases to detect brain changes related to
aging and AD. Results indicated the predictive potential of the
conductance measure, especially for age. Although mean con-
ductance values exhibited the expected trends, the prediction
of cognitive scores varied across data sets. An important but
not surprising finding was that age and cognitive scores of
CDR and MMSE largely overlapped. We also correlated brain
connections with each other across populations and discovered
significantly anticorrelated structural connections. Future work
consists of using longitudinal data to further explore the predic-
tion of cognitive scores, and test the hypothesis that anticorre-
lated connections are indeed compensatory.
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