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a b s t r a c t

Deep kernel learning has been well explored for multi-class classification tasks; however, relatively
less work is done for one-class classification (OCC). OCC needs samples from only one class to train
the model. Most recently, kernel regularized least squares (KRL) method-based deep architecture is
developed for the OCC task. This paper introduces a novel extension of this method by embedding
minimum variance information within this architecture. This embedding improves the generalization
capability of the classifier by reducing the intra-class variance. In contrast to traditional deep learning
methods, this method can effectively work with small-size datasets. We conduct a comprehensive
set of experiments on 18 benchmark datasets (13 biomedical and 5 other datasets) to demonstrate
the performance of the proposed classifier. We compare the results with 16 state-of-the-art one-
class classifiers. Further, we also test our method for 2 real-world biomedical datasets viz.; detection
of Alzheimer’s disease from structural magnetic resonance imaging data and detection of breast
cancer from histopathological images. Proposed method exhibits more than 5% F1 score compared
to existing state-of-the-art methods for various biomedical benchmark datasets. This makes it viable
for application in biomedical fields where relatively less amount of data is available.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, one-class classification (OCC) has been an area
of extensive research for outlier detection or anomaly detection.
While conventional classification techniques aim to classify a data
object into one of the many available classes, OCC aims merely
to tell whether a data instance belongs to a particular class or
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not. A one-class classifier trains the model using samples from
only one-class. This class is termed as target class. Samples, which
do not belong to the target class, are treated as outliers. The
one-class classifier is useful in those cases where samples from
other classes are not available, or very few samples are avail-
able. Samples may not be available due to various reasons, like
the difficulty of collection, high computational cost, infrequent
event, etc. Coming to real-world scenarios like patient classifi-
cation based on fMRI response (Mourão-Miranda et al., 2011),
fault detection (Shin, Eom, & Kim, 2005), document classifica-
tion (Manevitz & Yousef, 2007), disease detection (Cohen et al.,
2004), video surveillance (Diehl & Hampshire, 2002; Markou &
Singh, 2006) where collecting data for outlier class is much more
difficult and expensive, OCC is much apt than traditional multi-
class classification. Further, this section is divided into three parts.
The first part provides a brief survey on one-class classifiers. The
second part provides a brief survey of the application of one-class
classifiers in the field of biomedical data analysis. The third part
gives a brief survey of deep kernel learning, an introduction of the

https://doi.org/10.1016/j.neunet.2019.12.001
0893-6080/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2019.12.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2019.12.001&domain=pdf
mailto:phd1501101001@iiti.ac.in
mailto:ms1804101003@iiti.ac.in
mailto:artiwari@iiti.ac.in
mailto:phd1701241001@iiti.ac.in
mailto:pandeyh@edgehill.ac.uk
mailto:shuihuawang@ieee.org
mailto:mtanveer@iiti.ac.in
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.neunet.2019.12.001


192 C. Gautam, P.K. Mishra, A. Tiwari et al. / Neural Networks 123 (2020) 191–216

proposed method, and its key advantages over existing one-class
classifiers.

Tax (2002) broadly divided one-class classifiers into three
categories viz., (i) density-based classifiers (ii) boundary-based
classifiers (iii) reconstruction-based classifiers. In density-based
classifiers, classification is performed by estimating the density
of the training data and applying a threshold on this density.
It requires a large number of training samples to overcome
the curse of dimensionality. This approach is very advantageous
when a good probability model is assumed and the sample size
is sufficient. Different density methods were applied in the past,
namely, the Gaussian density method, the mixture of Gaussians,
and the Parzen density (Tarassenko, Hayton, Cerneaz, & Brady,
1995). Parzen density estimation (Parzen, 1962), which is among
the early works on OCC, tried to estimate the probability density
of the target using the training data. It rejected the samples
whose estimated probability is lower than a certain threshold.
The issue with this method is that it requires a large number
of training samples. The boundary-based classifiers try to obtain
an optimal closed boundary around the target class. The advan-
tage of boundary-based methods is that the number of samples
needed is less in comparison to density-based methods. However,
as they heavily rely on the separation between objects, they tend
to be sensitive to the relative distance between the features.
Boundary-based classifiers can be divided into two types viz.,
non-kernel and kernel-based. k-centers method (Ypma & Duin,
1998) and k-nearest neighbors (Knorr, Ng, & Tucakov, 2000) are
non-kernel-based classifiers. Kernel-based methods were devel-
oped by considering support vector machine (SVM) as a base
classifier. Scholkopf (Schölkopf, Platt, Shawe-Taylor, Smola, &
Williamson, 2001) developed a boundary-based classifier that
uses a hyperplane which is at a maximum distance from the
origin and separates the region that contains no data. This method
is referred to as one-class support vector machine (OCSVM). Tax
and Duin (2004) proposed another SVM-based approach where
instead of a hyperplane, they used a hypersphere to include
maximum training data with minimum radius. It is referred to as
support vector data description (SVDD). In reconstruction-based
methods, prior knowledge of the data is used to choose a model
and make assumptions about the generating process. The model
is then fit to data. Here, it is assumed that the outlier objects do
not satisfy the assumptions about target distribution and their
reconstruction error should be high. Various one-class classifiers
were developed by taking various methods as base classifiers
in reconstruction-based methods. Jiang, Tseng, and Su (2001)
developed a k-means clustering-based one-class classifier. Car-
penter, Grossberg, and Rosen (1991) developed a Learning Vector
Quantization (LVQ) based one-class classifier. Bishop et al. (1995)
developed a Principal component analysis (PCA) based one-class
classifier. Auto-Encoder or Multi-layer Perceptron (MLP) (Japkow-
icz, Myers, Gluck, et al., 1995) and diabolo networks (Baldi &
Hornik, 1989; Hertz, Palmer, & Krogh, 1991) are neural network-
based methods that learn to represent the input pattern at the
output layer while minimizing the reconstruction error. A linear
programming one-class classifier was proposed (Pekalska, Tax,
& Duin, 2003) that reduces the volume of the prism, impos-
ing constraints on dissimilarity representations. Ensemble-based
classifiers are another type of classifier where the main idea is to
integrate multiple classifiers to obtain one that outperforms every
single one of them. One such ensemble-based one-class classifier
is One Class Random Forests (OCRF) (Désir, Bernard, Petitjean, &
Heutte, 2013), which combines several weak classifiers known
to be accurate. It increases the generalization performance over
single classifiers. It subsamples the training dataset in order
to generate outliers efficiently. For a more detailed review of
the OCC methods refer to the survey papers (Khan & Madden,

2014; Markou & Singh, 2003a, 2003b; Pimentel, Clifton, Clifton,
& Tarassenko, 2014a, 2014b).

One-class classifiers are often used in the field of biomedical
data analysis (Zhang, Zhang, Coenen, Xiao, & Lu, 2014). Early
works include the use of Parzen density estimation for identifica-
tion of masses in mammograms (Tarassenko et al., 1995). In lit-
erature (Pimentel et al., 2014b), kernel-based one-class classifiers
(OCSVM and SVDD) show sheer dominance compared to non-
kernel based one-class classifiers. OCSVM has been applied as an
outlier detector for identification of disease in the past (Dreiseitl,
Osl, Scheibböck, & Binder, 2010; Iordanescu, Venkatasubrama-
nian, & Wyrwicz, 2012; Lang, Lu, Zhao, Qin, & Liu, 2020; Mourão-
Miranda et al., 2011; Zhang, Ma, Er, & Chong; Zhou, Chan, Chong,
& Krishnan, 2005). OCSVM has been used for tumor segmenta-
tion from magnetic resonance imaging (MRI) (Zhang et al.; Zhou
et al., 2005) and detection of tuberculosis (Khutlang, Krishnan,
Whitelaw, & Douglas, 2010). In Mourão-Miranda et al. (2011),
OCSVM was used for detection of depression using fMRI images
of the brain. OCSVM was used to detect amyloid plaques (Ior-
danescu et al., 2012), which are responsible for Alzheimer’s dis-
ease. Graph-based semi-supervised OCSVM (Lang et al., 2020)
was used to detect abnormal lung sounds. OCSVM has been used
to detect nocturnal hypermotor seizures (Cuppens et al., 2014).
Recently, ELM based OCC classifiers were used for drug–drug
interactions discovery (Bi, Ma, Li, Ma, & Chen, 2018).

Apart from the good performance of SVM-based one-class
classifiers, they lack in terms of computational complexity. These
classifiers consume more time due to the iterative approach to
learning. Leng et al. (2015) address this issue. They developed
a kernel regularized least squares (KRL)2 based one-classifier,
which follows a non-iterative approach to learning. Over the past
few years, various single-layer KRL-based one-class classifiers
were developed by the researchers (Leng et al., 2015; Mygdalis
et al., 2016). Most recently, a deep KRL-based method is devel-
oped for OCC (Dai et al., 2019; Gautam, Tiwari, Suresh, & Iosifidis,
2018). In this paper, a minimum variance-embedded deep KRL-
based one-class classifier (DKRLVOC) is proposed. It makes use
of the idea of minimizing the variance of samples to achieve
better classification results. DKRLVOC is made of multiple KRL-
based Auto-Encoders (AEs), and a final OCC layer. These AEs
are responsible for better feature learning. A novel minimum
variance-embedded KRL-based AE is developed which minimizes
the intra-class variance, the norm of the weight, and the recon-
struction error to extract meaningful features. These features are
passed to the final OCC layer which classifies a sample into the
target class or outlier class. The key advantages of the proposed
model include,

• Less computational time due to the non-iterative approach
to learning.

• Minimizing the intra-class variance between the samples to
improve the generalization performance.

• Better classification accuracy by the help of representa-
tion learning. It provides a better feature representation by
stacking different types of AEs in a hierarchical manner.

• More effective for small-size datasets and also in the case
where obtaining data for each class is very costly or not
possible.

2 Leng et al. developed a kernel-based one-class classifier by taking kernel
extreme learning machine (KELM) as a base classifier. KELM belongs to the
family of KRL. Since KRL is a more generic name, we have used the name
KRL instead of KELM in our paper for the proposed method. However, we have
used the same naming convention as used in the paper for KELM-based existing
methods.
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Table 1
Description of state-of-the-art classifiers used for comparison.
Classifier Type Characteristics

OCRF (Désir et al., 2013) Ensemble-based It combines a diverse ensemble of weak and unstable
classifiers known to be accurate and increases the
generalization performance over single classifiers. It
subsamples the training dataset, in order to efficiently
generate outliers.

Naive Parzen (Duin, 1976) Density-based The estimated density is a mixture of, most often, Gaussian
kernels centered on the individual training objects. It requires
a large number of training samples.

k-means (Jiang et al., 2001) Reconstruction-based It assumes that the data is clustered and can be characterized
by a few prototype objects. Here, the target objects are
represented by the nearest prototype vector measured by the
euclidean distance.

k-NN (Knorr et al., 2000) Boundary-based It avoids explicit density estimation and only uses distances to
the first nearest neighbor. A test object is accepted when its
local density is larger or equal to the local density of its (first)
nearest neighbor in the training set.

Auto-Encoder (or MLP) (Tax, 2002) Reconstruction-based It is a neural network-based approach to learn a
representation of the data. The difference between the input
and output pattern is used as a characterization of the Target
class.

PCA (Bishop et al., 1995) Reconstruction-based It describes the target data by a linear subspace. The
reconstruction error is calculated to check if a new object fits
the target subspace.

MST (Juszczak, Tax, Pe, Duin, et al., 2009) Boundary-based A minimum spanning tree is fitted on the training data. The
distance to the edges is used as a similarity metric to the
Target class.

k-centers (Hochbaum & Shmoys, 1985) Boundary-based It covers the dataset with k small balls of equal radii. The
method is sensitive to the outliers in the training set. The
number of balls k and the maximum number of retries needs
to be given.

MPM (Ghaoui, Jordan, & Lanckriet, 2003) Boundary-based It tries to find a linear classifier that separates the data from
the origin, rejecting maximally a specific fraction of the target
data.

LPDD (Pekalska et al., 2003) Boundary-based It describes the target objects which are represented in terms
of distances to other objects.

OCSVM (Schölkopf et al., 2001) Boundary-based It uses a hyperplane which is at a maximum distance from
the origin and separates the region that contains no data.

SVDD (Tax & Duin, 2004) Boundary-based A hypersphere is used to include maximum training data with
minimum radius.

OCKELM (Leng, Qi, Miao, Zhu, & Su, 2015) Boundary based A non-iterative kernel-based single-layer method where
training involves optimizing output weight.

VOCKELM (Mygdalis, Iosifidis, Tefas, & Pitas, 2016) Boundary based A non-iterative minimum variance embedded kernel-based
single-layer method where training involves optimizing output
weight.

ML-OCKELM (Dai, Cao, Wang, Deng, & Yang, 2019) Reconstruction+Boundary based A non-iterative kernel-based multi-layer method where the
final layer performs OCC. The layers preceding the final layer
are responsible for extracting meaningful features from input
data.

We compare the performance of the proposed method with 16
state-of-the-art one-class classifiers based on F1 score. Table 1
describes the state-of-the-art one-class classifiers that we have
used in our paper for comparison of results against our pro-
posed model. As 1-NN is a specific case of k-NN, we have only
described k-NN method in Table 1. The motivation behind choos-
ing these classifiers is based upon the fact that they were fre-
quently used as benchmark classifiers in the past (Dai et al.,
2019; Désir et al., 2013; Ghaoui et al., 2003; Juszczak et al.,
2009; Pekalska et al., 2003). The advantages and disadvantages of
the methods were discussed above based on density, boundary
or reconstruction. To show the applicability of our proposed
method on biomedical datasets, we perform tests on 13 UCI
benchmark biomedical datasets. We also present an application
for the diagnosis of Alzheimer’s disease (AD) based on 3-D MRI
image dataset. AD is a neurodegenerative disorder which primar-
ily affects the elderly population. According to World Alzheimer’s
Report-2018 (Christina, 2018), around 50 million people are af-
fected by this disease worldwide. Various machine learning and

deep learning-based methods (Bi & Wang, 2019; Lee, Nho, Kang,
Sohn, & Kim, 2019; Liu et al., 2014; Tanveer et al., 2019) are
employed for the detection of AD. These methods perform multi-
class classification task on AD data; however, this paper focuses
on OCC task. The advantage of our one-class method is that
the method can be trained on MRI images of healthy subjects
only. This is helpful in real-world scenarios since the availability
of healthy subjects’ MRI images is very high as compared to
Alzheimer’s subjects’ MRI images. Therefore, the Alzheimer’s MRI
images will be treated as outliers by one-class based methods.
Generally, all deep learning methods need a huge volume of data
for better performance. However, it is challenging to collect a
huge volume of data for AD. Therefore, a novel deep learning
method is required which can be trained on a small number of
samples. Various experiments were performed in this work using
volume and thickness measures of brain regions for the diagnosis
of Alzheimer’s disease. Moreover, to show the generalization
performance of our proposed model on other medical problems,
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we perform the detection of breast cancer from histopathological
images.

The rest of the paper is organized as follows. Section 2 dis-
cusses OCSVM, SVDD and the prerequisite KRL-based one-class
classifiers. Section 3 describes our proposed method. Section 4
discusses the experimental setup and performance evaluations.
Finally, we conclude our paper in Section 5.

2. Preliminaries

This section briefly discusses a few state-of-the-art one-class
classifiers, namely, SVM, and KRL/KELM based one-class
classifiers. The SVM-based classifiers are OCSVM and SVDD, dis-
cussed in Sections 2.1 and 2.2, respectively. OCSVM uses a hy-
perplane, while SVDD uses a hypersphere to separate the
outliers. The KRL/KELM (See footnote 2) is a least squares-based
method. The least squares method-based one-class classifiers are
OCKELM, VOCKELM, and ML-OCKELM and these are discussed in
Sections 2.3, 2.4, and 2.5, respectively.

2.1. One-class SVM: OCSVM

OCSVM was proposed by Schölkopf, Williamson, Smola,
Shawe-Taylor, and Platt (1999) to utilize the advantages offered
by SVM for OCC. Given training samples, {xi | xi ∈ Rd, i =

1, 2, . . . ,N }, where xi is a training vector, all belonging to the
same target class. In OCSVM, a hyperplane is constructed that
separates all the target class sample points from the origin. The
distance of this hyperplane from the origin is maximized. The
model is formulated in the following optimization problem:

min
ω,ξ,ρ

1
2
ωTω − ρ +

1
νN

N∑
i=1

ξi

s.t. ωTφ(xi)≥ ρ − ξi i = 1, . . . ,N ,

ξi≥ 0, i = 1, . . . ,N ,

(1)

where, φ(.) is the mapping in the feature space, N is the number
of training samples, ω is the weight coefficients, ν is used to
decide the fraction of target samples rejected, ρ is the bias term,
and ξ = {ξi}, where i = 1, 2, . . . ,N , is the error with respect to
the ith sample. The dual of above equation is expressed as,

min
α

1
2
αTQα

s.t 0 ≤ αi ≤
1

νN i = 1, . . . ,N ,

N∑
i=1

αi= 1,

(2)

where, Q ij = K (xi, xj) = φ(xi)Tφ(xi), K is the kernel matrix, Q ij is
the kernel matrix generated between ith and jth sample, and αi is
the Lagrange multiplier. The decision function f (x), thus obtained
from above minimization problem is as follows:

f (x) = sign

(
N∑
i=1

αiK (xi, x) − ρ

)

=

{
1, x belongs to target class

−1, x belongs to outlier class.

(3)

2.2. Support Vector Data Description: SVDD

Tax and Duin (2004) proposed SVDD for OCC. Here, we provide
an overview of SVDD and discuss its primal, dual, and deci-
sion function formulation. Given training samples, {xi | xi ∈

Rd, i = 1, 2, . . . ,N }, where xi is a training vector, all belong-
ing to the same target class. In SVDD, a hypersphere with no

superfluous space is constructed, that consists of only target
class samples. The classifier can be written as the following
optimization problem (Tax & Duin, 2004):

min
R,a,ξ

R2
+ C

N∑
i=1

ξi

s.t. ∥φ(xi) − a∥2
≤ R2

+ ξi i = 1, . . . ,N ,

ξi≥ 0, i = 1, . . . ,N ,

(4)

where, φ(.) is a mapping to the higher dimensional feature space,
N is the number of training samples, a is the center, and R is the
radius of the hypersphere. R2 is the distance between the center
of hypersphere and any of the support vectors on the boundary.
The above equation can be written as the following dual,

max
α

N∑
i=1

αiQii − αTQα

s.t. 0 ≤ αi ≤ C i = 1, . . . ,N ,

N∑
i=1

αi= 1,

(5)

where, Q ij = K (xi, xj) = φ(xi)Tφ(xi), K is the kernel matrix, and
αi is the Lagrange multiplier. A test sample can be classified as a
target or an outlier based on the following decision function,

f (x) = sign(∥φ(x) − a∥2
− R2)

=

{
−1, x belongs to target class
1, x belongs to outlier class.

(6)

2.3. OCKELM

Taking a training input X = {xi | xi ∈ Rd, i = 1, 2, . . . ,N } and
output vector r = [r, . . . , r]T ∈ RN , where xi is the input vector
and r is the corresponding target label, which is a real number.
N is the number of training samples. Algorithm 1 provides a
concise presentation of the OCKELM (Leng et al., 2015) model.
The training involves calculating optimum output weight, β, by
solving the following optimization problem,

min
β,ei

1
2

∥β∥
2
2 +

1
2
C

N∑
i=1

∥ei∥2
2 (7)

s.t. βTh(xi) = r − ei, i = 1, 2, . . . ,N ,

where, ei is the training error, and h(xi) is the non-linear feature
mapping for a sample xi. C acts as the trade-off between min-
imizing the output weight norm and the training error. Solving
Eq. (7), the output weight can be obtained as,

β = HT
(
1
C
I + HHT

)−1

r, (8)

where,H = [h(x1), h(x2), ... , h(xN )], and I is an identity matrix.
Using Eq. (8), the network output can be expressed as,

Ô = h(x) β = h(x) HT
(
1
C
I + HHT

)−1

r. (9)

By making use of Mercer’s conditions, Ω is defined as a kernel
matrix in ELM as Ω = HHT , where Ωj,k = h(xj)h(xk) =

K (xj, xk), j, k = 1, . . . ,N and K is a kernel function. Finally
after replacing HHT in Eq. (9) with Ω , the output weight β is
calculated as,

β =

(
1
C
I + Ω

)−1

r. (10)
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The network output Ô of OCKELM is further calculated as,

Ô =

⎡⎢⎣ K (x, x1)
...

K (x, xN )

⎤⎥⎦
T (

1
C
I + Ω

)−1

r. (11)

The distances of the network outputs to the target class is then
determined as, s =

⏐⏐̂O − r
⏐⏐. Larger the value of si, more deviant

is the training sample xi from target class. Denoting the sorted
vector s as s̃, the threshold (θ ) is then calculated as,

θ = s̃(⌊δ ∗ N⌋), (12)

where, δ is the percentage of dismissal. For a tth test sample xt ,
the network output Ôt is determined as,

Ôt =

⎡⎢⎣ K (xt , x1)
...

K (xt , xN )

⎤⎥⎦
T

β. (13)

The error between the network output Ôt and target class r is
determined as st =

⏐⏐̂Ot − r
⏐⏐. Finally classification is done using

following rule,

sign(θ − st ) = 1, xt belongs to target class. (14)
− 1, xt belongs to outlier class.

Algorithm 1 OCKELM
Given:
Training dataset: X, Regularization parameter: C.
Training:
1: Calculate kernel matrix Ω and output weight β using (10).
2: Calculate network output Ô using (11).
3: Calculate threshold θ using (12).
Testing:
1: For a tth test sample xt , calculate network output Ôt using

(13).
2: Classify xt using (14).

2.4. VOCKELM

Minimum Variance One-Class KELM (Mygdalis et al., 2016)
reduces the training error and intra-class variance to improve
the performance of OCC. The subclasses are determined using the
k-means method. Algorithm 2 provides a concise presentation of
the VOCKELMmodel. The training model becomes minimizing the
data dispersion as well as the training error using the following
optimization problem,

min
β,ei

1
2

βT (VC + λI) β
2
2 +

C
2

N∑
i=1

∥ei∥2
2 (15)

s.t. βTh(xi) = r − ei, i = 1, 2, . . . ,N ,

where, ei is the training error, and h(xi) is the non-linear feature
mapping for a sample xi. β is the output weight, and C acts as the
trade-off between the norm of output weight and the training
error. r is the target class, and I is an identity matrix. λ is a
regularization parameter adopted to avoid singularity issues with
the scatter matrix VC , which is calculated as follows,

VC =
1
N

N∑
i=1

(
h(xi) − H

) (
h(xi) − H

)T
=

1
N

H

(
I −

1
N

uuT
)

HT ,

= H M HT , (16)

where, u is a vector of ones and H = [h(x1), h(x2), ... , h(xN )].
H =

1
N

∑N
i=1 h(xi) is the mean vector of the samples in the

non-linear feature space and M represents any Laplacian matrix.
Replacing VC in Eq. (15) with the expression in Eq. (16) and
solving the resulting optimization problem, the output weight β
is derived as,

β = HT
(
HHT

+
1
C
MHHT

+
λ

C
I

)−1

r, (17)

where, r = [r, . . . , r]T ∈ RN is a vector of target label r . The
network output is expressed as Ô = h(x)β. Applying kernelized
feature mapping and defining kernel matrix Ω in ELM as Ω =

HHT , where Ωj,k = h(xj)h(xk) = K (xj, xk), j, k = 1, . . . ,N and
K is a kernel function, the output weight β is calculated as,

β =

(
Ω +

1
C
MΩ +

λ

C
I

)−1

r. (18)

The network output Ô is then calculated as,

Ô =

⎡⎢⎣ K (x, x1)
...

K (x, xN )

⎤⎥⎦
T (

Ω +
1
C
MΩ +

λ

C
I

)−1

r, (19)

where, I is an identity matrix. During training, a threshold θ is
determined as θ = δ O, where O is the mean network output of
training samples and δ is the percentage of dismissal. During test-
ing, the network output for the tth test sample xt is determined
by,

Ôt =

⎡⎢⎣ K (xt , x1)
...

K (xt , xN )

⎤⎥⎦
T

β. (20)

xt then belongs to the target class if it satisfies the following
condition,(̂
Ot − r

)2
≤ θ. (21)

Algorithm 2 VOCKELM
Given:
Training dataset: X, Regularization parameter: C, Graph regular-
ization parameter: λ

Training:
1: Calculate kernel matrix Ω and output weight β using (18).
2: Calculate network output Ô using (19).
3: Calculate threshold θ as θ = δ O.
Testing:
1: For a tth test sample xt , calculate network output Ôt using

(20).
2: Classify xt using (21).

2.5. ML-OCKELM

The multi-layer one-class KELM (Dai et al., 2019) employs
multiple Auto-Encoders (AEs) for feature learning and a final
classification layer. Algorithm 3 provides a concise presentation
of the ML-OCKELM model. Assuming Q AEs are used for feature
extraction, learning of features is done by optimizing the output
weight β(q) of the qth AE,

min
β(q),e(q)i

1
2

β(q)
2
F +

1
2
C (q)

N∑
i=1

e(q)i

2
2

(22)
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s.t.
(
β(q))T h(x(q)i

)
= x(q)i − e(q)i ,

i = 1, 2, . . . ,N , q = 1, 2, . . . ,Q ,

where, h
(
x(q)i

)
is the non-linear feature mapping and e(q)i is the

reconstruction error for the input x(q)i of the qth AE. C (q) is the
regularization parameter of the qth AE and ∥.∥ refers to Frobenius
norm. From Eq. (22), the optimal β(q) is derived as,

β(q)
=
(
H(q))T ( 1

C (q) I + H(q) (H(q))T)−1

X(q), (23)

where, X(q) denotes the input data of the qth AE and H(q)
=[

h
(
x(q)1

)
, h

(
x(q)2

)
, ... , h

(
x(q)N

)]
. With the use of Mercer’s con-

ditions, kernel matrix Ω (q) is defined as Ω (q)
= H(q)

(
H(q)

)T ,
where Ω

(q)
j,k = h(x(q)j )h(x(q)k ) = K (x(q)j , x(q)k ), j, k = 1, . . . ,N and

K is a kernel function. With this, the output weight for the qth
AE can be expressed as,

β(q)
=

(
1

C (q) I + Ω (q)
)−1

X(q). (24)

The encoded feature that becomes the input of the (q + 1)th AE
for feature learning, is expressed as,

X(q+1)
=

⎡⎢⎣ K (x(q), x1)
...

K (x(q), xN )

⎤⎥⎦
T (

1
C (q) I + Ω (q)

)−1

X(q) q = 1, . . . ,Q ,

(25)

where, X(q) is the input of the qth AE. Also, X(Q+1) is used to
refer X(f ) which is input to the final layer. The final layer is a
classification layer, with the following optimization problem,

min
β(f ),e(f )i

1
2

β(f )
2
2 +

1
2
C (f )

N∑
i=1

e(f )i

2
2

(26)

s.t.
(
β(f ))T h(x(f )i

)
= r − e(f )i , i = 1, 2, . . . ,N ,

where, e(f )i is the training error and h
(
x(f )i

)
is the non-linear fea-

ture mapping for an input x(f )i of the final layer. Solving Eq. (26),
the output weight of the final layer is expressed as,

β(f )
=

(
1

C (f ) I + Ω (f )
)−1

r, (27)

where, r = [r, . . . , r]T ∈ RN is a vector of target label r . The
network output of ML-OCKELM during training is calculated as,

Ô =

⎡⎢⎣ K (x(f ), x1)
...

K (x(f ), xN )

⎤⎥⎦
T (

1
C (f ) I + Ω (f )

)−1

r. (28)

The distance s of the network output to the target class is then
calculated as s =

⏐⏐̂O − r
⏐⏐ and is sorted in decreasing order. De-

noting the sorted vector s as s̃, the threshold (θ ) is then calculated
as,

θ = s̃(⌊δ ∗ N⌋), (29)

where, δ is the percentage of dismissal and N is the number
of training samples. During testing, when the tth test sample xt
is fed to the trained model, the encoded input, x(q+1)

t , for the
(q + 1)th layer is calculated as,

x(q+1)
t =

⎡⎢⎣ K (x(q)t , x1)
...

K (x(q)t , xN )

⎤⎥⎦
T

β(q), q = 1, 2, . . . ,Q . (30)

Here, x(Q+1)
t is used to refer x(f )t which is test input to the final

layer. Finally, the test network output, denoted as Ôt , is calculated
as,

Ôt =

⎡⎢⎣ K (x(f )t , x1)
...

K (x(f )t , xN )

⎤⎥⎦
T

β(f ). (31)

The error st is then calculated as, st =
⏐⏐̂Ot − r

⏐⏐ and xt is classified
as per the rule,

If st ≤ θ, xt belongs to target class. (32)
otherwise, xt belongs to outlier class.

3. The proposed method

This section puts forward the proposed method: minimum
variance-embedded deep kernel regularized least squares for
OCC (DKRLVOC). The architecture of the proposed method is
shown in Fig. 1. It is a deep architecture, which is developed by
taking kernel regularized least squares (KRL) as a base method.
DKRLVOC can also be considered as a variant of any least squares-
based method, like kernel extreme learning machine, least
squares SVM or kernel ridge regression. We have used generic
name KRL instead of these specific names and referred the pro-
posed method as DKRLVOC. DKRLVOC performs better than the
other existing one-class classifiers pertaining to the following
characteristics:

1. Non-iterative nature resulting in less computational time
in comparison to its iterative counterparts.

2. Minimizing intra-class variance to achieve better separa-
tion of outliers.

3. Multi-layer architecture taking advantage of reconstruction-

based and boundary-based methods.

DKRLVOC consists of mainly three types of layers viz.,

(i) minimum variance-embedded KRL-based Auto-Encoder
(KRLVAE).

(ii) KRL-based Auto-Encoder (KRLAE).
(iii) KRL-based one-class classifier (KRLOC)

The overall architecture of the proposed method is formed
by stacking above-mentioned layers. This architecture can con-
tain any number of layers. The first layer is formed by KRLVAE.
It minimizes the intra-class variance, the norm of weight, and
the reconstruction error. The second layer onward is formed by
stacking KRLAEs, which minimize the norm of weight and the
reconstruction error. The final layer is KRLOC, which is stacked for
OCC. KRLVAE and KRLAE are reconstruction-based, and the final
layer, KRLOC, is boundary-based. The aim behind using KRLVAE
and KRLAE is that it helps to get refined information from features
even if the input is noisy. The multiple layers of AEs fine-tune
the information from noisy input and extract meaningful features
over subsequent layers. Here, the variance is minimized at only
first layer because minimizing variance at successive layers leads
to loss of pattern between the samples. This has been verified
experimentally.

The training data is denoted as X(1)
= {x(1)i }, where x(1)i =

[x(1)i1 , x(1)i2 , . . . , x(1)id ], i = 1, 2, . . . ,N , is the ith training input of
dimension d. X(q)

= {x(q)i }, where x(q)i = [x(q)i1 , x(q)i2 , . . . , x(q)id ], i =

1, 2, . . . ,N , refers to the input of the qth AE. There are Q lay-
ers of stacked AEs in the proposed method denoted as q =

1, 2, . . . ,Q . The first layer, i.e., q = 1, is the KRLVAE layer while
the subsequent layers denoted by q = 2, . . . ,Q are KRLAE layers
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Algorithm 3 ML-OCKELM
Given:
Training dataset: X(1), Number of AE layers: Q, Regularization parameter: C(q) for layer q = 1, ...,Q and C(f ) for final layer.
Training:
1: for q = 1, 2, ...,Q layers do
2: Calculate kernel matrix Ω (q) and output weight β(q) using (24).
3: Calculate encoded input, X(q+1), for the next (q + 1)th layer using (25). ▷ X(Q+1) is used to refer X(f )

4: end for
5: Calculate kernel matrix Ω (f ) and output weight β(f ) using (27).
6: Calculate network output Ô using (28).
7: Determine the threshold θ using (29).
Testing:
1: for q = 1, 2, ...,Q layers do
2: Calculate encoded test input, x(q+1)

t , using (30). ▷ x(Q+1)
t is used to refer x(f )t

3: end for
4: Calculate network output Ôt using (31).
5: Classify xt using (32).

Fig. 1. Architecture of DKRLVOC. (a) Encoded output of KRLVAE layer is fed as input to next KRLAE layer. (b) Encoded output of each KRLAE is fed as input to the
subsequent KRLAE layer. (c) KRLOC layer takes encoded output of Q th KRLAE layer as input. (d) Shows arrangement of different layers.

Table 2
Model parameter descriptions.
Parameter Description Range of values taken for experiments

Q Number of stacked AE layers. 2

C(q) Regularization parameter for layer q = 1, . . . ,Q . {2−5, 2−4, . . . ., 25}

C(f ) Regularization parameter for final layer. {2−5, 2−4, . . . ., 25}

λ Graph regularization parameter. 1

k Number of clusters for k-means clustering {1, 2, . . . ., 10}

to group data into subclasses.

δ Percentage of dismissal of outliers. {1%, 5%, 10%}

responsible for learning essential information from raw features.
The encoded feature output of the qth AE acts as input to the
(q + 1)th AE. Finally, the encoded feature output of the Q th AE
acts as input to the final KRLOC layer. Table 2 provides a tabular
description of the model parameters and the range of values they
are selected from in the experiments. The parameter estimation
process is explained in Section 4. Algorithm 4 provides detailed
implementation steps for the proposed model.

In the proposed DKRLVOC, the variance of the output for the
first layer is calculated as,

Vω =
1
N

N∑
i=1

(
X(2)
i − X(2)

) (
X(2)
i − X(2)

)T
,

=
1
N

N∑
i=1

((
β(1))T h(x(1)i ) −

(
β(1))T

H(1)
)
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×

((
β(1))T h(x(1)i ) −

(
β(1))T

H(1)
)T

,

=
(
β(1))T ( 1

N

N∑
i=1

(
h(x(1)i ) − H(1)

)(
h(x(1)i ) − H(1)

)T)
β(1),

=
(
β(1))T VC β(1), (33)

where, β(1) is the output weight for the first layer, and h
(
x(1)i

)
is the non-linear feature mapping for training sample x(1)i . X(2)

i is
the encoded feature output of first layer or input to second layer
for a training sample x(1)i , X(2) =

1
N

∑N
i=1 X

(2)
i is the mean output

for all training samples for first layer, H(1) =
1
N

∑N
i=1 h(x

(1)
i ) is

the mean vector of the samples in the non-linear feature space of
the first layer, and VC is the scatter matrix of the training class.

Minimum variance-embedding is done at first layer, KRLVAE,
by minimizing either class or intra-class variance which is en-
coded by the scatter matrix represented by VC or VS , respectively.
The class variance of the training data is defined as follows,

VC =
1
N

N∑
i=1

(h(x(1)i ) − H(1))(h(x(1)i ) − H(1))T , (34)

where, H(1)
=

[
h
(
x(1)1

)
, h

(
x(1)2

)
, ... , h

(
x(1)N

)]
. The scatter

matrix VC can further be expressed as,

VC =
1
N

N∑
i=1

(h(x(1)i ) − H(1))(h(x(1)i ) − H(1))T

=
1
N

H(1)
(
I −

1
N

uuT
) (

H(1))T
= H(1)M

(
H(1))T , (35)

where, I is an identity matrix, u is a vector of ones, and M
represents any Laplacian matrix. The intra-class variance can be
calculated as,

VS =

N∑
i=1

P∑
p=1

Np

N
γ

p
i (h(x

(1)
i ) − H(1))(h(x(1)i ) − H(1))T , (36)

where, the number of training samples belonging to a cluster
p is denoted by Np and γ

p
i denotes whether the sample x(1)i

belongs to cluster p or not. A clustering method like k-means is
used to group data into subclasses. VS can further be expressed
similarly as VC in Eq. (35). KRLVAE can be expressed in the form
of following optimization problem,

min
β(1),e(1)i

1
2
Tr
((

β(1))T (VC + λI) β(1)
)

+
C (1)

2

N∑
i=1

e(1)i

2
2

(37)

s.t.
(
β(1))T h(x(1)i

)
= x(1)i − e(1)i , i = 1, 2, . . . ,N ,

where, e(1)i is the reconstruction error. C (1) acts as a trade-off
between minimizing the output weight norm and the recon-
struction error for the first layer. λ is the graph regularization
parameter. The Langrangian relaxation of Eq. (37) after substitut-
ing Eq. (35) in Eq. (37) can be found as,

LKRLVAE =
1
2
Tr
((

β(1))T (
H(1)M

(
H(1))T

+ λI

)
β(1)

)
+

C (1)

2

N∑
i=1

e(1)i

2
2
−

N∑
i=1

α
(1)
i

((
β(1))T

×h
(
x(1)i

)
− x(1)i + e(1)i

)
, (38)

where, α(1)
= {α

(1)
i }, i = 1, 2, . . . ,N , is a Langrangian multiplier

of first layer. We optimize Eq. (38) by computing its derivatives
as follows:
∂LKRLVAE

∂β(1) = 0 H⇒ β(1)
= α(1)H(1)

(
H(1)M

(
H(1))T

+ λI

)−1
,

(39)
∂LKRLVAE

∂e(1)i

= 0 H⇒ E(1)
=

α(1)

C (1) , (40)

∂LKRLVAE

∂α(1) = 0 H⇒ α(1)
= C (1)

(
X(1)

−
(
β(1))T

H(1)
)

. (41)

Substituting Eq. (41) in Eq. (39), we get,

β(1)
= H(1)

(
H(1) (H(1))T

+
H(1)M

(
H(1)

)T
C (1) +

λ

C (1) I

)−1

X(1).

(42)

Applying kernelized feature mapping by defining Ω (1)
=

H(1)
(
H(1)

)T , where Ω
(1)
j,k = h

(
x(1)j

)
h
(
x(1)k

)
= K

(
x(1)j , x(1)k

)
, j,

k = 1, . . . ,N and K is a kernel function, we can re-write Eq. (42)
as,

β(1)
=

(
Ω (1)

+
MΩ (1)

C (1) +
λ

C (1) I

)−1

X(1). (43)

The encoded feature that becomes the input of the KRLAE layer
is then calculated as,

X(2)
=

⎡⎢⎣ K (x(1), x1)
...

K (x(1), xN )

⎤⎥⎦
T (

Ω (1)
+

MΩ (1)

C (1) +
λ

C (1) I

)−1

X(1). (44)

Thereafter (Q − 1) KRLAE layers are used to extract meaningful
features, where the encoded output of one KRLAE layer becomes
the input of the next KRLAE layer. The output weight in the KRLAE
layers is optimized,

min
β(q),e(q)i

1
2

β(q)
2
F +

C (q)

2

N∑
i=1

e(q)i

2
2

(45)

s.t.
(
β(q))T h(x(q)i

)
= x(q)i − e(q)i ,

i = 1, 2, . . . ,N , q = 2, 3, . . . ,Q ,

where, C (q) acts as a trade-off between minimizing the recon-
struction error and the output weight norm. e(q)i is the reconstruc-
tion error vector of ith input of qth layer. ∥ . ∥ refers to Frobenius
norm. The Langrangian relaxation of Eq. (45) can be found as,

LKRLAE =
1
2

β(q)
2
F +

C (q)

2

N∑
i=1

e(q)i

2
2

−

N∑
i=1

α
(q)
i

((
β(q))T h(x(q)i

)
− x(q)i + e(q)i

)
, (46)

where, α(q)
= {α

(q)
i }, i = 1, 2, . . . ,N , is the Langrangian multi-

plier of qth layer. Eq. (46) is optimized as follows:
∂LKRLAE

∂β(q) = 0 H⇒ β(q)
= α(q)H(q), (47)

∂LKRLAE

∂e(q)i

= 0 H⇒ E(q)
=

α(q)

C (q) , (48)

∂LKRLAE

∂α(q) = 0 H⇒ α(q)
= C (q)

(
X(q)

−
(
β(q))T

H(q)
)

. (49)
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Substituting Eq. (49) in Eq. (47), we get,

β(q)
= H(q)

(
1

C (q) I + H(q) (H(q))T)−1

X(q). (50)

Substituting Ω (q)
= H(q)

(
H(q)

)T , where Ω
(q)
j,k = h

(
x(q)j

)
h
(
x(q)k

)
= K

(
x(q)j , x(q)k

)
, j, k = 1, . . . ,N and K is a kernel function, we

can re-write Eq. (50) as,

β(q)
=

(
1

C (q) I + Ω (q)
)−1

X(q). (51)

The encoded feature that becomes the input of the (q + 1)th AE,
is expressed as,

X(q+1)
=

⎡⎢⎣ K (x(q), x1)
...

K (x(q), xN )

⎤⎥⎦
T (

1
C (q) I + Ω (q)

)−1

X(q), q = 2, 3, . . . ,Q .

(52)

Here, X(Q+1) is used to refer X(f ) which is input to the final layer.
At the final KRLOC layer, the output weight β(f ) is derived using
the following optimization problem,

min
β(f ),e(f )i

1
2

β(f )
2
2 +

C (f )

2

N∑
i=1

e(f )i

2
2

(53)

s.t.
(
β(f ))T h(x(f )i

)
= r − e(f )i , i = 1, 2, . . . ,N ,

where, e(f )i is the training error and h
(
x(f )i

)
is the non-linear

feature mapping for input x(f )i of final layer. r is the target class.
Solving the above minimization problem in a similar fashion
as Eq. (45), the final output weight β(f ) is derived as,

β(f )
=

(
1

C (f ) I + Ω (f )
)−1

r, (54)

where, r = [r, . . . , r]T ∈ RN is target class vector. The network
output of the proposed method during training, denoted as Ô, can
then be calculated as,

Ô =

⎡⎢⎣ K (x(f ), x1)
...

K (x(f ), xN )

⎤⎥⎦
T (

1
C (f ) I + Ω (f )

)−1

r. (55)

The threshold (θ ) is further determined during training as fol-
lows:

(i) For each training sample xi, the distance between network
output Ôi and target label r is calculated as,

s(i) =
⏐⏐̂Oi − r

⏐⏐ . (56)

(ii) The vector s is sorted in decreasing order, denoted as, s̃.
A small portion of training data is dismissed as outliers
starting from the most deviant ones as they are probably
the most distant from the target class distribution. The
threshold is then decided as,

θ = s̃ (⌊∗⌋δ ∗ N ) , 0 < δ ≤ 1, (57)

where, δ is the percentage of dismissal andN is the amount
of training data. ⌊.⌋ refers to floor value.

During testing, when the tth test sample xt is fed to the trained
model, the encoded input, x(q+1)

t , for (q + 1)th layer is calculated

as,

x(q+1)
t =

⎡⎢⎣ K (x(q)t , x1)
...

K (x(q)t , xN )

⎤⎥⎦
T

β(q), q = 1, 2, . . . ,Q . (58)

Here, x(Q+1)
t is used to refer x(f )t which is test input to the final

layer. Finally, the test network output, denoted as Ôt , is calculated
as,

Ôt =

⎡⎢⎣ K (x(f )t , x1)
...

K (x(f )t , xN )

⎤⎥⎦
T

β(f ). (59)

The distance st for test data is then calculated as, st =
⏐⏐̂Ot − r

⏐⏐.
Finally, the decision is made based on the following rule,

If st ≤ θ, then xt belongs to target class. (60)
Otherwise, xt belongs to outlier class.

4. Experiments

We conduct experiments on 18 benchmark (13 biomedical and
5 non-biomedical) datasets and 2 real-world biomedical datasets.
Further, these 13 biomedical benchmark datasets can be cat-
egorized as 11 small-size and 2 medium-size UCI benchmark
datasets. These 5 non-biomedical datasets can be categorized as 3
small-size and 2 medium-size UCI benchmark datasets. To show
the applicability of DKRLVOC on real-world biomedical datasets,
we utilize image data for the diagnosis of Alzheimer’s and Breast
Cancer disease. We convert all binary or multi-class datasets into
one-class datasets. We do this conversion by taking one of the
classes as target class and the rest of the classes as outliers (Tax,
2002). The target class for these datasets is mentioned in Tables 3,
7, 8 and 9.

Matlab R2016a is used for all the trials running on a PC
with Intel Core i5 3.10 GHz CPU, 32 GB RAM. We perform ex-
periments for the proposed method, DKRLVOC, by taking the
number of stacked AE layers (Q ) as 2 and a final OCC layer.
Minimum variance embedding is done at the first layer. The graph
regularization parameter λ at first layer is taken as 1. 5-fold cross-
validation is used to select the optimal parameters during the
time of training from the range of values provided in Table 2.
All the methods employ the Radial Basis Function (RBF) kernel,
which can be calculated for data points xi and xj as follows:

k(xi, xj) = exp

(
−

xi − xj
2
2

2σ 2

)
, (61)

where, σ is derived by determining the mean of the euclidean dis-
tance across different training samples. The experimental setup of
all the methods is kept the same to facilitate a fair comparison for
all the datasets.

Further, we compute the following measures for performance
analysis:

Accuracy =
TP + TN

TP + TN + FP + FN
, (62)

Precision (P) =
TP

TP + FP
, (63)

Recall (R) =
TP

TP + FN
, (64)

Specificity =
TN

TN + FP
, (65)
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Algorithm 4 DKRLVOC
Given:
Training dataset: X(1), Number of AE layers: Q, Regularization parameter: C(q) for layer q = 1, ...,Q and C(f ) for final layer, Graph
regularization parameter: λ

Training:
1: for q = 1, 2, ...,Q layers do
2: if q == 1 then
3: Calculate kernel matrix Ω (1) and output weight β(1) using (43) for the first layer (,i.e., KRLVAE).
4: Calculate encoded input, X(2), for the second layer using (44).
5: else
6: Calculate kernel matrix Ω (q) and output weight β(q) using (51) for KRLAE at qth layer.
7: Calculate encoded input, X(q+1), for the subsequent KRLAE layer using (52). ▷ X(Q+1) is used to refer X(f )

8: end if
9: end for

10: Calculate kernel matrix Ω (f ) and output weight β(f ) using (54) for the final layer (,i.e., KRLOC).
11: Calculate network output Ô using (55).
12: Finally, calculate threshold θ using (57).
Testing:
1: for q = 1, 2, ...,Q layers do
2: Calculate encoded test input, x(q+1)

t , for the subsequent KRLAE layer using (58). ▷ x(Q+1)
t is used to refer x(f )t

3: end for
4: Calculate network output Ôt using (59).
5: Calculate distance st and classify xt using (60).

Table 3
UCI small-size dataset specifications.
S.no. Datasets #Total samples #Target #Outlier #Features Target class

Biomedical datasets
1 Arrhythmia 420 183 237 278 Abnormal
2 Biomed 194 67 127 5 Diseased
3 Breast Cancera 699 458 241 9 Benign
4 Caesarian 80 34 46 5 0
5 Cancerb 198 151 47 33 Non recurring
6 Cardiotocography 2126 176 1950 22 Pathologic
7 Colposcopyc 97 82 15 62 Good
8 Cryotherapy 90 48 42 6 1
9 Hepatitis 155 123 32 19 Normal
10 SPECT Heart 349 254 95 44 Abnormal
11 Survival 306 225 81 3 Greater than 5 year

Other datasets
12 Glass Building 214 76 138 9 Non float
13 Ionosphere 351 126 225 34 Bad
14 Iris 150 50 100 4 Setosa

aRefers to Wisconsin breast cancer UCI dataset.
bRefers to Wisconsin prognostic breast cancer UCI dataset.
cColposcopy dataset with modality hinselmann is used for experimental purpose.

F1 score =
2 P .R
P + R

, (66)

G − mean =
√
P .R. (67)

Above FN, FP, TN, and TP represent false negative, false posi-
tive, true negative, and true positive, respectively. Accuracy de-
notes the portion of all correct predictions. Precision reflects the
portion of correct positive predictions among all the predicted
positives. Recall indicates the portion of correct positive pre-
dictions among the actual positives, while specificity indicates
the portion of correct negative predictions among the actual
negatives. F1 score is the harmonic mean of precision and recall.
G-mean is the geometric mean of precision and recall. In case
of imbalanced data, if the model is doing good towards classify-
ing samples of majority class, and poor towards the class with
fewer samples, the accuracy may still give an impression that
the performance is overall good, simply because the model may
be classifying most of the samples to majority class. So accuracy
fails to give a complete picture of the performance of a model.

This inability of the accuracy to give a proper estimate is further
explained in greater detail in Section 4.2. Precision and recall give
a better idea of the performance of a model. However, taking only
one of either precision or recall is not the best performance metric
for some applications. In such cases, F1 score and g-mean are used
to seek a balance between precision and recall. Hence, either of
them can be used as a comparison metric in case of imbalanced
datasets. In this paper, we have primarily used F1 score as the
comparison metric.

We compare the performance of the proposed method, DKR-
LVOC, with 16 existing one-class methods, namely, One Class
Random Forests (OCRF) (Désir et al., 2013), Naive Parzen density
estimation (Duin, 1976), k-means (Jiang et al., 2001), 1-Nearest
Neighbor (1-NN) (Tax & Duin, 2000), k-Nearest Neighbor (k-
NN) (Knorr et al., 2000), Auto-Encoder neural network or Multi-
layer Perceptron (MLP) (Tax, 2002), Principal Component Analysis
(PCA) (Bishop et al., 1995), a Minimum Spanning Tree based one-
class classifier (MST) (Juszczak et al., 2009), k-centers (Hochbaum
& Shmoys, 1985), Minimax Probability Machine (MPM) (Ghaoui
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et al., 2003), Linear Programming Dissimilarity Data Descrip-
tion (LPDD) (Pekalska et al., 2003), Support Vector Data De-
scription (SVDD) (Tax & Duin, 2004), One Class Support Vector
Machine (OCSVM) (Schölkopf et al., 2001), OCKELM (Leng et al.,
2015), VOCKELM (Mygdalis et al., 2016), and ML-OCKELM (Dai
et al., 2019). The implementations of the methods are taken from
ddtools (Tax, 2018). OCSVM is implemented using the LIBSVM
library (Chang & Lin, 2011).

Further, we divide this section into three parts. In Section 4.1,
we discuss experimental results on small-size UCI benchmark
datasets. In Section 4.2, we discuss experimental results on
medium-size UCI benchmark datasets. In Section 4.3, we discuss
experimental results on real-world datasets.

4.1. Experiments on small-size UCI datasets

We conduct experiments on 14 small-size UCI benchmark
classification datasets (11 biomedical and 3 others). We present
the details of the datasets in Table 3. The small-size datasets
are the ones that contain a low amount of training data. All
features are normalized using z-score with a mean 0 and standard
deviation 1. The target and outlier class samples are divided into
two halves each. One half of the target class sample along with
one half of the outlier class sample is used for 5-fold cross-
validation. The remaining half is used as the test set. It is to be
noted that only samples from the target class are used to train the
model. The samples with missing feature values are removed.

Table 5 provides the optimal set of parameters for small-
size datasets selected for DKRLVOC using 5-fold cross-validation
during training time.

This section is divided into two parts; Section 4.1.1 discusses
experimental results on the biomedical small-size datasets, while
Section 4.1.2 discusses the results on other small-size datasets.

4.1.1. Experiments on biomedical small-size datasets
We present the F1 scores for different OCC methods on 11

small-size biomedical datasets in Table 4 along with the average
scores for each method over all the datasets. The best results are
highlighted in bold. The proposed method, DKRLVOC, obtains the
highest F1 score on all 11 out of 11 biomedical datasets as com-
pared to the other OCC methods. DKRLVOC scores 0.1%∼6.77%
higher than the single-layer based methods and 0.39%∼5.74%
higher than the multi-layer based method, ML-OCKELM. DKR-
LVOC achieves this by reducing the variance of different sub-
classes formed due to the uneven distribution of data within the
class. Fig. 5 shows the recall, precision, g-mean and accuracy com-
parisons between DKRLVOC and the existing KELM methods. It
can be observed that DKRLVOC generally achieves comparatively
better performance than the other methods. It is quite clear from
Fig. 5(a), that for 8 datasets DKRLVOC has the highest accuracy.
Also, DKRLVOC has the highest g-mean for all 11 datasets and the
highest precision for 7 datasets. In case of recall values, DKRLVOC
achieves the highest recall for 8 out of 11 datasets, respectively.
The efficiency of DKRLVOC is evident from the observation that it
performs overwhelmingly better than other methods by scoring
the highest g-mean, accuracy, precision, and recall for 11, 8, 7, 8
datasets, respectively.

For OCC methods, the decision criteria are set during train-
ing time by taking a portion of data as outliers to improve its
effectiveness to classify outliers. We present the variation of F1
scores of the KELM methods and DKRLVOC for different small-
size biomedical datasets across different percentage of dismissal,
namely, δ = 1%, 5%, 10%, in Fig. 2. In the figure, it can be observed
that mostly for δ = 1%, DKRLVOC performs better than the other
methods.

4.1.2. Experiments on other small-size datasets
We present the F1 scores of 3 other small-size datasets in

Table 4. DKRLVOC obtains the highest F1 score on all 3 datasets as
compared to the other OCC methods. DKRLVOC scores
1.28%∼3.95% higher than the single-layer based methods and
5.87%∼7.95% higher than the multi-layer based method, ML-
OCKELM. Fig. 3 shows the recall, precision, g-mean and accuracy
comparisons between DKRLVOC and other KELM methods. It is
quite clear from Fig. 3, that for all 3 datasets DKRLVOC has the
highest accuracy, g-mean and precision. For 2 datasets, DKRLVOC
has the highest recall. We present the variation of F1 scores of the
KELM methods and DKRLVOC for other small-size datasets across
different values of δ, namely, 1%, 5%, 10%, in Fig. 4. In the figure,
it can be observed that mostly for δ = 10%, DKRLVOC performs
better than the other methods.

In Table 4, DKRLVOC obtains an average F1 score of 77.89
in comparison to OCKELM, VOCKELM, and ML-OCKELM, which
obtain an average score of 72.92, 72.84 and 75.40, respectively.
The better performance of DKRLVOC against OCKELM for biomed-
ical data is attributed to the fact that DKRLVOC minimizes the
intra-class variance in the first layer and uses multiple AE layers
to extract relevant features from input. DKRLVOC enjoys the
advantage of multiple reconstruction-based layers over VOCK-
ELM, that reconstructs essential features at each layer, leading
to better classification results. Also, the minimization of intra-
class variance at first layer, puts DKRLVOC at an advantage over
ML-OCKELM, leading to better results for biomedical datasets.

When comparing methods, runtime complexity is a crucial
performance metric. The training time spent on different meth-
ods is recorded in Table 6. Due to the multi-layer architecture,
the training time cost of DKRLVOC is generally higher than the
single-layer one-class methods, OCKELM and VOCKELM.

4.2. Experiments on medium-size datasets

We conduct experiments on 4 medium-size UCI datasets (2
biomedical and 2 other datasets). We provide the specifications
of the two medium-size biomedical datasets in Table 7. The
other two medium-size datasets, Optical digits, and Concordia
handwritten digits, further consist of 10 classes each. We conduct
experiments iteratively by taking each of the ten classes as target
and the rest of the classes as outliers. The specifications of Optical
digits and Concordia handwritten digits datasets are detailed in
Tables 8 and 9, respectively. The division of data between 5-
fold cross-validation and testing is kept the same as small-size
datasets.

Tables 10, 12, 14 provide the optimal set of DKRLVOC pa-
rameters for the biomedical, optical digits, and concordia digits
datasets, respectively. The parameters are selected using 5-fold
cross-validation during training time.

We provide the F1 scores for the two medium-size biomed-
ical datasets, for DKRLVOC against different KELM methods in
Table 11. The finest results are noted in bold. DKRLVOC achieves
best F1 score for Epileptic Seizure dataset while OCKELM performs
best for Thyroid dataset. We compare and present the perfor-
mance of different KELM methods based on recall, precision,
g-mean and accuracy for both the datasets in Fig. 6. We present
the variation of F1 scores of the KELM methods and DKRLVOC
for both medium-size biomedical datasets across different values
of δ, namely, 1%, 5%, 10%, in Fig. 7. It can be observed in the
figure, that the curve for the classifiers mostly decreases with
an increase in δ, suggesting improved performance of all the
classifiers when the value of δ is low. Also, mostly for δ = 5%
and 10%, DKRLVOC performs better than the other methods.

We provide the F1 score for different target classes of optical
digits dataset in Table 13. In Table, the best results are highlighted
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Fig. 2. Examination of F1 score for various percentage of dismissal for small-size biomedical datasets.

Fig. 3. Examination of Accuracy, G-mean, Precision and Recall for different other small-size datasets.

Fig. 4. Examination of F1 score for various percentage of dismissal for other small-size datasets.
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Fig. 5. Examination of Accuracy, G-mean, Precision and Recall for different small-size biomedical datasets.

Fig. 6. Examination of Accuracy, G-mean, Precision and Recall for different medium-size biomedical datasets.

Fig. 7. Examination of F1 score for various percentage of dismissal for medium-size biomedical datasets.
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Table 4
F1 score comparisons on small-size datasets.

Biomedical datasets Other datasets Average

Arrhythmia Biomed Breast
cancer

Caesarian Cancer Cardioto
cography

Colpo
scopy

Cryoth
erapy

Hepatitis SPECT
Heart

Survival Glass
building

Ionos
phere

Iris

OCRF (Désir et al.,
2013)

60.67 51.16 79.24 59.65 82.42 15.29 87.06 69.57 88.41 84.39 85.17 52.41 56.11 50 65.83

Naive Parzen (Duin,
1976)

60.67 45.53 90.95 59.46 73.83 39.07 81.08 77.55 86.18 79.58 83.33 51.49 62.34 78.05 69.22

k-means (Jiang
et al., 2001)

60.67 50 94.98 53.66 86.39 25.81 89.66 69.39 88.41 84.39 84.94 53.1 51.69 93.62 70.48

1-NN (Tax & Duin,
2000)

58.98 48.82 92.99 51.16 82.58 39.39 89.66 73.68 88.41 79.17 83.74 55.36 51.69 91.3 70.50

k-NN (Knorr et al.,
2000)

60.67 50 95.69 51.16 86.39 34.08 90.91 71.64 88.41 84.39 83.87 52.34 52.32 95.83 71.26

Auto-Encoder(or
MLP) (Tax, 2002)

58.5 38.26 95.48 53.66 79.49 55.51 88.37 71.11 88.89 84.39 83.79 58.41 52.94 93.62 71.60

PCA (Bishop et al.,
1995)

57.44 48.54 93.51 60.38 79.75 35.58 86.75 77.78 88.89 80.41 83.27 55.93 41.62 80.95 69.34

MST (Juszczak et al.,
2009)

60.67 50 95.69 51.16 86.39 34.08 90.91 80 88.41 84.39 82.95 52.34 52.32 97.96 71.95

k-centers
(Hochbaum &
Shmoys, 1985)

59.73 44.04 95.28 50 84.34 26.76 89.66 74.07 88.41 84 81.36 55.1 52.32 88.89 69.57

MPM (Ghaoui et al.,
2003)

NaN NaN 92.41 51.61 NaN 2.25 NaN NaN NaN 21.13 76.42 61.22 33.16 88.89 30.51

LPDD (Pekalska
et al., 2003)

NaN NaN 92.77 54.55 NaN 2.25 NaN NaN NaN 21.13 68.82 54.72 48.7 88.89 30.85

Kernel based methods
OCSVM (Schölkopf
et al., 2001)

57.04 47.79 93.85 62.86 84.66 17.17 86.75 75.47 84.85 81.45 79.01 58.59 46.7 68.42 67.47

SVDD (Tax & Duin,
2004)

56.12 48.21 93.74 55.17 83.02 19.15 82.05 75.47 86.57 77.27 80.17 59.18 42.53 64.86 65.97

Single-layer methods

OCKELM (Leng
et al., 2015)

59.46 47.37 95.28 53.66 84.02 63.76 90.48 77.78 88.89 83.61 83.72 56.25 52.94 83.72 72.92

VOCKELM (Mygdalis
et al., 2016)

58.95 53.06 76.68 61.11 86.05 63.45 85 75.56 88.89 84 81.57 58.33 53.45 93.62 72.84

Multi-layer methods
ML-OCKELM (Dai
et al., 2019)

60.67 47.71 95.26 59.65 84.02 69.79 89.66 78.43 87.22 84 84.25 54.55 60.42 100 75.40

DKRLVOC 60.67 53.45 95.96 62.96 86.71 70.53 92.13 80 89.39 84.39 85.49 62.5 66.29 100 77.89
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in bold. DKRLVOC obtains the highest F1 score for 7 out of 10
classes, while VOCKELM and ML-OCKELM get the highest F1 score
for the remaining 1, 2 classes, respectively. When we compare
the average F1 score over all the classes for each of the KELM
methods, we can infer that the average F1 score for DKRLVOC
is the highest in comparison to the other methods. DKRLVOC
scores 0.37%∼20.86% higher than the single-layer KELM meth-
ods (OCKELM and VOCKELM), and 0.02%∼8.17% higher than the
multi-layer KELM method (ML-OCKELM), across the 10 classes
of optical digits dataset. From the above observations, it can be
agreed that DKRLVOC performs better than the other KELM meth-
ods in terms of F1 score. Comparisons have also been made based
on accuracy, g-mean, precision, and recall in Fig. 8. DKRLVOC has
the highest accuracy and g-mean for 7, 7 classes, respectively.
While DKRLVOC achieves the highest precision for 5 datasets,
it certainly performs better in case of recall by achieving the
highest recall values for 7 out of 10 datasets. It can be concluded
that the proposed method performs far better than the other
methods in case of accuracy, g-mean, and recall. We present
the variation of F1 scores of the KELM methods and DKRLVOC
for all the classes of optical digits across different values of δ,
namely, 1%, 5%, 10%, in Fig. 9. It can be observed in the figure
that across different values of δ, mostly for δ = 10%, DKRLVOC
performs better than the other methods. Also, for 7 out of 10
cases, DKRLVOC curve decreases with an increase in the value of
δ, suggesting improved performance of DKRLVOC when the value
of δ is low. Also, the multi-layer methods perform better than the
single-layer methods in most cases.

We conduct experiments on concordia handwritten digits
dataset by iteratively taking one of the 10 classes as target and
the remaining 9 classes as outliers. In the concordia dataset, the
number of outlier (negative class) samples is far greater than the
number of target (positive class) samples as evident in Table 9. It
can be observed in Fig. 10 that DKRLVOC performs quite well on
specificity but relatively poor on recall for the concordia dataset.
Regardless, accuracy is found to be quite high, especially for
classes 3 and 4. As discussed in Section 4, it becomes quite evident
from Fig. 10 that in case of imbalanced data, accuracy fails to give
a proper estimate of the performance of a model.

We present the F1 scores obtained from the experiments for
different target classes of concordia handwritten digits dataset in
Table 15 with the best results highlighted in bold. DKRLVOC is
found to get the highest F1 score for 6 out of 10 classes of con-
cordia dataset. The average F1 score calculated over all the classes
for each of the methods is found to be the highest for DKRLVOC
as can be seen in Table 15. DKRLVOC scores 1.19%∼26.07% higher
than the single-layer KELM methods, and 0.18%∼5.8% higher than
the multi-layer KELM method, ML-OCKELM. It can be concluded
that DKRLVOC performs far better than the other methods. We
present the recall, precision, g-mean and accuracy for each case
in Fig. 11. The method DKRLVOC scores the highest accuracy, g-
mean and precision for 6,5,5 classes, respectively. We present
the variation of F1 score for all the classes of concordia digits
across different values of δ, namely, 1%, 5%, 10%, in Fig. 12. It
can be observed that mostly for δ = 1%, DKRLVOC performs
better than the other methods. For 8 out of 10 cases, the curves
of single-layer and multi-layer methods are widely separated,
clearly suggesting the efficiency of multi-layer classifiers over
single-layer classifiers.

4.3. Experiments on real-world biomedical images

We present the analysis for experiments on MRI image data of
Alzheimer’s disease in Section 4.3.1 and histopathological image
data of breast cancer in Section 4.3.2.

4.3.1. Alzheimer’s disease classification
All MRI data used in this work were downloaded from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in the year 2003 as a
public–private partnership, led by Principal Investigator Michael
W. Weiner, MD. The main objective of ADNI is to analyze the use
of neuroimaging techniques like MRI, positron emission tomogra-
phy (PET), other biological markers, and clinical neuropsycholog-
ical tests to estimate the onset of Alzheimer’s disease from the
state of mild cognitive impairment. For more information, visit
www.adni-info.org.

We downloaded 100 T1-weighted structural MRI images
(sMRI) from the ADNI database comprising of 50 control nor-
mal (CN) and 50 Alzheimer’s disease (AD) subjects. The sMRI
images of CN and AD subjects are shown in Fig. 13. One can
see the degeneration of neurons in Fig. 13(b) for AD subject.
In our dataset, the variation of subjects’ age is in the range of
60–90 with a mean age of 75.83, and standard deviation of 6.07.
For analysis of volume and thickness measures of the brain,
the images were processed using Freesurfer software (version
6.0.1) recon-all pipeline (Reuter, Schmansky, Rosas, & Fischl,
2012; Westman, Muehlboeck, & Simmons, 2012). We included
34 cortical thickness measures, 23 subcortical tissue volumes,
and 34 WM tissue volumes of each image. The volumetric data
is normalized for variation in head size with division by total
intracranial volume (TIV). For reporting F1 scores in Table 18, the
train-test split ratio is fixed at 80%–20%, meaning, 80% of target
and outlier class data is used for 5-fold cross-validation and 20%
is used as test set. The value of the regularization parameter C(q)

for layer q = 1, 2 and C(f ) for final layer is selected from the
set {2−3, 2−2, . . . ., 23} using 5-fold cross-validation. We provide
the dataset specifications for Alzheimer’s disease in Table 16.
Table 17 provides the optimal set of DKRLVOC parameters for
Alzheimer’s disease datasets. The parameters are selected using
5-fold cross-validation during training time.

We compare our proposed DKRLVOC method with OCSVM,
SVDD, OCKELM, VOCKELM, and ML-OCKELM on Alzheimer’s data.
We train the methods using CN data and treat AD as outliers.
However, for comparison, we also present the results for training
on AD class in Table 18 using F1 score as the comparison metric.
One can observe that for CN vs. AD case, DKRLVOC has F1 score
of 86.96% for cortical thickness and 81.82% for all features. It
suggests that the cortical thickness and all features are prominent
measures of MRI images for OCC. In Table 18 it can be observed
that DKRLVOC performs better than the other methods for all four
CN vs. AD cases. For AD vs. CN case, one can notice in Table 18 that
the score is less than that of CN vs. AD in most cases. This may be
attributed to the variation in neurodegeneration of AD patients.
Therefore, the training of one-class based methods on CN data is
more efficient than training on AD. In Table 18, DKRLVOC obtains
an average F1 score of 74.66, while OCKELM, VOCKELM, and ML-
OCKELM score 70.84, 70.54 and 71.60, respectively. The multiple
layers of AEs that reconstruct essential features at each layer put
DKRLVOC at an advantage over OCKELM and VOCKELM. Also, the
minimization of intra-class variance at first layer gives DKRLVOC
an edge in performance over ML-OCKELM for Alzheimer’s disease
biomedical data.

In Fig. 14, we present the variation in performance of dif-
ferent one-class methods when the amount of data available
during training is varied. Following observations can be made
from Fig. 14:

1. DKRLVOC achieves better F1 score in most train-test splits
in Figs. 14(a), 14(c) and 14(d) signifying that it does a
better job in general than the other classifiers in identifying
Alzheimer’s in case of all features, subcortical volume and
white matter volume.

http://www.adni-info.org
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Table 5
DKRLVOC parameters selected by 5-fold cross-validation for small-size UCI datasets.
S.no. Datasets C C(f ) λ k δ

Biomedical datasets
1 Arrhythmia 0.03125 1 1 3 0.01
2 Biomed 0.5 1 1 1 0.1
3 Breast cancer 1 4 1 4 0.01
4 Caesarian 0.03125 0.03125 1 2 0.1
5 Cancer 0.25 4 1 10 0.01
6 Cardiotocography 32 16 1 1 0.05
7 Colposcopy 8 0.5 1 2 0.1
8 Cryotherapy 0.125 16 1 1 0.01
9 Hepatitis 0.25 0.0625 1 10 0.1
10 SPECT Heart 1 0.03125 1 1 0.01
11 Survival 0.125 0.03125 1 3 0.05

Other datasets
12 Glass building 0.0625 16 1 3 0.1
13 Ionosphere 0.25 0.125 1 1 0.1
14 Iris 8 8 1 1 0.01

Table 6
Training time (in s) on the small-size UCI datasets.
S.no. Datasets OCKELM (Leng et al., 2015) VOCKELM (Mygdalis et al., 2016) ML-OCKELM (Dai et al., 2019) DKRLVOC

Biomedical datasets
1 Arrhythmia 0.038835 0.035595 0.027343 0.024965
2 Biomed 0.003331 0.010296 0.004299 0.009607
3 Breast Cancer 0.022137 0.045793 0.030913 0.052584
4 Caesarian 0.001849 0.003327 0.001741 0.003746
5 Cancer 0.003044 0.007889 0.012418 0.014098
6 Cardiotocography 0.00845 0.011117 0.009247 0.01292
7 Colposcopy 0.002229 0.004038 0.003184 0.004952
8 Cryotherapy 0.001216 0.003077 0.0015 0.003486
9 Hepatitis 0.00209 0.004601 0.00389 0.006503
10 SPECT Heart 0.005302 0.015587 0.013686 0.020492
11 Survival 0.00498 0.01043 0.009131 0.017571

Other datasets
12 Glass Building 0.00189 0.003598 0.002261 0.004432
13 Ionosphere 0.002542 0.009285 0.004699 0.007388
14 Iris 0.001386 0.004926 0.001745 0.005378

Fig. 8. Examination of Accuracy, G-mean, Precision and Recall for different classes of optical digits dataset.
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Fig. 9. Examination of F1 score for various percentage of dismissal for different classes of optical digits dataset.

Fig. 10. Comparison of different performance metrics on different classes of concordia dataset obtained using DKRLVOC method.
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Fig. 11. Examination of Accuracy, G-mean, Precision and Recall for different classes of concordia dataset.

Table 7
UCI medium-size biomedical dataset specifications.
Datasets #Total samples #Target #Outlier #Features Target class

Epileptic Seizure 4600 2300 2300 178 Normal (eyes open)
Thyroid 3772 3488 284 21 Subnormal

Table 8
Specifications of UCI dataset optical digits.
Target class #Target #Outlier #Features

0 554 5066 64
1 571 5049 64
2 557 5063 64
3 572 5048 64
4 568 5052 64
5 558 5062 64
6 558 5062 64
7 566 5054 64
8 554 5066 64
9 562 5058 64

Table 9
Specifications of concordia digits dataset.
Target class #Target #Outlier #Features

0 400 3600 256
1 400 3600 256
2 400 3600 256
3 400 3600 256
4 400 3600 256
5 400 3600 256
6 400 3600 256
7 400 3600 256
8 400 3600 256
9 400 3600 256

2. Figs. 14(a) and 14(b) report better F1 scores for all the
methods over different train-test splits than the other
two cases signifying all features and cortical thickness are
prominent measures of Alzheimer’s MRI images for OCC.

Table 10
DKRLVOC parameters selected by 5-fold cross-validation for medium-size
biomedical datasets.
S.no. Datasets C C(f ) λ k δ

1 Epileptic Seizure 2 0.5 1 3 0.01
2 Thyroid 0.0625 0.125 1 2 0.01

Table 11
Comparisons of F1 scores for medium-size biomedical datasets.

Thyroid Epileptic Seizure

OCKELM (Leng et al., 2015) 96.74 99.17
VOCKELM (Mygdalis et al., 2016) 95.86 94.68
ML-OCKELM (Dai et al., 2019) 96.64 99.3
DKRLVOC 96.35 99.48

Table 12
DKRLVOC parameters selected by 5-fold cross-validation for optical
digits dataset.
S.no. Datasets C C(f ) λ k δ

1 Class 0 16 4 1 3 0.01
2 Class 1 0.5 0.5 1 5 0.1
3 Class 2 16 1 1 1 0.05
4 Class 3 8 2 1 10 0.01
5 Class 4 0.03125 4 1 7 0.01
6 Class 5 0.125 0.5 1 8 0.1
7 Class 6 16 2 1 4 0.05
8 Class 7 4 2 1 1 0.05
9 Class 8 2 1 1 2 0.1
10 Class 9 0.03125 4 1 2 0.01
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Fig. 12. Examination of F1 score for various percentage of dismissal for different classes of concordia dataset.

Fig. 13. MRI images of control normal and Alzheimer’s disease subjects from ADNI database.

3. For 3 out of 4 cases, i.e., Figs. 14(b)–14(d), a maximum F1
score is reported at 80–20 train-test split for DKRLVOC. This
is due to the fact that in 80–20 train-test split, more data
is available during training.

4. The F1 scores for all the methods are in close proximity to
each other for lower train-test splits. This signifies that the
performance of all the methods is quite similar when less
training data is available.
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Fig. 14. Examination of variation of F1 score over different train-test split for Alzheimer’s disease dataset.

Fig. 15. Examination of Accuracy, G-mean, Precision and Recall for different cases of Alzheimer’s disease dataset.

Also, in Fig. 14, it is noticeable that DKRLVOC is having high
F1 score values with less variation as compared to other methods.
This shows that the performance of DKRLVOC is better and more
stable for application of Alzheimer’s data. Apart from F1 score,
we utilize accuracy, g-mean, precision, and recall, as well, to
show the efficiency of DKRLVOC over other one-class methods
in Fig. 15. The effectiveness of DKRLVOC is evident from the
observation that out of 4 cases, DKRLVOC achieves the highest
accuracy, g-mean, precision, and recall for 4, 4, 4, and 3 cases,
respectively, for Alzheimer’s disease.

4.3.2. Breast cancer classification
For breast cancer, we use the BreakHis (Spanhol, Oliveira,

Petitjean, & Heutte, 2016) histopathological image dataset. We
use 1240 images from the dataset with 400X magnification. The
images belong to two major categories: benign and malignant.
The subclasses for the benign class are adenosis (AN), fibroade-
noma (FA), phyllodes tumor (PT), and tubular adenoma (TA)
having 106, 237, 115, and 130 images, respectively. In malignant
class, the subclasses are ductal carcinoma (DC), lobular carcinoma
(LC), mucinous carcinoma (MC), papillary carcinoma (PC) having
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Table 13
Comparisons of F1 scores for optical digits dataset.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Average

OCKELM (Leng et al., 2015) 98.19 75.04 86.3 80.45 83.67 90.81 96.96 91.16 69.43 73.5 84.55
VOCKELM (Mygdalis et al., 2016) 97.6 68.45 79.06 78.26 82.55 85.86 98 89.52 64.67 78.06 82.2
ML-OCKELM (Dai et al., 2019) 98.73 94.27 96.38 91.16 88.12 90.09 97.15 93.59 73 74.86 89.74
DKRLVOC 98.56 95.9 95.51 91.31 89.82 92.39 97.67 93.61 76.74 83.03 91.45

Table 14
DKRLVOC parameters selected by 5-fold cross-validation for concordia digits
dataset.
S.no. Datasets C C(f ) λ k δ

1 Class 0 8 2 1 2 0.01
2 Class 1 0.03125 4 1 3 0.01
3 Class 2 0.25 2 1 10 0.01
4 Class 3 4 8 1 7 0.01
5 Class 4 8 8 1 8 0.01
6 Class 5 2 8 1 6 0.01
7 Class 6 2 4 1 4 0.01
8 Class 7 16 2 1 10 0.05
9 Class 8 4 16 1 4 0.01
10 Class 9 0.25 2 1 2 0.01

208, 137, 169, and 138 images, respectively. To extract useful fea-
tures from the histopathological images, we convert the images
into gray level and apply wavelet transform using Daubechies-
4 (db4) wavelet up to 3 levels of decomposition (Hwang et al.,
2005; Richhariya & Tanveer, 2018) as shown in Fig. 16. The
approximation and detail coefficients are concatenated to form
the feature vector. The feature vectors are not normalized. For
reporting F1 scores in Table 21, the train-test split ratio is fixed
at 80%–20%, meaning, 80% of target and outlier class data is used
for 5-fold cross-validation and 20% is used as test set.

For making the distinction of the 4 subclasses of malignant
cancer, we make 16 pairs of benign and malignant data, as shown
in Table 19, while keeping the benign class as the target. The
aim is to show the ability of DKRLVOC in differentiating the
non-cancerous tumor from the cancerous tumor in possible pairs
of benign and malignant class. Table 20 provides the optimal
set of DKRLVOC parameters for Breast Cancer disease datasets.
The parameters are selected using 5-fold cross-validation during
training time.

We show the comparison of DKRLVOC with the existing OCC
methods in Table 21, using F1 score as the performance metric.
It is observable from Table 21, that DKRLVOC performs better
than the other methods for 10 out of 16 breast cancer datasets.
The highest F1 score obtained is 81.03% for classification of fi-
broadenoma against papillary carcinoma. Moreover, the average
F1 score of DKRLVOC is the highest among all the methods.
DKRLVOC achieves an average score of 69.41, while OCKELM,
VOCKELM, and ML-OCKELM score 66.6, 67.96 and 66.97, respec-
tively. The better performance of DKRLVOC over OCKELM and
VOCKELM owe to the presence of multiple reconstruction-based
layers. The reduction in intra-class variance at first layer helps in
better separation of target class from outliers leading to improved
performance of DKRLVOC over ML-OCKELM. These observations
show the applicability of DKRLVOC on real-world biomedical
datasets.

Additionally, we present the comparison of the different OCC
methods on breast cancer in terms of accuracy, g-mean, precision,
and recall in Fig. 17. As evident from Fig. 17, DKRLVOC achieves
highest accuracy, g-mean, precision, and recall against other OCC
methods for 10, 11, 10 and 9 datasets, respectively. Moreover,
we perform experiments over different train-test splits for breast
cancer datasets in Fig. 18. It shows that, for cases, where the num-
ber of samples in the target class is less, the F1 score value over
different train-test split is relatively less. When larger number of
samples are available during training, as in Figs. 18(e), 18(f), 18(g),
and 18(h) for target class FA, there is an improvement in the score
along the x-axis.

5. Conclusion

In this paper, we proposed a minimum variance-embedded
deep KRL-based one-class classifier (DKRLVOC) for anomaly/ out-
lier detection. The proposed architecture comprises of multiple
KRL based AEs and a final OCC layer. The stacked AEs enable
better feature learning. The minimum variance embedding is
done at the first layer, minimizing the intra-class variance which
improves the generalization performance of the model. Increasing
the number of training samples further improves the efficiency
of first layer leading to better classification. To demonstrate the
capability of DKRLVOC, we conducted experiments on 18 UCI
benchmark datasets (13 biomedical and 5 other).

The experimental results on biomedical datasets are summa-
rized as follows,

• Small-size datasets: DKRLVOC obtained the highest F1 score
on all 11 small-size biomedical datasets. It performed
0.1%∼6.77% better than the single-layer based classifiers and
0.39%∼5.74% better than multi-layer based classifier.

• Medium-size datasets: The F1 score obtained by DKRLVOC
is 99.48 for Epileptic Seizure dataset, while OCKELM, VOCK-
ELM, and ML-OCKELM scored 99.17, 94.68 and 99.3, respec-
tively.

• Real-world datasets: For Alzheimer’s disease dataset, DKR-
LVOC performs better than the other methods for all 4 CN
vs. AD cases of Alzheimer’s disease and obtained the highest
F1 score of 86.96% in comparison to existing methods. On
application to breast cancer images, DKRLVOC performed
better than the other methods for 10 out of 16 breast cancer
datasets and achieved the highest F1 score of 81.03% for
classification of fibroadenoma and papillary carcinoma.

Coming to other datasets, DKRLVOC scored 1.28%∼3.95%
higher than the single-layer based methods and 5.87%∼7.95%
higher than the multi-layer based method. For optical digits
dataset, DKRLVOC scored 0.37%∼20.86% higher than the single-
layer methods, and 0.02%∼8.17% higher than the multi-layer

Table 15
Comparisons of F1 scores for concordia dataset.

Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Average

OCKELM (Leng et al., 2015) 58.4 69.9 29.26 50.56 37.99 52.01 47.73 62.85 33.89 52.42 49.501
VOCKELM (Mygdalis et al., 2016) 60.05 69.71 27.2 34.17 38.9 53.6 46.84 65.53 34.92 56.3 48.722
ML-OCKELM (Dai et al., 2019) 86.12 93.7 45.45 66.32 48.71 73.77 71.65 62.66 40 51.69 64.007
DKRLVOC 86.12 93.7 46.88 66.18 47.76 75.76 71.83 62.64 38.89 57.49 64.725



212 C. Gautam, P.K. Mishra, A. Tiwari et al. / Neural Networks 123 (2020) 191–216

Fig. 16. Histopathological image of (a) ductal carcinoma. Image of different detail coefficients obtained after wavelet transform on image (a) is shown in subfigures
(b)–(d).

Fig. 17. Examination of Accuracy, G-mean, Precision and Recall for Breast Cancer disease datasets.

method. For concordia digits dataset, DKRLVOC scored 1.19%∼

26.07% higher than the single-layer methods, and
0.18%∼5.8% higher than the multi-layer method.

Above discussion justifies that the proposed deep kernel
method performs quite well in case of small-size datasets. Since
collecting relevant data is quite expensive or time taking process
in most of the biomedical field, DKRLVOC is quite apt for this field.
Moreover, the computational time is also reduced owing to the
non-iterative nature of DKRLVOC.

The performance of DKRLVOC improves with an increase in
data available during training. However, with an increase in train-
ing data, the computation of the inverse of a matrix during the
calculation of output weight becomes increasingly difficult. In the

future, further research can be conducted in order to tackle the
difficulty of calculation of inverse for a large number of samples.
Additionally, while the proposed method is capable of handling
only stationary data, further research can be done to extend
DKRLVOC to handle online streaming data and non-stationary
data.

Reference data

The source code is available on the corresponding author’s
GitHub homepage: https://github.com/Chandan-IITI/Deep-Kernel
-Learning-for-One-class-Classification.
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Fig. 18. Examination of variation of F1 score over different train-test split for Breast Cancer disease datasets.

Table 16
Alzheimer’s disease dataset specifications.

Target class #Target #Outlier #Features

CN vs. AD CN 50 50 91
AD vs. CN AD 50 50 91
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Table 17
DKRLVOC parameters selected by 5-fold cross-validation for Alzheimer’s disease datasets.

CN vs. AD AD vs. CN

All features Cortical Subcortical White matter All features Cortical Subcortical White matter
thickness volume volume thickness volume volume

C 0.5 0.125 0.5 0.5 0.25 0.25 0.25 0.125
Cf 2 0.125 2 0.125 8 2 0.125 0.125
Lambda 1 1 1 1 1 1 1 1
k 3 7 9 3 2 1 3 1
Delta 1 10 10 1 10 5 5 1

Table 18
Comparisons of F1 scores for Alzheimer’s disease dataset.

CN vs. AD AD vs. CN Average

All features Cortical Subcortical White matter All features Cortical Subcortical White matter
thickness volume volume thickness volume volume

OCSVM (Schölkopf et al., 2001) 70.59 81.82 74.07 66.67 53.85 64.29 80 40 66.41
SVDD (Tax & Duin, 2004) 62.5 77.78 69.57 66.67 58.33 61.54 75 43.48 64.36
OCKELM (Leng et al., 2015) 80 81.82 69.23 66.67 66.67 68.97 66.67 66.67 70.84
VOCKELM (Mygdalis et al., 2016) 76.19 81.82 69.23 66.67 62.07 66.67 75 66.67 70.54
ML-OCKELM (Dai et al., 2019) 80 86.96 69.23 76.92 62.07 66.67 64.29 66.67 71.60
DKRLVOC 81.82 86.96 75 76.92 64 68.97 76.92 66.67 74.66

Table 19
Breast cancer disease datasets specifications. Here, AN, FA, PT, TA, DC, LC, MC, PC refer to Adenosis, Fibroadenoma, Phyllodes tumor,
Tubular adenoma, Ductalcarcinoma, Lobularcarcinoma, Mucinouscarcinoma, and Papillarycarcinoma, respectively.

Target class Outlier class #Target #Outlier #Features

AN Vs DC Adenosis Ductalcarcinoma 106 208 768
AN Vs LC Adenosis Lobularcarcinoma 106 137 768
AN Vs MC Adenosis Mucinouscarcinoma 106 169 768
AN Vs PC Adenosis Papillarycarcinoma 106 138 768
FA Vs DC Fibroadenoma Ductalcarcinoma 237 208 768
FA Vs LC Fibroadenoma Lobularcarcinoma 237 137 768
FA Vs MC Fibroadenoma Mucinouscarcinoma 237 169 768
FA Vs PC Fibroadenoma Papillarycarcinoma 237 138 768
PT Vs DC Phyllodes tumor Ductalcarcinoma 115 208 768
PT Vs LC Phyllodes tumor Lobularcarcinoma 115 137 768
PT Vs MC Phyllodes tumor Mucinouscarcinoma 115 169 768
PT Vs PC Phyllodes tumor Papillarycarcinoma 115 138 768
TA Vs DC Tubular adenoma Ductalcarcinoma 130 208 768
TA Vs LC Tubular adenoma Lobularcarcinoma 130 137 768
TA Vs MC Tubular adenoma Mucinouscarcinoma 130 169 768
TA Vs PC Tubular adenoma Papillarycarcinoma 130 138 768

Table 20
DKRLVOC parameters selected by 5-fold cross-validation for Breast Cancer
disease datasets.
S.no. Datasets C C(f ) λ k δ

1 AD Vs DC 0.5 4 1 3 0.01
2 AD Vs LC 2 1 1 4 0.01
3 AD Vs MC 0.125 2 1 10 0.05
4 AD Vs PC 1 0.0625 1 10 0.05
5 FA Vs DC 1 4 1 1 0.1
6 FA Vs LC 0.03125 2 1 3 0.01
7 FA Vs MC 0.03125 0.25 1 6 0.01
8 FA Vs PC 4 0.25 1 9 0.01
9 PD Vs DC 0.25 32 1 4 0.05
10 PD Vs LC 0.25 0.03125 1 1 0.05
11 PD Vs MC 0.0625 0.5 1 4 0.05
12 PD Vs PC 0.25 0.03125 1 8 0.1
13 TA Vs DC 32 1 1 3 0.05
14 TA Vs LC 0.03125 8 1 2 0.01
15 TA Vs MC 0.25 16 1 3 0.05
16 TA Vs PC 2 4 1 2 0.05
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Table 21
Comparisons of F1 scores for breast cancer disease dataset.

OCSVM
(Schölkopf
et al., 2001)

SVDD (Tax &
Duin, 2004)

OCKELM (Leng
et al., 2015)

VOCKELM
(Mygdalis et al.,
2016)

ML-OCKELM (Dai
et al., 2019)

DKRLVOC

AN Vs DC 79.07 71.43 76.6 75 79.17 79.17
AN Vs LC 58.06 49.12 63.64 63.64 61.76 60.61
AN Vs MC 64.41 50.98 61.76 57.58 60.61 63.64
AN Vs PC 72.73 66.67 76.6 76.6 74.51 76.92
FA Vs DC 67.2 66.12 69.7 81.82 71.21 72
FA Vs LC 74.58 72.07 76.67 76.67 75.63 78.33
FA Vs MC 71.19 67.86 72 72.44 73.6 73.6
FA Vs PC 75.68 72.9 76.67 77.05 77.69 81.03
PT Vs DC 59.7 65.57 64.52 73.08 66.67 76
PT Vs LC 57.58 56.25 63.89 61.11 61.97 66.67
PT Vs MC 52.94 49.23 60.53 60.53 61.97 58.82
PT Vs PC 66.67 61.82 66.67 66.67 70 66.67
TA Vs DC 52.87 54.76 55.56 55.32 55.56 63.49
TA Vs LC 53.52 52.17 60.53 65.82 60.53 65.82
TA Vs MC 51.85 51.85 60.47 60.47 65.82 67.53
TA Vs PC 59.46 62.86 59.74 63.49 54.79 60.27

Average 63.59 60.73 66.6 67.96 66.97 69.41

References

Baldi, P., & Hornik, K. (1989). Neural networks and principal component analysis:
Learning from examples without local minima. Neural Networks, 2(1), 53–58.

Bi, Xin, Ma, He, Li, Jianhua, Ma, Yuliang, & Chen, Deyang (2018). A positive and
unlabeled learning framework based on extreme learning machine for drug-
drug interactions discovery. Journal of Ambient Intelligence and Humanized
Computing.

Bi, X., & Wang, H. (2019). Early alzheimer’s disease diagnosis based on EEG
spectral images using deep learning. Neural Networks.

Bishop, C. M., et al. (1995). Neural networks for pattern recognition. Oxford
University Press.

Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991). ART 2-A: An adaptive
resonance algorithm for rapid category learning and recognition. Neural
Networks, 4(4), 493–504.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3),
27:1–27:27, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Christina, P. (2018). The state of the art of dementia research: New frontiers: World
alzheimer’s report 2018, Alzheimer’s Disease International.

Cohen, G., Hilario, M., Sax, H., Hugonnet, S., Pellegrini, C., & Geissbuhler, A.
(2004). An application of one-class support vector machine to nosocomial
infection detection. Studies in Health Technology and Informatics, 107(Pt 1),
716–720.

Cuppens, K., Karsmakers, P., Van de Vel, A., Bonroy, B., Milosevic, M., Luca, S., et
al. (2014). Accelerometry-based home monitoring for detection of nocturnal
hypermotor seizures based on novelty detection. IEEE Journal of Biomedical
and Health Informatics, 18(3), 1026–1033.

Dai, H., Cao, J., Wang, T., Deng, M., & Yang, Z. (2019). Multilayer one-class
extreme learning machine. Neural Networks.

Désir, Chesner, Bernard, Simon, Petitjean, Caroline, & Heutte, Laurent (2013).
One class random forests. Pattern Recognition, 46(12), 3490–3506.

Diehl, C. P., & Hampshire, J. B. (2002). Real-time object classification and novelty
detection for collaborative video surveillance. In Proceedings of the 2002
international joint conference on neural networks (vol. 3) (pp. 2620–2625).
IEEE.

Dreiseitl, S., Osl, M., Scheibböck, C., & Binder, M. (2010). Outlier detection with
one-class SVMs: An application to melanoma prognosis. In AMIA annual
symposium proceedings (vol. 2010) (p. 172). American Medical Informatics
Association.

Duin, R. P. W. (1976). On the choice of smoothing parameters for Parzen
estimators of probability density functions. IEEE Transactions on Computers,
(11), 1175–1179.

Gautam, Chandan, Tiwari, Aruna, Suresh, Sundaram, & Iosifidis, Alexandros
(2018). Multi-layer kernel ridge regression for one-class classification. CoRR,
abs/1805.07808.

Ghaoui, L. E., Jordan, M. I., & Lanckriet, G. R. (2003). Robust novelty detection
with single-class MPM. In Advances in neural information processing systems
(pp. 929–936).

Hertz, J., Palmer, R. G., & Krogh, A. S. (1991). Introduction to the theory of neural
computation (1st ed.). Perseus Publishing.

Hochbaum, D. S., & Shmoys, D. B. (1985). A best possible heuristic for the
k-center problem. Mathematics of Operations Research, 10(2), 180–184.

Hwang, H.-G., Choi, H.-J., Lee, B.-I., Yoon, H.-K., Nam, S.-H., & Choi, H.-K. (2005).
Multi-resolution wavelet-transformed image analysis of histological sections
of breast carcinomas. Analytical Cellular Pathology, 27(4), 237–244.

Iordanescu, G., Venkatasubramanian, P. N., & Wyrwicz, A. M. (2012). Automatic
segmentation of amyloid plaques in MR images using unsupervised support
vector machines. Magnetic Resonance in Medicine, 67(6), 1794–1802.

Japkowicz, N., Myers, C., Gluck, M., et al. (1995). A novelty detection approach
to classification. In Proceedings of the fourteenth international joint conference
on artificial intelligence (pp. 518–523).

Jiang, M. F., Tseng, S. S., & Su, C. M. (2001). Two-phase clustering process for
outliers detection. Pattern Recognition Letters, 22(6–7), 691–700.

Juszczak, P., Tax, D. M., Pe, E., Duin, R. P., et al. (2009). Minimum spanning tree
based one-class classifier. Neurocomputing, 72(7–9), 1859–1869.

Khan, S. S., & Madden, M. G. (2014). One-class classification: Taxonomy of study
and review of techniques. The Knowledge Engineering Review, 29(3), 345–374.

Khutlang, R., Krishnan, S., Whitelaw, A., & Douglas, T. S. (2010). Automated
detection of tuberculosis in Ziehl–Neelsen-stained sputum smears using two
one-class classifiers. Journal of Microscopy, 237(1), 96–102.

Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: Algorithms
and applications. The VLDB Journal–The International Journal on Very Large
Data Bases, 8(3–4), 237–253.

Lang, Rongling, Lu, Ruibo, Zhao, Chenqian, Qin, Honglei, & Liu, Guodong (2020).
Graph-based semi-supervised one class support vector machine for detecting
abnormal lung sounds. Applied Mathematics and Computation, 364, 124487.

Lee, G., Nho, K., Kang, B., Sohn, K. A., & Kim, D. (2019). Predicting Alzheimer’s
disease progression using multi-modal deep learning approach. Scientific
Reports, 9(1), 1952.

Leng, Q., Qi, H., Miao, J., Zhu, W., & Su, G. (2015). One-class classification with
extreme learning machine. Mathematical Problems in Engineering, 2015.

Liu, S., Liu, S., Cai, W., Pujol, S., Kikinis, R., & Feng, D. (2014). Early diagnosis
of Alzheimer’s disease with deep learning. In 2014 IEEE 11th international
symposium on biomedical imaging (pp. 1015–1018). IEEE.

Manevitz, L., & Yousef, M. (2007). One-class document classification via neural
networks. Neurocomputing, 70(7–9), 1466–1481.

Markou, Markos, & Singh, Sameer (2003a). Novelty detection: A review—part 1:
Statistical approaches. Signal Processing, 83(12), 2481–2497.

Markou, Markos, & Singh, Sameer (2003b). Novelty detection: A review—part 2::
Neural network based approaches. Signal Processing, 83(12), 2499–2521.

Markou, M., & Singh, S. (2006). A neural network-based novelty detector for
image sequence analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28(10), 1664–1677.

Mourão-Miranda, J., Hardoon, D. R., Hahn, T., Marquand, A. F., Williams, S.
C., Shawe-Taylor, J., et al. (2011). Patient classification as an outlier de-
tection problem: an application of the one-class support vector machine.
NeuroImage, 58(3), 793–804.

Mygdalis, V., Iosifidis, A., Tefas, A., & Pitas, I. (2016). One class classification
applied in facial image analysis. In 2016 IEEE international conference on image
processing (pp. 1644–1648). IEEE.

Parzen, E. (1962). On estimation of a probability density function and mode. The
Annals of Mathematical Statistics, 33(3), 1065–1076.

Pekalska, E., Tax, D. M., & Duin, R. (2003). One-class LP classifiers for dissim-
ilarity representations. In Advances in neural information processing systems
(pp. 777–784).

Pimentel, Marco A. F., Clifton, David A., Clifton, Lei, & Tarassenko, Lionel (2014a).
A review of novelty detection. Signal Processing, 99, 215–249.

Pimentel, M. A., Clifton, D. A., Clifton, L., & Tarassenko, L. (2014b). A review of
novelty detection. Signal Processing, 99, 215–249.

http://refhub.elsevier.com/S0893-6080(19)30393-4/sb1
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb1
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb1
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb2
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb2
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb2
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb2
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb2
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb2
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb2
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb3
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb3
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb3
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb4
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb4
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb4
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb5
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb5
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb5
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb5
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb5
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb7
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb7
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb7
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb8
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb8
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb8
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb8
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb8
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb8
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb8
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb9
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb9
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb9
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb9
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb9
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb9
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb9
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb10
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb10
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb10
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb11
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb11
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb11
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb13
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb13
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb13
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb13
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb13
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb13
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb13
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb14
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb14
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb14
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb14
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb14
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb15
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb15
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb15
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb15
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb15
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb16
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb16
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb16
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb16
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb16
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb17
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb17
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb17
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb18
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb18
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb18
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb19
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb19
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb19
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb19
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb19
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb20
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb20
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb20
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb20
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb20
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb22
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb22
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb22
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb23
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb23
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb23
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb24
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb24
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb24
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb25
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb25
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb25
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb25
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb25
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb26
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb26
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb26
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb26
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb26
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb27
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb27
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb27
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb27
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb27
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb28
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb28
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb28
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb28
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb28
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb29
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb29
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb29
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb30
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb30
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb30
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb30
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb30
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb31
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb31
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb31
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb32
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb32
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb32
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb33
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb33
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb33
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb34
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb34
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb34
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb34
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb34
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb35
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb35
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb35
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb35
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb35
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb35
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb35
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb36
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb36
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb36
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb36
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb36
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb37
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb37
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb37
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb38
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb38
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb38
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb38
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb38
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb39
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb39
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb39
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb40
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb40
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb40


216 C. Gautam, P.K. Mishra, A. Tiwari et al. / Neural Networks 123 (2020) 191–216

Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject
template estimation for unbiased longitudinal image analysis. NeuroImage,
61(4), 1402–1418.

Richhariya, B., & Tanveer, M. (2018). EEG signal classification using universum
support vector machine. Expert Systems with Applications, 106, 169–182.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C.
(2001). Estimating the support of a high-dimensional distribution. Neural
Computation, 13(7), 1443–1471.

Schölkopf, Bernhard, Williamson, Robert C, Smola, Alex J, Shawe-Taylor, John, &
Platt, John C (1999). Support vector method for novelty detection. In NIPS:
vol. 12, (pp. 582–588).

Shin, H. J., Eom, D. H., & Kim, S. S. (2005). One-class support vector machines-
an application in machine fault detection and classification. Computers &
Industrial Engineering, 48(2), 395–408.

Spanhol, F. A., Oliveira, L. S., Petitjean, C., & Heutte, L. (2016). A dataset for breast
cancer histopathological image classification. IEEE Transactions on Biomedical
Engineering, 63(7), 1455–1462.

Tanveer, M., Richhariya, B., Khan, R. U., Rashid, A. H., Khanna, P., Prasad, M., et al.
(2019). Machine learning techniques for the diagnosis of Alzheimer’s disease:
A review. ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) (in press).

Tarassenko, L., Hayton, P., Cerneaz, N., & Brady, M. (1995). Novelty detection for
the identification of masses in mammograms. In 1995 Fourth international
conference on artificial neural networks (pp. 442–447). IET.

Tax, D. M. J. (2002). One-class classification: Concept learning in the absence of
counter-examples.

Tax, D. M. J. (2018). DDtools, the data description toolbox for matlab. version
2.1.3.

Tax, D. M., & Duin, R. P. (2000). Data description in subspaces. In Proceedings
15th international conference on pattern recognition (vol. 2) (pp. 672–675).
IEEE.

Tax, D. M., & Duin, R. P. (2004). Support vector data description. Machine
Learning, 54(1), 45–66.

Westman, E., Muehlboeck, J. S., & Simmons, A. (2012). Combining MRI and CSF
measures for classification of Alzheimer’s disease and prediction of mild
cognitive impairment conversion. NeuroImage, 62(1), 229–238.

Ypma, A., & Duin, R. P. (1998). Support objects for domain approximation. In
International conference on artificial neural networks (pp. 719–724). Springer.

Zhang, Jianguo, Ma, Kai-Kuang, Er, Meng-Hwa, & Chong, Vincent (2004).
Tumor segmentation from magnetic resonance imaging by learning via one-
class support vector machine. In International workshop on advanced image
technology (pp. 207–211). Singapore.

Zhang, Yungang, Zhang, Bailing, Coenen, Frans, Xiao, Jimin, & Lu, Wenjin (2014).
One-class kernel subspace ensemble for medical image classification. EURASIP
Journal on Advances in Signal Processing, 2014(1), 17.

Zhou, J., Chan, K. L., Chong, V. F. H., & Krishnan, S. M. (2005). Extraction of brain
tumor from MR images using one-class support vector machine. In 2005 IEEE
engineering in medicine and biology 27th annual conference (pp. 6411–6414).

http://refhub.elsevier.com/S0893-6080(19)30393-4/sb41
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb41
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb41
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb41
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb41
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb42
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb42
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb42
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb43
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb43
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb43
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb43
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb43
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb44
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb44
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb44
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb44
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb44
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb45
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb45
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb45
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb45
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb45
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb46
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb46
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb46
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb46
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb46
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb47
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb47
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb47
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb47
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb47
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb47
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb47
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb48
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb48
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb48
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb48
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb48
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb49
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb49
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb49
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb50
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb50
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb50
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb52
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb52
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb52
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb53
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb53
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb53
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb53
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb53
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb54
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb54
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb54
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb56
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb56
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb56
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb56
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb56
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb57
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb57
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb57
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb57
http://refhub.elsevier.com/S0893-6080(19)30393-4/sb57

	Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data
	Introduction
	Preliminaries
	One-class SVM: OCSVM
	Support Vector Data Description: SVDD
	OCKELM
	VOCKELM
	ML-OCKELM

	The proposed method
	Experiments
	Experiments on small-size UCI datasets
	Experiments on biomedical small-size datasets
	Experiments on other small-size datasets

	Experiments on medium-size datasets
	Experiments on real-world biomedical images
	Alzheimer's disease classification
	Breast cancer classification


	Conclusion
	Reference data
	Acknowledgments
	References


