
Neurocomputing 350 (2019) 60–69 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Multi-stream multi-scale deep convolutional networks for Alzheimer’s 

disease detection using MR images 

Chenjie Ge 

a , ∗, Qixun Qu 

a , Irene Yu-Hua Gu 

a , Asgeir Store Jakola 

b , c 

a Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden 
b Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 
c Sahlgrenska University Hospital, Gothenburg, Sweden 

a r t i c l e i n f o 

Article history: 

Received 15 September 2018 

Revised 17 January 2019 

Accepted 11 April 2019 

Available online 14 April 2019 

Communicated by Dr Leyuan Fang 

Keywords: 

Alzheimer’s disease detection 

MR images 

Deep learning 

Deep convolutional networks 

Multi-scale feature learning 

Feature fusion 

Tissue region 

Feature boosting and dimension reduction 

a b s t r a c t 

This paper addresses the issue of Alzheimer’s disease (AD) detection from Magnetic Resonance Images 

(MRIs). Existing AD detection methods rely on global feature learning from the whole brain scans, while 

depending on the tissue types, AD related features in different tissue regions, e.g. grey matter (GM), white 

matter (WM), and cerebrospinal fluid (CSF), show different characteristics. In this paper, we propose a 

deep learning method for multi-scale feature learning based on segmented tissue areas. A novel deep 

3D multi-scale convolutional network scheme is proposed to generate multi-resolution features for AD 

detection. The proposed scheme employs several parallel 3D multi-scale convolutional networks, each 

applying to individual tissue regions (GM, WM and CSF) followed by feature fusions. The proposed fusion 

is applied in two separate levels: the first level fusion is applied on different scales within the same tissue 

region, and the second level is on different tissue regions. To further reduce the dimensions of features 

and mitigate overfitting, a feature boosting and dimension reduction method, XGBoost, is utilized before 

the classification. The proposed deep learning scheme has been tested on a moderate open dataset of 

ADNI (1198 scans from 337 subjects), with excellent test performance on randomly partitioned datasets 

(best 99.67%, average 98.29%), and good test performance on subject-separated partitioned datasets (best 

94.74%, average 89.51%). Comparisons with state-of-the-art methods are also included. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative

brain disease which affects people in various ways. The disease

gradually causes cognitive deterioration, and eventually failure to

carry out activities of daily life (ADL). Patients with AD frequently

also demonstrate behavioural and psychological problems, causing

additional distress for patients and caregivers [7] . It has been re-

ported that 26.6 million patients suffer from AD worldwide, among

which 56% were at the early stage. It is estimated that the popu-

lation of the AD patients will grow fourfold to 106.8 million [5] .

As a result, accurate diagnosis and treatment of AD is of great im-

portance. Clinical techniques for medical assessment of AD consist

of physical and neurobiological exams, Mini-Mental State Exami-

nation (MMSE) and so on. Recently, Magnetic Resonance Imaging

plays an integral part of diagnosis and differential diagnosis. Stud-

ies have also suggested that structural MRIs may play important

roles in AD detection [25] . 
∗ Corresponding author. 

E-mail address: chenjie@chalmers.se (C. Ge). 
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Some diagnostic systems were proposed for extracting features

rom MR images, followed by classifiers that distinguish different

ubjects, e.g., AD or normal control (NC) groups. Features from the

ntire brain scan were used for AD detection [4,22] . Meanwhile,

oxel-wise features of segmented brain tissues (GM, WM and CSF)

ere considered useful for detection of Alzheimer’s disease. Fan

t al. [10] first segmented the whole brain into GM, WM and CSF,

nd then voxel-wise densities were calculated and used for clas-

ification. Lerch et al. [17] fitted segmented GM and WM surfaces

sing deformable models. AD classification was based on cortical

hickness, measured by calculating distances between two corre-

ponding points in the GM and WM, respectively. These two meth-

ds were conducted by using analytical methods with hand-crafted

eatures (i.e. features were designed by human experts) from seg-

ented brain MR images. Since characterization of AD features

rom MRIs remains a challenging task even to clinicians/medical

ersonnel due to the lack of deep understanding on the pathologi-

al changes in the brain, deep learning methods can provide great

otential that surpass the methods using hand-crafted features. 

Although these methods are promising, significant challenges

emain and pose limitations to the clinical usage. One is that most

f these deep learning methods use an entire brain scan as the

https://doi.org/10.1016/j.neucom.2019.04.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.04.023&domain=pdf
mailto:chenjie@chalmers.se
https://doi.org/10.1016/j.neucom.2019.04.023
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nput. It is observed that changes indicating AD features are dif-

erent in different tissue regions (e.g. GM, WM and CSF). Another

ne is that AD features in different tissue regions are best charac-

erized by different scales (or resolution). Using a single scale for

eatures in all tissues is not the best strategy. Furthermore, it is no-

iced that applying multi-scale feature representation would lead

o significant increase in the feature dimension, and hence possi-

le “the curse of dimensionality” to the classifiers. Some feature

imension reduction strategy would be desirable to mitigate this

roblem. 

Motivated by the above issues, we propose a novel deep learn-

ng scheme to detect ADs by using multi-stream multi-scale con-

olution networks followed by multi-level feature fusion, feature

oosting and dimension reduction. Three-streams, consisting of

M, WM or CSF tissue regions, are fed separately as the inputs

or 3D multi-scale convolutional neural networks (MSCNNs). This

s followed by applying feature fusion, feature boosting and dimen-

ion reduction before the classifier is applied. The main contribu-

ions of the paper include: 

• A 3D multi-scale deep convolutional network (3D MSCNN) ar-

chitecture is proposed to generate multi-scale features with rich

semantics and image details for AD detection. 

• Multi-stream feature extraction from segmented tissue regions

is proposed to generate complementary features for AD detec-

tion. 

• A two-level feature fusion scheme is proposed, which includes

fusion in the scale level and the tissue level. 

• A feature boosting and dimension reduction method is pro-

posed for post-processing, where a tree boosting method XG-

Boost is used for feature dimension reduction. 

• Extensive empirical analysis of the performance is conducted,

where the proposed scheme is also compared with the state-

of-the-art methods. 

he reminder of the paper is organized as follows. Section 2 re-

iews the related work. Section 3 describes the proposed scheme

n detail. Section 4 shows experimental results and performance

valuation. Finally, the conclusion is given in Section 5 . 

. Related work 

Much effort has been made to use hand-crafted features for

D classification, where feature extraction is based on the knowl-

dge of human researchers. Yang et al. [28] studied potential

D-related MR image features based on independent component

nalysis. Support vector machine (SVM) was then used for clas-

ifying AD and NC subjects. Tong et al. [26] utilized the strategy

f multiple instance learning to classify dementia, where features

ere extracted using bags of MRI voxel patches and graph map-

ing. Arvesen et al. [3] studied methods of dimensional reduction

nd variations in the learning task to analyze structural MRI data,

here model of decision trees with principal component analysis-

ased dimensional reduction has achieved the best result for AD

etection. Liu et al. [19] proposed to extract multi-view features

sing selected templates. Encoding features were then obtained by

lustering subjects in each view space, followed by an ensemble of

VMs to classify the subjects. 

The recent development of deep learning methods for AD de-

ection has drawn significant attention since features are learned

utomatically. Brosche et al. [6] proposed to learn the manifold of

rain images using a deep brief network model, where similar pat-

erns in image groups were used to distinguish AD from NC sub-

ects. Sarraf el al. [22] employed the convolutional neural network

CNN) architectures LeNet and GoogleNet to detect Alzheimer’s dis-

ase using sMRI and fMRI brain scans. GoogleNet achieved good

erformance using imbalanced training data where the ratio of AD
nd NC scans is 5:1. Bäckström el al. [4] proposed an efficient and

imple 3D CNN architecture, where good result was achieved for

D detection on a dataset containing 340 subjects. Auto-encoders

AEs) were shown to be another effective method for learning un-

upervised genetic features, followed by fine-tuned task-specific

ayers for final classification. Suk and Shen [24] used stacked AEs

o extract features from MRI and PETs image regions and CSF

iomarkers, a multi-kernel SVM was then used for the classifica-

ion. Gupta et al. [11] extracted slice-wise feature of MR images

sing 2D CNN. Pre-trained sparse AE was proposed for further per-

ormance enhancement. Hosseini-Asl el al. [13] proposed to use a

re-trained 3D convolutional AE to learn generic features, followed

y a 3D CNN for refined training. Good performance was achieved

or AD/NC classification on a relatively small dataset. 

. Proposed methodology 

.1. Overview of the proposed scheme 

The main ideas behind the proposed scheme are to characterize

he AD features in a multi-stream multi-scale fashion. 

Using multi-stream inputs: This is motivated from the observa-

ion that different tissue regions contain different characteristics

or Alzheimer’s disease thus contribute differently to AD detection.

t would be desirable to handle them separately by networks with

ifferent settings. 

Using multi-scale features in each stream: This is motivated by

he observation that AD features for different tissue regions are

est described by different scales, e.g. the changes in CSF and GM

re very different for ADs. Further, retaining all resolution levels

or, from coarse to fine scales) of features enables one to obtain

eatures both from low-level of volume images and from high-level

emantic and structural change information in ADs. 

Using multi-level feature fusion: This is motivated by the obser-

ation that features from different tissue regions contribute and

omplement each other for the detection of AD. Furthermore, dif-

erent scale features contribute coarse-to-fine features for ADs.

ence, the proposed strategy is designed to fuse features in these

wo levels. 

Using feature boosting and dimension reduction: This is motivated

y the observation that adopting a multi-stream multi-scale net-

ork significantly increases the dimension of features, hence could

ead to “the curse of dimensionality” in the classifier given a fixed

edium-size dataset. Hence, we apply a feature boosting and di-

ension reduction method for mitigating this issue. 

Based on the above ideas, we proposed a novel 3D multi-stream

ulti-scale deep convolutional network (3D MSCNN) scheme and

rchitecture that extracts image-level and semantic-level features

or AD detection from different types of tissue regions, as shown

n the pipeline of Fig. 1 . The proposed scheme consists of three

treams of 3D MSCNNs, separately applied on the GM, WM and

SF tissue regions (though our experiments later show that the

wo-stream scheme on GM and CSF leads to the best tradeoff

etween the performance and the computation, see Section 4.3 ).

his is then followed by a two-level feature fusion method on the

xtracted features in different scales and tissue regions, respec-

ively. To improve the learned features, we apply a pre-training and

efined-training strategy in our scheme for the feature learning.

he first round of training is on the whole brain scans to obtain

he initial feature description, and the second round of training is

hen applied on different tissue regions to obtain refined tissue-

pecific features (see Section 3.6 for details). After these steps, a

eature boosting and dimension reduction method is applied that

s designed to retain the important/principal features while reduc-

ng the dimension of features. Finally, a classification step is used
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Fig. 1. The pipeline of the proposed Alzheimer’s disease detection scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Segmentation result of one sample image. First row from left to right: whole 

brain, GM. Second row from left to right: WM, CSF. 
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for AD detection by classifying between AD and NC subjects. In the

following, we describe these main contributions in details. 

3.2. Multi-stream networks on segmented tissue regions 

This section describes the individual streams of 3D MSCNN.

Since the brain with Alzheimer’s disease usually has shrinking gray

matter and a larger ventricle than normal ones, it is reasonable to

consider WM, GM and CSF as different feature sources since they

contain different types of features related to the disease. To obtain

richer features for AD detection, we propose to extract brain re-

gions (GM, WM and CSF) as the multi-stream inputs to the deep

neural networks in the multi-scale fashion. Let a original brain

scan be I , the three segmented brain regions are denoted as I GM 

,

I WM 

, I CSF , then the segmentation will result in the partitioned re-

gions, such that: 

I = { I GM 

I W M 

I CSF } (1)

where I GM 

⋃ 

I W M 

⋃ 

I CSF = I , I GM 

⋂ 

I W M 

⋂ 

I CSF = Ø. In the proposed

method, the brain segmentation is implemented by an existing

open software package FSL FAST [14] . FAST (FMRIB’s Automated

Segmentation Tool) is one of the softwares in FSL aimed at an-

alyzing FMRI, MRI and DTI brain imaging data using algorithms

based on hidden Markov random field model and Expectation-

Maximization (EM) algorithm [29] . The output is three masks for

GM, WM and CSF. Segmented brain regions are obtained by mul-

tiplying the masks with the original image. Example of segmented

brain tissue regions is shown in Fig. 2 . 

3.3. Multi-scale network for individual tissue regions 

In different tissue regions, the features are best characterized

by different scales since individual tissue regions change differ-

ently in AD patients thus cannot be characterized by a single scale.

Further, different scale f eatures may describe both image-level and

semantic-level features, which enrich the features for the detection

of AD. We propose a multi-scale deep CNN network for individual

tissue regions, as shown in Fig. 3 . Multi-scale convolutional lay-

ers are used for extracting multi-scale features, where the input is

the 3D brain MR images, followed by multi-scale fusion layers and

fully-connected (FC) layers, whose output is the predicted class la-

bels. 

The proposed architecture of multi-scale deep convolutional

layers consists of 8 layers (Conv1-Conv8) where the last 3 lay-

ers (Conv6-Conv8) are obtained from “skip connection” as shown

in Fig. 3 . The first 5 convolutional layers are designed by us-

ing conventional CNN structure, where feature maps are gener-

ated in a coarse-to-fine manner. We follow the design of VGG net

[23] where multiple small kernels like 3 ∗3 are stacked. This way

increases the depth of the network and hence is better at learn-

ing more complex features. Since semantically strong features are

often associated with relatively low resolution, while detailed im-

age features are often related to fine resolution, it is desirable to

obtain both type of features for AD classification. Therefore, skip
onnection is utilized to combine features from both shallow and

eep convolutional layers. More specifically, the outputs of convo-

utional layers 2,3,4 are added to the convolutional layers 7,6,5,

espectively. The upsampling (by a factor 2) is applied to the

onvolutional layers 5,6,7, based on the nearest neighbourhood

ethod. By using skip connection, semantically strong features are

ombined with high-resolution image-level features. Although fea-

ures of more scales can be generated using the same manner, only

our scales are used here because of the limitation of GPU memory

Titan XP 12 GB) when 3D scans are used as the input. 

To obtain multi-resolution features from multi-scale deep con-

olutional layers, we apply max-pooling (7 ∗6 ∗6) to each individual

ayers to retain the multi-resolution structure, followed by individ-

al fully-connected layers (i.e., 4 FC1’s) to refine these feature vec-

ors (after the flatten operation, see Fig. 3 ). The reason of applying

eparate pooling is that features from conv5 to conv8 layers have

ifferent resolution with image level and semantic level informa-

ion, therefore global pooling as used in ResNet [12] is not suit-

ble. After this, multi-scale feature vectors in the four FC1 layer

oxes are fed to the first-level fusion (see description in the next

ection). Noting that the two FC layers, FC2 and FC3, are only used

or the first-stage end-to-end training for individual tissue regions.

he aim is to obtain features from each individual 3D MSCNN.

hese two FC layers are therefore not used in the final scheme (see

ection 3.6 for details). 
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Fig. 3. The pipeline of the proposed 3D multi-scale deep convolutional neural network architecture. 
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Several existing networks might be looking similar to the pro-

osed architecture, e.g., auto-encoder in [16] , or the feature pyra-

id network in [18] . Therefore, it is worth mentioning their differ-

nce here. The proposed scheme differs from Le [16] by applying

upervised training rather than unsupervised one. The proposed

cheme differs from Lin et al. [18] by applying additional convo-

utional layers (3 ∗3 ∗3) before merging, resulting in more powerful

eature learning. Furthermore, the proposed fusion and classifica-

ion layers are specially designed for the dedicated task of AD clas-

ification. 

.4. Two-level feature fusion 

This section describes the fusion method for feature from dif-

erent scales as well as different tissue regions. Since different fea-

ures are obtained from different scales and different tissue re-

ions, feature fusion is conducted in two levels, one is on the scale

evel and another is on the tissue level. 

The first-level feature fusion is performed on different scales of

ach individual tissue type. This is done by concatenating features

rom different scales, as shown in the gray box around FC1 layers

n Fig. 2 . Let f 
s i 
j 
, i = 1 , . . . , 4 , be the features from four different

cales for a given j th tissue region, j ∈ { GM, WM, CSF }, then the fu-

ion may be described by concatenating the feature vectors (from

 FC1’s) as: 

 j = [ f s 1 
j 

f s 2 
j 

f s 3 
j 

f s 4 
j 

] (2)

he second-level fusion is performed on features from different tis-

ue regions. This is done by concatenating the feature vectors f j ,

j = GM, W M, CSF , obtained from different streams of 3D MSCNNs.

et f be the feature vector after the second-level fusion, then it can

e obtained as: 

 = [ f GM 

f W M 

f CSF ] (3)

or two-level feature fusion, a simple concatenation approach is

sed as these fused features will be refined by feature boosting

nd dimension reduction process. 

.5. Feature boosting and dimension reduction 

Enriched features from multi-scale convolutional layers and dif-

erent tissue regions may have high correlations hence redundant

or the AD classifier. This may lead to “the curse of dimensional-

ty” in the classifier, as the fused feature dimension is very high.
mong many possible choices of dimension reduction, we chose a

eature boosting and dimension reduction method similar to [8] in

ur scheme, where the features are ranked according to their im-

ortance for AD classification. Only features with high importance

re chosen for the final classification. 

The gradient boosting-based machine learning method XGBoost

8] uses an ensemble model by summing up the prediction val-

es from multiple decision trees growing during the iterations.

et { (f m 

, y m 

) , m = 1 , . . . , n } , be the given dataset for the training,

here f m 

is the feature vector of m th brain scan, y m 

is the label.

et ˆ y m 

( j) 
be the predicted label at the j th iteration, then a new tree

tructure q j is added to minimize the following objective function

 

( j ) : 

 

( j) = 

n ∑ 

m =1 

l(y m 

, ˆ y m 

( j−1) + q j (f m 

)) + �(q j ) (4)

here l is a loss function measuring the difference between the

redicted and the true label, � = γ J + 1 / 2 λ‖ w ‖ 2 is the regular-

zation term that penalizes the complexity of the model, where

 is the leaf weights in the tree T , and J is the number of

eaves in the tree T . By applying XGBoost, feature importance can

e obtained by a score indicating how valuable each feature is

hen constructing a boosted decision tree. The more a feature is

sed for the decision, the higher is its relative importance. The gain

fter the tree split can be obtained as 

 = 

g 2 L 

h L + λ
+ 

g 2 R 

h R + λ
− g 2 

h + λ
(5) 

here g and h are the first and second order gradient on the loss

unction l ( ·) with respect to the predicted label, the subscript L and

 are the left and right nodes after the tree split. In a single deci-

ion tree, the relative influence of the k th feature in the tree T is

omputed as: 

 k (T ) = 

J−1 ∑ 

i =1 

G i 1 (v i = k ) (6)

here the summation is over all nonterminal nodes i, i = 1 , . . . , J −
 , in the tree T, v i is the feature used for splitting associated with

he node i , and G i is the corresponding gain after the splitting.

he feature importance is then averaged across all decision trees

 p , p = 1 , . . . , M, within the model. 
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Algorithm 1 The proposed scheme for AD detection. 

DATA PREPARATION 

1. Preprocessing of brain scans: cortical reconstruction, image size 

normalizationand intensity normalization; 

2. Segmentation of brain scans into three tissue regions: GM, WM 

and CSF; 

3. Splitting the dataset into training, validation and testing subsets 

(70%, 15%, 15%). 

TRAINING 

4. Pre-training: 

Pre-training the model on the entire area of brain scans on the 

training and validation subsets, using 3D MSCNN; 

5. Stage-1 refined training and level-1 fusion: 

For TissueRegion=GM, WM, CSF do: 

5.1 Stage-1 refined-training on TissueRegion, using 3D MSCNN 

coefficients obtained from the initial model in pre-training 

stage; 

5.2 Level-1 fusion on the multiscale feature vector (after ‘flat- 

ten’) related to the TissueRegion; 

End {For} 

6. Level-2 fusion, feature boosting, and stage-2 training: 

6.1 Level-2 feature fusion on GM, WM, CSF to form a long fea- 

ture vector; 

6.2 Applying feature boosting XGBoost for reducing feature di- 

mensions; 

6.3 Stage-2 training of FC layers as the classifier. 

Output : trained coefficients in 3DCNN models and FC layers, 

trained indices in XGBoost. 

TESTING 

7. For TissueRegion=GM, WM, CSF do: 

7.1 Extract features from TissueRegion on the testing brain scan; 

7.2 Level-1 fusion on the multiscale feature vector (after ‘flat- 

ten’) related to the TissueRegion; 

End {For} 

8. Level-2 feature fusion on GM, WM, CSF to form a long feature 

vector; 

9. Apply feature reduction on testing brain scan using the trained 

XGBoost; 

10. Apply trained FC layers for the classification. 

Output : class labels 
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 k = 

1 

M 

M ∑ 

p=1 

U k (T p ) (7)

Each feature in f is ranked according to its relative importance in-

dicated by (7) , followed by a threshold to select a certain num-

ber of features for the subsequent classification. It is worth noting

that important features are selected and recorded based on train-

ing data. For testing, feature indices obtained in the training pro-

cess are directly used. Finally, selected features are fed to a two-

layer neural network for final AD classification. 

3.6. Implementation issues 

Data pre-processing: Pre-processing is an important step in AD

detection as the original scan may contain other irrelevant parts

to the brain such as neck and skull, which may hamper the fea-

ture learning of the brain. The pre-processing consists of three

steps, cortical reconstruction, image size normalization and inten-

sity normalization. Cortical reconstruction was conducted by the

dataset provider. It is done by using the recon-all function from the

FreeSurfer software package [27] including a set of pre-processing

functions such as motion correction and conform, non-uniform in-

tensity normalization, Talairach transform computation, intensity

normalization, skull and neck removal. It is observed that the origi-

nal images have much zero-value background, which is not helpful

for training the network and increases computational cost. Thus, it

is necessary to remove background regions and rescale samples.

The image size normalization has the following two steps. First

each 3D image volume is trimmed according to the largest brain

size in the dataset. After that, trimmed 3D images are then resized

to 112 ∗96 ∗96 as the inputs. The last step of pre-processing is the

intensity normalization that normalizes image intensities to [0,1]. 

Training issues: 

(a) Pre-training and refined-training strategy: To capture the

characteristics of different tissue regions, pre-training and refined-

training strategy is applied for effective feature learning. That is,

3D scans with whole brain images from the training and the vali-

dation subsets are fed to a 3D MSCNN for pre-training, followed by

refined-training using separate streams of segmented brain tissue

regions (e.g., WM, GM or CSF) as the inputs. The refined-training is

done by initializing the network with pre-trained coefficients and

using a smaller learning rate and fewer epochs for the training.

The advantage of this training strategy is that the network ini-

tially trained by the whole brain scans has already learned some

prior knowledge from GM, WM and CSF. By pre-training the net-

work using the whole brain scans and refined-training using seg-

mented tissue regions GM, WM and CSF, more effective features

can be learned as compared to training the network directly from

the scratch with segmented tissue regions. 

(b) Multi-stage training: Due to using 3D MSCNNs with multi-

stream inputs, and the constraint in GPU memory (Titan XP with

12 GB memory was used), it is not feasible to perform end-to-end

training in the proposed scheme. Therefore, the refined-training is

further split into two stages. In stage-1 refined-training, each in-

dividual stream of 3D MSCNN is trained by the regions from a

selected tissue type (e.g. WM; GM or CSF) followed by the first

level of future fusion. This is done in an end-to-end fashion on

each individual stream. In stage-2 of refined-training, multi-scale

feature vectors from all 3D MSCNN streams (where 3D MSCNN co-

efficients are fixed from the stage-1 refined-training) are fused and

then used as the inputs. Stage-2 refined-training includes apply-

ing XGBoost for feature boosting and dimension reduction, and FC

(fully connected) layers as the classifier. The same way of splitting

training, validation and testing subsets is applied in the training,

including pre-training and both stages of refined-training. 
Algorithm 1 summarizes the pseudo code of the proposed AD

etection scheme. 

. Experimental results and performance evaluation 

.1. Setup and dataset used 

Setup: KERAS library [9] with TensorFlow [1] backend was used

or network training. Network weights were learnt using Adam op-

imizer. The following hyper-parameters were chosen after care-

ully tuning the networks through experiments. Number of epochs

n pre-training was 150. Step-wise learning rate was used, it was

et to 0.001 during epoch 1–50, 0.0001 during epoch 51–100,

nd 0.0 0 0 01 during epoch 101–150. Number of epochs in refined-

raining was 50, where learning rate is 0.0 0 01 during epoch 1–25,

.0 0 0 01 during epoch 26–50. Dropout rate used in flatten layers

nd concatenation layer was set to 0.5. For all the layers except

he output layer, L2 regularization was used with regularization

arameter as 0.0 0 0 05. Batch size was set to 8. Batch normaliza-

ion momentum was 0.9. Initialization method for all layers was

lorot_uniform. The conventional criteria for accuracy and cross-

ntropy loss [15] were used for the performance evaluation. 
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Table 1 

Description of ADNI dataset used in our experiments. 

Class # Subjects #3D MRI Scans 

AD 198 600 

NC 139 598 

Total 337 1198 

Table 2 

Training accuracies in different phases. 

Training phase Region of tissue type Accuracy 

Pre-training whole brain images 98.08% 

Stage-1 refined-training GM 98.44% 

WM 99.88% 

CSF 99.52% 

Stage-2 refined-training XGBoost of fused features of 

all streams 

99.99% 

Table 3 

Classification performance on the test set from using different tissue type combina- 

tions: overall performance and the performance on individual class AD. 

# Tissue Tissue types Testing AD Detection AD False 

regions Performance rate (%) alarm (%) 

(Overall) 

1 GM 88.95 91.01 13.25 

WM 87.21 91.01 16.87 

CSF 92.44 94.38 9.64 

2 WM + CSF 88.95 91.01 13.25 

GM + WM 88.37 86.52 9.64 

GM + CSF 94.74 95.50 6.02 

3 GM + WM + CSF 91.86 93.26 9.64 
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Fig. 4. Overall training accuracy from pre-training, and stage-1 refined-training on 

individual streams of 3D MSCNNs using different tissue type regions. 
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Dataset: Experiments were conducted on a ADNI dataset from

lzheimer’s Disease Neuroimaging Initiative [2] . In our experi-

ents, T1 MRI scans of 2 classes (AD and NC) are used for classifi-

ation. Detailed information of the dataset is described in Table 1 . 

Observing Table 1 , one can see that for each subject, there is

n average of 3.5 scans, which were made at different times. The

hole dataset is then partitioned to 70%, 15%, 15% to form training

et, validation set and testing set, respectively. 

.2. Training performance in different stages 

As described previously (see Section 3.6 ), the training process

onsists of pre-training and two stages of refined-training, Table 2

hows the performance from each of these steps. 

Observing the results in Table 2 , one can see that the training

erformance using regions from each individual tissue type is al-

eady very high in the stage-1 refined-training, hence, 2nd level

eature fusion from different streams and stage-2 refined-training

annot anticipate much gain in the training. 

However we shall describe in the subsequent text that signif-

cant advantage is obtained on the test set through fusion of fea-

ures in different streams (i.e. second-level fusion, see Table 3 ) and

tage-2 refined-training (e.g., XGBoost for significant feature reduc-

ion while maintaining high performance, see Table 12 ). 

One possible reason for very high training performance and the

ap to the testing performance (see Section 4.4 ) is probably due to

he relatively moderate size of our dataset available for download

nd public use. 

Since the test performance is related to the generalization per-

ormance of the classifier, we only include the evaluation of test

erformance in the remaining studies. 

Furthermore, Fig. 4 shows the overall training accuracies as a

unction of epochs from the pre-training, stage-1 refined-training

n individual streams. Noting that in the training, the learning rate

or refined-training was different from pre-training. From the re-
ulting curves in Fig. 4 , one can observe that refined-training per-

ormance converges very fast (50 epochs is sufficient) due to the

se of pre-training. 

.3. Determine the number of streams by selecting tissue type 

ombinations 

In this section, we study the use of different combination of

issue types in the network. The aim of the tests is to determine

he best combination of streams used in the proposed scheme. 

To evaluate the overall performance on the testset,

able 3 shows the overall test performance by using different

ypes of tissue combinations, as well as the test performance on

ndividual AD detection and false alarm rate through examining

he individual classes (AD vs NC) in the given tissue combination. 

Observing the 3rd column in Table 3 , one can see that the tis-

ue information fusion on GM and CSF has yielded the best test

erformance. This is different from the intuitive guess that a com-

ination of all three tissue types would result in the best perfor-

ance. One possible explanation is due to over-fitting. That is, us-

ng fused features from three types of tissues is more likely to

esult in over-fitting, as tissue information fusion on three types

eads to a much higher number of features as compared with that

f two type combination, while the training dataset is not suffi-

iently large. 

Observing the last 2 columns of Table 3 , tissue information fu-

ion on GM and CSF also achieved the highest AD detection rate

nd lowest false alarm on the testing set. It indicates that tissue

nformation fusion of GM and CSF are most effective for AD detec-

ion, while adding more tissue type (WM) does not improve the

verall performance. 

Hence, in the subsequent studies, we only focus on using two

treams (GM and CSF) for the remaining experiments. 

.4. Performance of the proposed method 

To test the effectiveness of the proposed scheme, experiments

ere conducted on two sets of dataset partition methods: case

tudy-1 using random partition, and case study-2 using subject-

eparated partition. For case study-1, all brain scans were mixed

ogether without considering subject information when partition-

ng them into training, validation and testing sets. For case study-

, brain scans from the same subject were used in one kind of set

training, validation or testing) without mixed usage. This means

hat the same subject in the training set would not appear in the

alidation set or testing set. 

Case study-1: Results using random dataset partition 

To test the performance of the proposed method, Table 4

hows the performance of the proposed method when dataset was
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Table 4 

Overall test accuracies from case study-1, where dataset is randomly partitioned. 

For each run, the training/validation/test subsets were re-partitioned. All the results 

were obtained when the training parameters were fixed at epoch = 50. The average 

value and the standard deviation | σ | are also included. 

Run 1 2 3 4 5 Average (| σ |) 

Accuracy (%) 97.33 99.00 99.67 98.56 96.89 98.29 (1.04) 

Table 5 

Confusion matrix on the testing set for individual classes AD and NC in case study-1 

(from the best performance run 3 in Table 4 ). 

ˆ AD ˆ NC 

AD 99.56% 0.44% 

NC 0.22% 99.78% 

Table 6 

Overall test accuracies from case study-2, where dataset was randomly partitioned 

according to subjects. For each run, the training/validation/test subsets were ran- 

domly re-partitioned according to subjects. All results were obtained when the 

training parameters were fixed at epoch = 50. The average value and the standard 

deviation | σ | are also included. 

Run 1 2 3 4 5 Average (| σ |) 

Accuray (%) 94.74 88.07 85.64 93.53 85.56 89.51 (3.90) 

Table 7 

Confusion matrix on the testing set for individual classes AD and NC in case study-2 

(from the best performance run 1 in Table 6 ). 

ˆ AD ˆ NC 

AD 95.50% 4.50% 

NC 6.02% 93.98% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Summarizing the results (in tables) from different tests in Section 4.5 . These tests 

were aimed at examining different settings and their impact to the proposed 

scheme. 

Setting Results 

(1) With/without brain segmentation Table 9 

(2) Fusion of multi-scale features Table 10 

(3) Network with/without pre-training Table 11 

(4) With/without feature reduction Table 12 

Table 9 

Test performance with/without segmentation: overall performance, and perfor- 

mance on individual class AD. 

Segmentation Overall test AD detection AD false 

accuracy (%) rate (%) alarm (%) 

With 94.74 95.50 6.02 

Without 90.12 91.01 10.84 

Table 10 

Test performance from different scale levels: overall performance and the perfor- 

mance on the individual class AD. 

Scale Overall test AD Detection AD false 

level accuracy (%) rate (%) alarm (%) 

1 91.28 94.38 12.05 

2 84.88 94.38 25.30 

3 90.70 93.26 12.05 

4 89.53 89.89 10.88 

1 + 2 + 3 + 4 94.74 95.50 6.02 
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partitioned randomly for 5 times. To examine the performance on

the individual class, especially on AD, Table 5 shows the confusion

matrix for the test performance from the best performance run. 

Observing Tables 4 and 5 , the proposed method is shown to be

effective with high classification accuracy (99.67%), and high AD

detection rate (99.56%) with low false alarm rate (0.22%) on the

testing set. Observing Table 4 , the standard deviation of the test

accuracies on different partitions is small, which shows the robust-

ness of the proposed scheme. 

Case study-2: Results from using subject-separated dataset parti-

tion 

The performance of the proposed scheme was tested for mul-

tiple runs, where partitions of training, validation and test subsets

in the dataset were done randomly according to subjects, i.e., brain

scans of each subject belong only to either the training or the test

subset but not both. A random partition was done in each of the 5

runs. Table 6 shows the performance on the testing set. To examine

the performance on the individual class, especially on AD, Table 7

shows the confusion matrix for the performance on the testing set

from the best performance run. 

Observing Table 6 , the proposed scheme is shown to be effec-

tive with relatively high average classification accuracy (89.51%),

where the highest is 94.74% and lowest 85.56%. This shows the

proposed method is still rather robust, however, the performance

is much lower than that in case study-1. It is also noticed that the

standard deviation of test accuracies from different runs has in-

creased to 3.90%, this is probably due to the moderate size of our

training dataset. The results in Table 7 show that AD and NC de-

tection rates are relatively balanced, also the AD detection rate was

high (95.50%) and the false alarm rate was relatively low (6.02%)

though there is a significant increase as compared with that in

case study-1. Since in case study-1 the dataset was partitioned

randomly according to brain scans, such drop in performance is
xpected since scans of the same person may appear in both train-

ng and testing set in case study-1, and these scans may have high

orrelation even though they were made at different times. 

.5. Performance influenced by different network/parameter settings 

In this subsection, empirical test results are included which

ere obtained from using different network and settings. The aim

f these tests is to gain deep insight into the proposed scheme

hrough different types of empirical tests. Table 8 summarizes the

ist of tables in the section below where results from different

ypes of tests were included. 

(1) With/without brain tissue segmentation: 

To examine the impact of brain tissue segmentation, compari-

on was made with the method using whole brain images as the

nput, followed by only scale-level feature fusion, feature boosting

nd feature dimension reduction. Table 9 shows the comparison of

verall test performance, as well as the test performance on the

ndividual AD class. 

Observing Table 9 , the proposed scheme with segmentation is

hown to have achieved better test accuracy (in the 2nd column),

ith higher AD detection rate and lower false alarm rate (in the

rd and 4th column). It indicates that segmenting the brain into

ifferent tissue regions for feature learning, combined with feature

usion is effective for AD detection. 

(2) Fusion of multi-scale features: 

To examine the impact of fusion of multi-scale features, tests

ere conducted using single-scale features and multi-scale com-

ined features, Table 10 shows the overall test performance in dif-

erent scale levels, as well as the test performance on the individ-

al class AD in different scale levels. 

Observing Table 10 , the proposed scheme with multi-scale fea-

ure fusion resulted in the highest overall testing accuracy, also the

ighest detection rate (95.50%) and lowest false alarm rate (6.02%)

or the individual class AD. 

(3) Network with/without pre-training: 
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Table 11 

Test performance with/without pre-training: overall performance and the perfor- 

mance on the individual class AD. 

Pre-training Overall test AD detection AD false 

accuracy (%) rate (%) alarm (%) 

With 94.74 95.50 6.02 

Without 91.28 94.38 12.05 

Table 12 

Test performance with/without feature boosting and dimension reduction: overall 

performance and the performance on the individual class AD. 

XGBoost Dimension Overall testing AD detection AD false 

of features accuracy (%) rate (%) alarm (%) 

with 207 94.74 95.50 6.02 

without 2048 94.19 94.38 6.02 
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Table 13 

Comparison of the proposed scheme with 6 existing state-of-the-art methods on 

random dataset partition. 

Method # Subjects # Brian Scans Accuracy (%) 

AD/NC/MCI AD/NC/MCI AD vs. NC 

3D-AE-CNN [13] 70/70/70 − 97.60 

AE + [20] 65/77/169 − 87.76 

SAE [11] 200/232/411 755/1278/2282 94.74 

ICA [28] 202/236/410 − 85.70 

MIL [26] 198/231/405 − 88.80 

3DCNN [4] 198/139/ − 600/598 98.74 

Proposed 198/139/ − 600/598 99.67 

Table 14 

Comparison of the proposed scheme with 2 existing state-of-the-art methods on 

subject-separated dataset partition. 

Method # Subjects #Scans Accuracy (%) 

AD/NC/MCI AD/NC/MCI AD vs. NC 

SAE-CNN [21] 755/755/755 755/755/755 95.39 

3DCNN [4] 198/139/ − 600/598 90.11 

Proposed 198/139/ − 600/598 94.74 

Table 15 

Processing time for the training and testing. 

Processing Step Time (second) 

Training Tissue segmentation 1.14 (one 3D brain scan) 

Pre-training on each 3D 

brain 

50.05 (one epoch on training set) 

Stage-1 refined-training on 

each individual stream of 

tissue region 

50.00 (one epoch on training set) 

Feature fusion 0.14 (one 3D scan on training set) 

XGBoost feature reduction 1.0 (whole training set) 

FC layers classifier training 1.0 (whole training set) 

Testing Tissue segmentation 1.14 (one 3D brain scan) 

Feature 

extraction + classification 

0.141 (one 3D brain scan) 
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To examine the impact of pre-training using whole brain scans,

omparisons were made with the scheme directly using GM and

SF for training without pre-training. Table 11 shows the compar-

son of the overall test performance as well as the performance

n the individual AD class, from the proposed schemes with and

ithout pre-training. 

Observing Table 11 , applying pre-training has improved the

verall accuracy (by 3.46%) on the testing set. Further, the perfor-

ance on the individual class AD showed high detection rate (im-

roved by 1.12%) with a low false alarm rate (decreased by 6.03%).

hese results also suggest that the whole brain scan contains some

rior knowledge about different tissue regions. By pre-training the

etwork using whole brain scan and refined training the network

sing GM and CSF, more effective features can be learned com-

ared to training the network from scratch with GM and CSF. 

(4) With/without feature boosting and dimension reduction: 

To investigate the impact of applying XGBoost for feature boost-

ng and dimension reduction, comparisons were made for the pro-

osed scheme with and without applying this step. Table 12 shows

he comparison of the overall test performance using the proposed

cheme with/without feature boosting and dimension reduction. To

urther examine the performance on individual classes, especially

n the AD class, Table 12 also shows the AD detection rate and

alse alarm rate on the testing set from the scheme with/without

eature boosting and dimension reduction. 

Comparing Table 12 , the performance from the proposed

cheme by using feature boosting and dimension reduction has

esulted some improvement though not significant. Observing

able 12 , an improvement of 1.12% on AD detection accuracy was

btained, which indicates that feature boosting and dimension re-

uction has reduced potential over-fitting by removing irrelevant

eatures thus improved the classification performance. 

.6. Comparisons with state-of-the-art methods 

Comparisons were made with eight existing methods on two

inds of settings, random dataset partition and subject-separated

ataset partition. Results are shown in Tables 13 and 14 . 

Observing Table 13 , the proposed scheme achieved the best re-

ult compared to other state-of-the-art methods. It is worth men-

ioning that AE + [20] used both MRI and PET data while the pro-

osed method used only T1 MRI scans. Still, the proposed method

chieved the best result. Observing Table 14 , when dataset was

artitioned by separating different subjects, the proposed scheme

howed comparable performance to other two methods. Although

ost methods in Tables 13 and 14 include Mild Cognitive Impair-

ent (MCI) patients in their experiments, we only compare the
roposed method with their AD vs. NC performance, so such com-

arison is fair. 

.7. Processing Time 

All experiments were conducted on a workstation with Intel-

7 3.40 GHz CPU, 48 G RAM and an NVIDIA Titan Xp 12 GB GPU,

ithout code optimization. Detailed processing time of each step

n the training and testing process is shown in Table 15 , where

he most time-consuming part is the training. The total training

ime was 7508 + 50 0 0 + 117 + 2 = 12,627 s (or, 3h 30 min and

7 s), where the pre-training using 150-epochs took 50.05 ∗150 =
508 s, the 1st-stage refined-training using 50 epochs on 2 streams

f GM and CSF regions took 50 ∗50 ∗2 = 50 0 0 s, feature fusion took

.14 ∗838 = 117.4 s, and finally XBGoost plus FC layer training took

.0 seconds. For testing time, it took 1.14 + 0.141 = 1.281 s for each

nput of one 3D brain scan. 

.8. Discussion 

From various empirical test results given above, we have

emonstrated that the proposed scheme is effective for

lzheimers’ disease detection. From different sets of experiments

nd the results, we may also draw the following conclusions: 

• Overall performance: The proposed scheme is effective, with

an excellent performance in case study-1 (highest 99.67%, av-

erage 98.29%), and good performance in case study-2 (highest

94.74 %, average 89.51%). 
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There is a drop of performance (average 8.78%) in case study-

2 as comparing with case study-1, since AD detection is more

challenging when training and testing subsets are partitioned

according to subjects rather than 3D image scans. 

• Individual class performance: Classification rates (also false

alarms) are well balanced in the AD and NC classes in both

case studies. For AD class, the best detection rate is 99.56% (or

95.50%), with false alarm 0.22% (or 6.02%) in 5 runs of case

study-1 (or case study-2). There is a drop in AD detection rate

and a big increase in false alarm in case study-2. 

• Combining different tissue regions: Empirical tests using two

streams, GM and CSF, have generated the best performance

(94.74%), as comparing with the performance (91.86%) using

three streams (GM, WM and CSF). The latter could probably be

explained as due to overfitting, since three streams of multi-

scale CNNs generate a very high dimension of feature vector,

while the size of training dataset is moderate. 

• Using segmented tissue regions: Empirical tests show that us-

ing segmented tissue regions in separate streams has led to an

increase in overall test performance (about 4.62%). 

• Using multiscale CNNs: Empirical tests show an increase in the

test performance as comparing with those using only one scale

( ≥ 3.46%). This is probably due to different levels containing

semantic and many detailed tissue features. 

• Pre-training: Whole 3D scan-based pre-training followed by tis-

sue region-based refined-training is effective. It led to a fast

convergence in the refined-training (50 epochs), and also an

increase in performance (3.46%). The latter is probably due to

adding cross-correlation information among different tissues. 

• XGBoost: is shown to be rather efficient. Empirical tests show

that XGBoost not only significantly reduced the feature dimen-

sion from its original size (10%) but also led to a small increase

in performance (0.55%). This can probably be explained as XG-

Boost reduces overfitting when the dimension of multistream

and multiscale features is high while the training dataset is

moderate. 

• Comparison to state-of-the-art: shows that proposed scheme

achieved the best performance on randomly partitioned

dataset, and second best on subject-separated dataset partition.

Limitations: Currently, the dataset used in our experiments is mod-

erate in size, due to the limitation to public users. This has led to

some overfitting especially when several streams of multiscale fea-

tures lead to a very high dimension of feature vector. This can be

observed from a very high training performance, and the gap be-

tween the training and testing performance. Apart from increasing

the dataset, more sophisticated data augmentation such as Gen-

erative Adversarial Networks (GAN) shall be adopted in the near

future work. Another limitation is that the proposed scheme cur-

rently cannot be trained end-to-end since the limitation of our

computer’s GPU memory. This could also introduce some perfor-

mance degradation. 

5. Conclusion 

The proposed multi-stream multi-scale deep CNN scheme has

been tested on Alzheimer’s disease (AD) detection. Results from

our experiments have shown that using two-stream brain regions

(GM and CSF) as inputs, followed by multi-scale feature learning

using 3D MSCNNs, is effective for AD detection. Two-level fea-

ture fusion is shown to be effective to capture the characteristics

of AD. Furthermore, feature boosting and dimension reduction are

shown to have improved performance by removing irrelevant fea-

tures while retaining important features for classification. A range
f empirical tests have also been conducted for examining the im-

act of tissue segmentation, combination of tissue streams, multi-

cale CNNs, pre-training, XGBoost. Among them, using segmented

issue regions and using multi-scale CNNs are the main contrib-

tors to a large performance improvement (4.62% and 3.46%, re-

pectively), pre-training mainly contributes to the fast convergence

n refined-training, XGBoost mainly contributes to significantly re-

ucing feature dimension without compromising the performance.

omparing with eight existing methods, the proposed scheme has

chieved the best performance on randomly partitioned dataset,

nd second best on subject-separated dataset partition. Some lim-

tations are also discussed. Our future work will be focused on

raining the proposed scheme using large training dataset (e.g.,

ith more real or GAN augmented data) to reduce possible over-

tting in the training, seeking end-to-end training by GPUs with

arge internal memory, and adding MCI subjects into the proposed

cheme which could be clinically important. 
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