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ABSTRACT
The use of imagingmarkers to predict clinical outcomes can have a great impact in public health. The aimof
this article is to develop a class of generalized scalar-on-image regressionmodels via total variation (GSIRM-
TV), in the sense of generalized linear models, for scalar response and imaging predictor with the presence
of scalar covariates. A key novelty of GSIRM-TV is that it is assumed that the slope function (or image) of
GSIRM-TV belongs to the space of bounded total variation to explicitly account for the piecewise smooth
nature of most imaging data. We develop an efficient penalized total variation optimization to estimate
the unknown slope function and other parameters. We also establish nonasymptotic error bounds on the
excess risk. These bounds are explicitly specified in terms of sample size, image size, and image smoothness.
Our simulations demonstrate a superior performance of GSIRM-TV against many existing approaches. We
apply GSIRM-TV to the analysis of hippocampus data obtained from the Alzheimers Disease Neuroimaging
Initiative (ADNI) dataset. Supplementary materials for this article are available online.

1. Introduction

The aim of this article is to develop generalized scalar-on-image
regression models via total variation (GSIRM-TV) with scalar
response and imaging and/or scalar predictors. This new devel-
opment is motivated by studying the predictive value of ultra-
high-dimensional imaging data and/or other scalar predictors
(e.g., cognitive score) for clinical outcomes including diagnostic
status and the response to treatment in the study of neurode-
generative and neuropsychiatric diseases, such as Alzheimer’s
disease (AD) (Mu and Gage 2011). For instance, the growing
public threat of AD has raised the urgency to discover and val-
idate prognostic biomarkers that may identify subjects at great-
est risk for future cognitive decline and accelerate the testing
of preventive strategies. In this regard, prior studies of subjects
at risk for AD have examined the utility of various individual
biomarkers, such as cognitive tests, fluidmarkers, imagingmea-
surements, or some individual genetic markers (e.g., APOE4
gene), to capture the heterogeneity and multifactorial complex-
ity of AD (reviewed in Weiner et al. 2012).

Our GSIRM-TV considers the use of imaging predictor X
and/or scalar predictors Z to predict scalar responseY . In prac-
tice, imaging data are often represented in the form of two-
dimensional matrix or three-dimensional array. Assume that
X ∈ R

N×N is a two-dimensional matrix of size N × N which is
observed without error and Z ∈ R

p is a p× 1 vector with the
first component being constant 1. Our GSIRM-TV assumes that
Y given (X,Z) follows:

Y |(X,Z) ∼ Exponential Family(μ, φ) and
g(μ) = θT0 Z + 〈X, β0〉, (1)
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whereμ and φ are, respectively, canonical and scale parameters,
〈U,V 〉 =∑i, j ui, jvi, j forU = (ui, j) ∈ R

N×N and V = (vi, j) ∈
R

N×N , and g(·) is a known link function.Moreover, θ0 and β0(·)
are unknown parameters of interest and β0(·) is called the coeffi-
cient image/function. Throughout the article, assume that images
are observed without error. We may deal with such measure-
ment errors in images by applying some smoothing methods to
reduce error in images (Li, Wang, and Carroll 2010).

GSIRM-TV can be regarded as an extension of the
well-known functional linear model (FLM) and the high-
dimensional linear model (HLM) that have been extensively
studied in the literature. If we regard 〈U,V 〉 as an approxi-
mation of a two-dimensional integral, then GSIRM-TV is an
approximated version of FLM. The literature on FLM is too
vast to summarize here. Please see the well-known mono-
graphs Ramsay and Silverman (2005) and Ferraty and Vieu
(2006). The functional principal component analysis (fPCA)
and various penalization methods have been developed to esti-
mate the coefficient function. For example, the fPCA method
has been discussed by James (2002), Müller and Stadtmüller
(2005), Hall and Horowitz (2007), Reiss and Ogden (2007, Reiss
and Ogden 2010), James, Wang, and Zhu (2009), and Gold-
smith et al. (2010) and the penalized method has been stud-
ied by Crambes, Kneip, and Sarda (2009), Yuan and Cai (2010),
and Du and Wang (2014). On the other hand, if we vector-
ize X and β0(·) as N2 × 1 vectors, model (1) takes the form of
the high-dimensional generalized linear regression. To achieve
sparsity in β0, various penalization methods, such as Lasso or
SCAD, have been developed. Please see Tibshirani (1996), Chen,
Donoho, and Saunders (1998), Fan and Li (2001), and references
therein.
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Figure . Results from a simulated dataset. The top row includes the true 64 × 64 coeffiient image β0 in the left panel, one realization of a 64 × 64 image predictor X
in the middle panel, and the responses Y from n = 300 in the right panel. The bottom row includes the estimated coefficient functions obtained from fPCA (left), Lasso
(middle), and total variation (right).

Compared with FLM and HLM, a key novelty of GSIRM-TV
is that the coefficient image β0(·) inmodel (1) is assumed to be a
piecewise smooth image with unknown jumps and edges. Such
assumption not only has been widely used in the imaging liter-
ature, but also is critical for addressing various scientific ques-
tions, such as the identification of brain regions associated with
AD. As an illustration, we consider a dataset with n = 300 sub-
jects simulated from a functional linear model which is a special
case of (1). The first row of Figure 1 presents the true 64 × 64
image matrix β0, X , and Y from the left to the right. We have
vectorized X , used fPCA for FLM, Lasso for HLM, and GSIRM-
TV to estimate the coefficient image and presented the esti-
mated coefficient images in the second row of Figure 1. Unfor-
tunately, both FLM and HLM fail to capture the main feature
of the true coefficient image due to their key limitations. First,
fPCA requires that β0 be well presented by the eigenfunctions of
X , whereas it is not the case according to Figure 1. Second, the
existing regularizationmethods can have difficulty in recovering
β0, since the true coefficient image is nonsparse.Moreover, most
regularizationmethods for FLM assume that the unknown coef-
ficient function is one-dimensional and belongs to a smoothed
function space, such as the Sobolev space, and thus they will
not be able to preserve edge and boundary information for the
dataset presented in Figure 1. In contrast, our GSIRM-TV esti-
mate developed in this article can truly preserve the sharp edge
of the original image.

In this article, we make two important contributions includ-
ing a new estimation method based on the total variation anal-
ysis and nonasymptotic error bounds on the risk under the
framework of GSIRM-TV. The total variation analysis plays
a fundamental role in various image analyses since the path-
breaking works of Rudin and Osher (1994) and Rudin, Osher,
and Fatemi (1992). The total variation penalty has been proved

to be quite efficient for preserving the boundaries and edges of
images (Rudin, Osher, and Fatemi 1992). Michel et al. (2011)
proposed a similar total variation method for image regression
and image classification, but they focus on the development of
different algorithms for the TV optimization problem. Accord-
ing to the best of our knowledge, this is the first article on the
development of statistical analysis of the total variation method
for GSIRM-TV. The fused lasso (Tibshirani et al. 2005; Fried-
man, Hastie, and Tibshirani 2007) uses a similar penalty func-
tion. But for the two-dimensional parameter, the fused lasso, and
the TV penalty can be quite different. For example, the isotropic
total variation penalty uses the Euclidean norm of the first dif-
ferences of the parameter, rather than the sum of the absolute
values of the first differences. There are a few papers on the use
of two-dimensional or three-dimensional imaging predictors in
FLM (Guillas and Lai 2010; Reiss and Ogden 2010; Zhou, Li,
and Zhu 2013; James, Wang, and Zhu 2009; Goldsmith et al.
2010; Gertheiss, Maity, and Staicu 2013; Wang et al. 2014; Reiss
et al. 2015), but none of them consider the piecewisely smoothed
function with jumps and edges and the total variation analysis.
We also derive nonasymptotic error bounds on the risk for the
estimated coefficient image under the total variation penalty.We
are able to obtain finite-sample bounds that are specified explic-
itly in terms of the sample size n, the image size N × N, and the
image smoothness.

The rest of the article is organized as follows. Section 2 con-
siders linear scalar-on-image regressionmodel and proposes the
TV optimization framework to estimate the unknown coeffi-
cient image. We also establish the nonasymptotic error bound
for the prediction error. Section 3 extends linear scalar-on-
image regression model to generalized scalar-on-image regres-
sion models. Section 4 examines the finite-sample performance
of GSIRM-TV and compares it with several state-of-the-art
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Figure . Left: the Shepp-Logan phantom image; Middle and Right: the two components of the discrete gradient of the phantom image.

methods, such as regularized matrix regression (Zhou and Li
2014). Section 5 applies GSIRM-TV to the use of the hippocam-
pus imaging data for a binary classification problem. Future
research directions are discussed in Section 6. The technical
proofs of main theorems are given in the Appendix.

2. Linear Scalar-on-Image RegressionModel

We start with considering a linear scalar-on-image regression
model, which is the simplest case of GSIRM-TV (1), as follows:

Y = 〈X, β0〉 + ε, (2)

where ε is the random error with E(ε|X ) = 0 and E(ε2|X ) =
σ 2, and without loss of generality, both X andY are assumed to
be centered with E(Y ) = E(X ) = 0. Model (2) may be treated
as a special case of FLM since discrete images are isometric to
the space of piecewise-constant functions defined as

X =
{
x ∈ L2(�) : x(u, v ) = NXjk,

j − 1
N

≤ u <
j
N
,
k − 1
N

≤ v <
k
N

for 1 ≤ j, k ≤ N
}
,

where Xjk is the ( j, k)th pixel value of the image X and � =
[0, 1]2. By treatingβ0 as an integrable function in�, that is, β0 ∈
L2(�), model (2) can be rewritten as

Y =
∫ 1

0

∫ 1

0
x(u, v )β0(u, v )dudv + ε.

2.1. The Space of Bounded Variation

Throughout the article, it is assumed that β0 is a function of
bounded variation in� if the total variation of β0 in�, denoted
by ||β0||TV, is finite and defined as follows:

||β0||TV = sup
{∫

�

β0(u, v )div f (u, v )dudv :

f ∈ C∞
c (�;R2), | f |∞ ≤ 1

}
,

where | f |∞ = sup(u,v )∈� | f (u, v )| and C∞
c (�;R2) denotes the

vector field with value in R2, which is infinitely differen-
tiable and has compact support in �. Moreover, f (u, v ) =
( f1(u, v ), f2(u, v )) and div f (u, v ) = ∂u f1(u, v )+ ∂v f2(u, v ),
where ∂u = ∂/∂u and ∂v = ∂/∂v . The vector space of func-
tions of bounded variation in � is denoted by BV(�). For
example, if β0 is differentiable in �, then ||β0||TV reduces to

∫
�

√
(∂uβ0)2 + (∂vβ0)2dudv . In this case, β0 belongs to the

Sobolev space W 1,1(D), that is, functions with integrable first
order partial derivatives. However, the power of total variation
in image analysis arises exactly from the relaxation of such con-
straints. The BV(�) is much larger thanW 1,1(D) and contains
many interesting piecewise continuous functions with jumps
and edges. This is exactly the advantage of using TV regulariza-
tion over other familiar regularizationmethods used in the non-
parametric literature. For example, the smoothing spline penalty
term is not sensitive enough to capture sharp edges and jumps.

There are at least two additional advantages of using bounded
variation functions in model (2). First, many real images with
edges have small total variation since image edges usually reside
in a low-dimensional subset of pixels. As an illustration, in
Figure 2, the left panel displays the Shepp-Logan phantom
image, while the middle and right panels show the two com-
ponents of the discrete gradient of the phantom image, which
have obvious sparse patterns. Second, BV(�) is mathematically
tractable even though it contains many more functions with
edges and jumps compared withW 1,1(D).

2.2. Estimation

On the basis of model (2) and BV(�), we propose to solve the
following TV minimization:

minimize ‖β‖TV

subject to
n∑

i=1

(Yi − 〈Xi, β〉)2 ≤ λ2,
(3)

where λ is a smoothing parameter, which controls the noise
level. It is known that the above minimization problem is equiv-
alent to the penalized optimization

n∑
i=1

(Yi − 〈Xi, β〉)2 + λ̌‖β‖TV, (4)

where λ̌ is a different smoothing parameter. The TV optimiza-
tion has been widely used to reconstruct images in the com-
pressive sensing literature (see, e.g., Candès, Romberg, and Tao
2006a, 2006b; Needell andWard 2013). Using the TV optimiza-
tion for one-dimensional regression has been studied by Mam-
men and van de Geer (1997) and Tibshirani (2014). Michel et al.
(2011) discussed some algorithms to solve a similar optimiza-
tion problem. To the best of our knowledge, nothing has been
done on the statistical properties of the TV estimator for scalar-
on-image regression models.
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To solve the TV minimization (3) (or (4)), we treat β =
(β jk) ∈ R

N×N as an N × N block of pixels with β jk as its ( j, k)
element. Then, we define the discrete total variation of β =
(β jk) ∈ R

N×N . For any β ∈ BV(�), the discrete gradient ∇ :
BV(�) → R

N×N×2 is defined by

(∇β) jk

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(β j+1,k − β jk, β j,k+1 − β jk), 1 ≤ j, k ≤ N − 1,
(0, β j,k+1 − β jk), j = N, 1 ≤ k ≤ N − 1,
(β j+1,k − β jk, 0), 1 ≤ j ≤ N − 1, k = N,
(0, 0), k = j = N.

Based on (∇β) jk = ((∇β) jk,1, (∇β) jk,2)T , the anisotropic ver-
sion of the total variation norm ‖β‖TV can be rewritten as

‖β‖anisoTV = ‖∇β‖1 =
∑
jk

{
|(∇β) jk,1| + |(∇β) jk,2|

}
.

On the other hand, its isotropic version is defined by

‖β‖isoTV =
∑
jk

‖(∇β) jk‖2 =
∑
jk

√
(∇β)2jk,1 + (∇β)2jk,2.

The anisotropic and isotropic induced total variation norms are
equivalent up to a factor of

√
2, that is,

1√
2
‖β‖isoTV ≤ ‖β‖anisoTV ≤ √

2‖β‖isoTV.

Wewill write all results in terms of the anisotropic total variation
seminorm, but our results also extend to the isotropic version.

Let AX be an n × N2 design matrix such that the ith row is
the vectorized Xi. With a slight abuse of notation, we use β to
denote the coefficient matrix and its corresponding vector. We
may rewrite (3) as the matrix form given by

β̂ = argmin
∥∥β∥∥TV subject to ‖Y − AXβ‖2 ≤ λ. (5)

We adapt an algorithm called TVAL3 based on the augmented
Lagrangian method (Hestenes 1969; Powell 1969; Li 2013).
Specifically, we solve an equivalent optimization problem given
by

min
w,β

N2∑
l=1

‖wl‖1 subject to ‖Y − AXβ‖2 ≤ λ and

Dlβ = wl for all l,

where Dl is an 2 × N2 vector of constants associated with the
discrete gradient. As an illustration, we consider a simple case
with N = 2. In this case, we have β = (β11, β12, β21, β22)

T . We
may choose

D1 =
[−1 1 0 0

−1 0 1 0

]
,D2 =

[
0 0 0 0
0 −1 0 1

]
,

D3 =
[
0 0 −1 1
0 0 0 0

]
, and D4 =

[
0 0 0 0
0 0 0 0

]
,

so that we haveD1β = (∇β)11,D2β = (∇β)12,D3β = (∇β)21,
and D4β = (∇β)22.

Its corresponding augmented Lagrangian function is given
by

LA(w, β) =
N2∑
l=1

{
‖wl‖1 − vTl (Dlβ − wl )+ αl

2
‖Dlβ

−wl‖22 + γ

2
‖AXβ −Y‖22

}
,

where vl , αl , and γ are tuning parameters. We may find the
minimizer iteratively, and then the subproblem at each itera-
tion of TVAL3 becomes minwl ,β LA(wl, β). In our algorithm,
vl is updated at each iteration. Moreover, αl ’s and γ as smooth-
ing parameters can be selected by using either the Cp criterion
or theK-fold cross-validation (CV). However, its computational
time can be long even under current computing facilities. In our
numerical examples, we pre-fix the tuning parameters by set-
ting αl = 25 for l = 1, . . . ,N2 and γ = 28. The simplest way to
choose γ is to try different values from 24 up to 213 and com-
pare the recovered images. The value of αl is much less sensitive
to the choice of γ . We leave tuning parameter optimization for
our future research topic.

We describe the complete algorithm as follows.
Step 1. Initialize β(0) and v(0)l ;
Step 2. Givenβ = β(k) and vl = v(k)l , we solve forω(k+1)

l , l =
1, . . . ,N2, by minimizing

‖ωl‖1 − vTl (Dlβ − ωl )+ αl

2
‖Dlβ − ωl‖22.

The explicit solution (component-wise) is given by

ωl =

⎧⎪⎨
⎪⎩
Dlβ − vl+1

αl
, if Dlβ >

vl+1
αl

;
0, if vl−1

αl
≤ Dlβ ≤ vl+1

αl
;

Dlβ − vl−1
αl
, if Dlβ <

vl+1
αl
.

Step 3. Given ωl = ω
(k+1)
l and vl = v(k)l , l = 1, . . . ,N2, we

solve for β(k+1) by minimizing

N2∑
l=1

{
− vT

l Dlβ + αl

2
‖Dlβ − ωl‖22 + γ

2
‖AXβ −Y‖22

}
.

The explicit solution is given by

β(k+1) =
⎧⎨
⎩

N2∑
l=1

(αlDT
l Dl + γAT

XAX )

⎫⎬
⎭

−1

×
⎧⎨
⎩

N2∑
l=1

(vTl Dl + αlDT
l ωl + γAT

XY )

⎫⎬
⎭ .

Step 4. Given β = β(k+1), ωl = ω
(k+1)
l , update v(k+1)

l by
using

v(k+1)
l = v(k)l − αl

(
Dlβ

(k+1) − ω
(k+1)
l

)
.

Step 5. Iterate Steps 2–4 until convergence.

2.3. The Error Bound

In this section, we establish the nonasymptotic error bound for
the TV estimator β̂ based on model (2). We consider two types
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of distances to measure the error. The first one is a weighted L2
distance such that

‖β̂ − β0‖X,2 =
{
E

∗(〈Xn+1, β̂ − β0〉2)
}1/2

,

where E
∗ represents taking expectation with respect to

(Yn+1,Xn+1) only. The second one is the TV distance between β̂
and β0, ‖β̂ − β0‖TV.

We derive both error bounds bymeans of Haar wavelet basis.
Various wavelet bases are commonly used to effectively rep-
resent images and the Haar wavelet is the simplest possible
wavelet. The bivariate Haar wavelet basis for L2(�) can be con-
structed as follows. Let φ0(t ) = I[0,1) be the indicator function,
and the mother wavelet φ1(t ) = 1 for t ∈ [0, 1/2) and −1 for
t ∈ [1/2, 1). Starting from the multivariate functions

φd(s, t ) = φd1 (s)φd2 (t ), d ∈ {(0, 1), (1, 0), (1, 1)},
the bivariate Haar basis functions include the indicator function
I[0,1)2 and other functions

φd
j,k(u, v ) = 2 jφd(2 jx − k), d ∈ {(0, 1), (1, 0), (1, 1)},

x = (u, v ), j ≥ 0, k ∈ Z
2 ∩ 2 j[0, 1)2.

The bivariate Haar wavelet basis is an orthonormal basis
for L2[0, 1)2. Note that discrete images are isometric to the
space IN ⊂ L2[0, 1)2 of piecewise constant functions IN =
{ f ∈ L2[0, 1)2 : f (s, t ) = c jk,

j−1
N ≤ s < j

N ,
k−1
N ≤ t < k

N } via
the identification c jk = NXjk. Letting N = 2J , the bivariate
Haar basis restricted to the N2 basis functions {I[0,1)2 , φd

j,k, j ≤
J − 1, d ∈ {(0, 1), (1, 0), (1, 1)}, k ∈ Z

2 ∩ 2 j[0, 1)2} forms an
orthonormal basis for RN×N . Denote by 
 the discrete bivari-
ate Haar transformation and {φl} the Haar basis, in which
β ∈
R

N×N contains the bivariateHaar wavelet coefficients ofβ . Next,
we review a theoretical result of Petrushev et al. (1999), who
proved a deep and nontrivial result on BV(�). Specifically, it
states that the Haar wavelet coefficients of β0 ∈ BV(�) are in
weak �1. That is, if the Haar coefficients are sorted decreasingly
according to their absolute values, then the lth rearranged coef-
ficient is in absolute value less than c‖β0‖BV/l with c being an
absolute constant.

Invoking Haar wavelets is only for theoretical investigation
and we do not estimate the Haar coefficients directly. We now
introduce the main assumptions of this article:
A1. Assume that the coefficient image β0 in the space ofN ×

N blocks of pixel values with bounded variation. Assume
that the error ε is sub-Gaussian.

A2. Assume that the discrete Haar representation of the
image predictor X is X =∑l ρ

1/2
l ξlφl , where ρl are pos-

itive constants and ξl are independently and identically
distributed sub-Gaussian random variables with zero
mean and unit variance.

A3. For any β ∈ BV(�), write β =∑l γlφl , where the γl
are the Haar basis coefficients of β . We arrange γl in a
decreasing order according to their absolute values and
denote the sorted coefficients as γ(l). Assume that the
corresponding sorted ρ(l) associated with the same basis
function satisfies c1s−2q ≤ ρ(s) ≤ c2s−2q with q > 1/2 for
each s and two positive constants c1, c2.

Assumption A2 on the wavelet representation of X is reason-
able because the discrete wavelet transformation approximately
decorrelates or “whitens” data (Vidakovic 1999). Although we
might use the Karhunen-Loève expansion ofX , we do not adopt
this approach to avoid additional complexity associated with the
estimation of eigenfunctions. When we sort the Haar wavelet
coefficients of both β and X , the corresponding basis functions
may not follow the same order. Assumption A3 specifies the
decay rate of the Haar wavelet coefficients of X . From A2, the
predictor images Xi can be written as Xi =∑l ρ

1/2
l ξilφl . Let Ã

be an n × N2 matrix with the (i, l)th element being ξil/
√
n. It

is well-known that Ã satisfies the restricted isometry property
(RIP)with a large probability (Candès, Romberg, andTao 2006a,
2006b). Specifically, if n ≥ C−2s log(N2/s), then with probabil-
ity exceeding 1 − 2e−Cn, we have

(1 − δ)‖u‖22 ≤ ‖Ãu‖22 ≤ (1 + δ)‖u‖22 (6)

for all s-sparse vectors u ∈ R
N2 with a small RIP constant δ < C.

Let {γ̂l} and {γl} be, respectively, the wavelet coefficients of
β̂ and β0. It turns out that ‖β̂ − β0‖X,2 = {∑l ρl (γ̂l − γl )

2}1/2,
which is the weighted L2-norm of the wavelet coefficient differ-
ence. On the other hand, since ‖φl‖TV ≤ 8 (Needell and Ward
2013),

‖β̂ − β0‖TV ≤
∑
l

|γ̂l − γl |‖φl‖TV ≤ 8‖γ̂l − γl‖1,

which is bounded by the L1-norm of the wavelet coefficient dif-
ference. We obtain the following theorem, whose detailed proof
can be found in the Appendix.

Theorem 2.1. Assumptions A1–A3 hold. Let C be an absolute
constant and λ = Cn1/2. If n ≥ Cs2q+1 log(N2/s2q+1) and δ <
1/3 in (6), then with probability greater than 1 − 2 exp(−Cn),
we have

‖β̂ − β0‖X,2 ≤ C
{
σ + 1

(s logN)q+ 1
2

∥∥∇β0 − (∇β0)s
∥∥
1

}
, (7)

and

‖β̂ − β0‖TV ≤ C log
(
N2

s

)

×
{
(s logN)q+

1
2 σ + ‖∇β0 − (∇β0)S‖1

}
,(8)

where (∇β0)s = argminu:s-sparse ‖∇β0 − u‖1 is the best s-
sparse approximation to the discrete gradient ∇β0.

Theorem 2.1 provides nonasymptotic error bounds for ‖β̂ −
β0‖X,2 and ‖β̂ − β0‖TV, which are specified explicitly in terms
of sample size n and image size N × N, and the underlying
smoothness of the true coefficient image based on the discrete
gradient.

Remark 2.1. We call a prediction “stable” if ‖β̂ − β0‖X,2 ≤ Cσ
holds with a high probability. Assume that the coefficient image
has the sparse discrete gradient, that is, ∇β0 is supported on S0
with |S0|0 ≤ s. If λ = Cn1/2, then Theorem 2.1 shows that ‖β̂ −
β0‖X,2 ≤ Cσ , which indicates that our prediction procedure is
stable. Furthermore, for the extreme casewith noiseless data, our
prediction procedure is exact. The required sample size n is of
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order s2q+1 log(N2/s2q+1), which depends on the smoothness of
the true coefficient image β0, the relative smoothness between
β0 and X , and the image size N × N.

Remark 2.2. The parameter q characterizes the decay rate of the
wavelet coefficients ofX . The larger the q, the more the required
sample size. Theorem 2.1 also shows that the larger q is, the
smaller the prediction error is. When q = 0, this gives the spe-
cial case discussed in Needell and Ward (2013).

3. Generalized Scalar-on-Image RegressionModels

In this section, we extend all developments for model (2) to
GSIRM-(1). GivenX ∈ R

N×N andZ ∈ Rp, the response variable
Y is assumed to follow an exponential family distribution as

exp
({Yη(X,Z; θ0, β0)− b(η(X,Z; θ0, β0))}/a(ψ)+ c(y, ψ)

)
,

(9)
where a(·), b(·), and c(·) are known functions, and ψ is either
known or considered as a nuisance parameter. Our GSIRM-TV
also assumes β0 ∈ BV(�). It can be shown (Nelder and Wed-
derburn 1972) that

E(Y |X ) = μ(X,Z; θ0, β0) = ḃ(η(X,Z; θ0, β0)) and
var(Y |X ) = a(ψ)b̈(η(X,Z; θ0, β0)),

where ḃ(η) and b̈(η) are, respectively, the first and sec-
ond derivatives of b(η) with respect to η. Moreover,
η(X,Z; θ0, β0) = ḃ−1(g−1(θT0 Z + 〈X, β0〉))) is the canoni-
cal parameter of (9). A Gaussian distribution with variance σ 2

has a(ψ) = σ 2 and b(η) = η2/2, a Bernoulli distribution has
a(ψ) = 1 and b(η) = log(1 + eη), and a Poisson distribution
has a(ψ) = 1 and b(η) = eη.

3.1. Estimation

Let ξ = (θ, β) ∈ Rp × BV(�). Given the observed data, we
propose to find estimates ξ̂ byminimizing a penalized likelihood
function given by

n−1
n∑

i=1

{
Yiη(Xi,Zi; θ, β)− b(η(Xi,Zi; θ, β))

}
+ λ
∥∥β∥∥TV.

(10)
We use an algorithm, which is a standard iteratively

reweighted least squares for GLMs, modified to add a TV
penalty, to calculate ξ̂ = (θ̂ , β̂ ). Given a trial estimate of ξ ,
denoted by ξ̂I , we introduce the iterative weights and the work-
ing dependent variable as

ŵi,I = b̈(η̂i,I ) and Ŷi,I = g(μ̂i,I )+ (Yi − μ̂i,I )ġ(μ̂i,I ),

(11)
where μ̂i,I = μ(Xi,Zi; ξ̂I ), ġ(μ) = dg(μ)/dμ, and η̂i,I =
η(Xi,Zi; ξ̂I ). Then, we can calculate the next estimate of ξ ,
denoted by ξ̂I+1, by minimizing

ξ̂I+1 = argminξ

{ n∑
i=1

ωi,I[Ŷi,I − ∂ξμi,I(ξ̂I )ξ ]2 + λ
∥∥β∥∥TV

}
,

(12)

where ∂ξ = ∂/∂ξ . The optimization in (12) can be effectively
solved by usingTVAL3 algorithmdiscussed in Section 2. Finally,
we can iteratively solve ξ̂I until convergence.

We provide the complete algorithm as follows.
Step 1. Initialize ξ (0) = (θ (0), β(0)).
Step 2. For each k, define the weights and the working

dependent variable in (11), and define the objective
function in (12). Use TVAL3 algorithm to solve for
ξ (k+1) = (θ (k+1), β(k+1)).

Step 3. Iterate Steps 2 and 3 until convergence.
We consider the logistic scalar-on-image regression model

as an example. Specifically, Yi given (Xi,Zi) follows a Bernoulli
distribution with the success probability pi and logit(pi) =
〈Xi, β0〉 + θT0 Zi for i = 1, . . . , n. Given the current estimate ξ̂I ,
it is easy to obtain the iterative weight and effective response
variable, respectively, given by

ω̂i,I = eη̂i,I

(1 + eη̂i,I )2
and Ŷi,I = η̂i,I + Yi − μ̂i,I

μ̂i,I(1 − μ̂i,I )
.

Therefore, the estimate ξ̂I+1 can be obtained by solving a
weighted penalized least squares in (12).

3.2. The Error Bound

We establish an nonasymptotic prediction error bound for
GSIRM-TV.We need some additional assumptions as follows.

B1. Assume η(X,Z;β0, θ0) is bounded almost surely.
Given (X,Z), the response Y is sub-Gaussian, that
is, E{exp(t[Y − ḃ(η(X,Z;β0, θ0))])|X} ≤ exp(t2σ̃ 2/2)
for some σ̃ 2 > 0 and all t ∈ R.

B2. The function ḃ(·) is monotonic with inf t b̈(t ) ≥ c3 and
supt b̈(t ) ≤ c4 for two positive constants c3 and c4.

The sub-Gaussian assumption B1 holds for many well-
known distributions, such as Gaussian. The assumption B2
requires that the second derivative of b(·) is bounded above and
away from zero.

Theorem 3.1. Assumptions A1–A3 and B1–B2 hold.
Let λ = Cn−1/2, where C is a positive constant. If n ≥
Cs2q+1 log(N2/s2q+1) and δ < 1/3 in (6), with probability
greater than 1 − 2 exp(−Cn), we have ‖θ̂ − θ0‖2 ≤ Cn−1/2,

‖β̂ − β0‖X,2 ≤ C

{
1 + 1

(s logN)q+ 1
2

∥∥∇β0 − (∇β0)s
∥∥∥
1

}
,

(13)
and

‖β̂ − β0‖TV ≤ C log
(
N2

s

)

×
{
(s logN)q+

1
2 σ + ‖∇β0 − (∇β0)S‖1

}
.

(14)

The conditional mean of Yn+1 given Xn+1 is ḃ(η(Xn+1, β0)).
We may measure the accuracy of β̂ by E

∗[ḃ(η(Xn+1, β̂ ))−
ḃ(η(Xn+1, β0))]2. Under B1, this risk is bounded by ‖β̂ − β0‖2X,2
and thus, it is reasonable to study the nonasymptotic behavior of
‖β̂ − β0‖X,2. Theorem 2.1 is a special case of Theorem 3.1 if it is
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assumed in Theorem 2.1 that responses follow a normal distri-
bution. If assuming that the coefficient image has the sparse dis-
crete gradient, Theorem 3.1 shows that ‖β̂ − β0‖X,2 is bounded
by a constant, which is proportional to σ under the assumption
of Theorem 2.1. This shows that our prediction procedure is sta-
ble for GSIRM-TV.

4. Simulation Studies

In this section, we conducted a set of Monte Carlo simula-
tions to examine the finite sample performance of the TV esti-
mate β̂ and compare it with five competing methods. The
first approach (Lasso) is to calculate the Lasso estimates of β0.
The second one (Lasso-Haar) is to calculate the Lasso esti-
mates of the Haar coefficients of β0 and use the inverse discrete
wavelet transform to calculate the estimates of β0. The third
one (Matrix-Reg) is to estimate β0 by using a recent develop-
ment called regularized matrix regression (Zhou and Li 2014),
which treats the coefficient image as a matrix and penalizes
the nuclear norm of this matrix. The fourth one (FPCR) is the
functional principal component regression approach (Reiss and
Ogden 2007, 2010) by using tensor product cubic B-splines to
approximate the coefficient function. The fifth one (WNET) is
to perform scalar-on-image regression in the wavelet domain
by naive elastic net (Zhao, Ogden, and Reiss 2014). Among
these six approaches, the TV, Lasso, Lasso-Haar, and Matrix-
Reg methods have been implemented by Matlab and the FPCR
andWNET methods have been implemented in the R packages
“refund” and “refund.wave” (see Reiss et al. 2015), respectively.
For the FPCR and WNET methods, we have used the default
settings of both packages. The choice of wavelet basis in WNET
is the Daubechies basis.

We present some results based on linear scalar-on-image
regression model (2). Specifically, Xi were simulated from a
64 × 64 phantom map with N = 64 and 4096 pixels according
to a spatially correlated random process Xi =∑l l

−q/2ξilφl with
q = 0, 0.5, and 1, where the ξl are standard normal random
variables and the φl are bivariate Haar wavelet basis functions.
We consider four different β0 images including triangle, oval, T-
shape, and checkerboard shapes (Figure 3). Among them, the
triangle and oval images are convex, while the other two are not.
Errors εi were independently generated from N(0, 1). We set
n1 = 300 for the training set and n2 = 100 for the test set. We
repeated each setting 100 times. We calculated the root mean
squared prediction error (RMSPE) to compare the finite sam-
ple performance of the six different estimation methods. Let

β̂ be the estimated coefficient image from the training set and
Ŷi = 〈β̂,Xi〉 be the predicted responses for the test set. For each
test set, RMSPE is defined by

RMSPE =
√√√√n−1

2

n2∑
i=1

(
Ŷi −Yi

)2
.

We also calculated the means and standard errors of RMSPEs
for the 100 testing datasets.

Figures 4 and 5 present the estimated β0 from a randomly
selected training dataset with q = 0 and q = 0.5, respectively,
for the sample size n = 300. For all four different shapes, our
TV estimates can capture the sharp boundaries of the under-
lying shapes. In contrast, the Lasso method fails for all shapes,
since the predictor images Xi are highly correlated. The Lasso
estimates of the Haar coefficients can roughly capture the true
shapes. However, this method cannot faithfully recover the
sharp boundaries of the triangle, oval, and T shapes, whereas
it does work very well for the checkerboard shape, since this
checkerboard shape is exactly one of the bivariate Haar wavelet
basis functions. The matrix regression approach can roughly
capture the true shapes when q = 0, and unfortunately this
method fails for the case when q = 0.5, for which the entries
of X are spatially correlated. The PCR approach uses splines
to approximate the predictor images, and it cannot preserve
the sharp edges of coefficient estimator for our examples. The
WNET method fails for the case when q = 0 but it can capture
the shapes of the true coefficient image when the predictors are
more spatially correlated.

Table 1 presents the RMSPEs of all six methods across all
shapes.Overall, our TVmethod has significantly smaller predic-
tion errors, in particular for q = 0. It is expected that the Lasso
method leads to the largest prediction error. For all these meth-
ods, the larger q is, the smaller are their RMSPEs. For a larger q
which means the predictor images are more spatially correlated,
the performances of the TV, Lasso-Haar, FPCR, andWNET are
similar to each other.

5. Real Data Analysis

To illustrate the usefulness of our proposed model, we consider
anatomicalMRI data collected at the baseline by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) study, which is a large

Figure . The true coefficient images used for the simulation study.
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Figure . The estimated coefficient images from six estimationmethods when q = 0 and n = 300: TV (top row); Lasso (second row); Lasso-Haar (third row); Matrix regres-
sion (fourth row); FPCR (fifth row); and WNET(sixth row).

scale multi-site study collecting clinical, imaging, and labora-
tory data at multiple time points from healthy controls, individ-
uals with amnesticmild cognitive impairment, and subjectswith
Alzheimer’s disease (AD). “Data used in the preparation of this
article were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). The ADNI
was launched in 2003 by the National Institute on Aging (NIA),

the National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA), pri-
vate pharmaceutical companies, and nonprofit organizations, as
a $60 million, 5-year publicprivate partnership. The primary
goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
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Figure . The estimated coefficient images from six methods when q = 0.5 and n = 300: TV (top row); Lasso (second row); Lasso-Haar (third row); Matrix regression
(fourth row); FPCR (fifth row); and WNET(sixth row).

assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clin-
icians to develop new treatments and monitor their effective-
ness, as well as lessen the time and cost of clinical trials. The
Principal Investigator of this initiative is Michael W. Weiner,

MD, VAMedical Center and University of California, San Fran-
cisco. ADNI is the result of efforts of many coinvestigators from
a broad range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across the
U.S. and Canada. The initial goal of ADNI was to recruit 800
subjects but ADNI has been followed by ADNI-GO and ADNI-
2. To date these three protocols have recruited over 1500 adults,
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Figure . Observed left hippocampus images.

ages 55–90, to participate in the research, consisting of cogni-
tively normal older individuals, people with early or late MCI,
and people with early AD. The follow up duration of each group
is specified in the protocols for ADNI-1, ADNI-2, and ADNI-
GO. Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date infor-
mation, see www.adni-info.org.

Alzheimer’s disease as an age-related neurodegenerative
brain disorder is often characterized by progressive loss inmem-
ory and deterioration of cognitive functions (De La Torre 2010;
Weiner et al. 2012). Important neuropathological hallmarks of

AD are the gradual intraneuronal accumulation of neurofib-
rillary tangles formed as a result of abnormal hyperphospho-
rylation of cytoskeletal tau protein, extracellular deposition of
amyloid-β (Aβ) protein as senile plaques, andmassive neuronal
death. These pathologies are evident in the hippocampus, which
is located in the medial temporal lobe underneath the corti-
cal surface, and other vulnerable brain areas. The hippocam-
pus belongs to the limbic system and plays important roles in
the consolidation of information from short-term memory to
long-term memory and spatial navigation (Colom et al. 2013;
Fennema-Notestine et al. 2009; Luders et al. 2013).

Table . The RMSPEs of six methods including TV, Lasso, Lasso-Haar, Matrix-Reg, FPCR, andWNET for four different shapes: the numbers in brackets are the corresponding
standard errors of those RMSPEs.

TV Lasso Lasso-Haar

q  .   .   . 

Triangle . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)

Oval . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)

T-shape . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)

Checkerboard . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)

Matrix-Reg FPCR WNET

q  .   .   . 

Triangle . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)

Oval . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)

T-shape . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)

Checkerboard . . . . . . . . .
(.) (.) (.) (.) (.) (.) (.) (.) (.)
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Given the MRI scans, hippocampal substructures were
segmented with FSL FIRST (Patenaude et al. 2011) and hip-
pocampal surfaces were automatically reconstructed with the
marching cube method (Lorensen and Cline 1987). We adopted
a surface fluid registration based hippocampal subregional anal-
ysis package (Shi et al. 2013), which uses isothermal coodinates
and fluid registration to generate one-to-one hippocampal sur-
face registration for surface statistics computation. It introduced
two cuts on a hippocampal surface to convert it into a genus
zero surface with two open boundaries. The locations of the
two cuts were at the front and back of the hippocampal surface.
By using conformal parameterization, it essentially converts
a three-dimensional surface registration problem into a two-
dimensional image registration problem. The flow induced in
the parameter domain establishes high-order correspondences
between three-dimensional surfaces. Finally, various surface
statistics were computed on the registered surface, such as
multivariate tensor-based morphometry (mTBM) statistics
(Wang et al. 2010), which retain the full tensor information of
the deformation Jacobian matrix, together with the radial dis-
tance (Pizer et al. 1999). This software package and associated
image processing methods have been adopted and described by
various studies (Shi et al. 2014).

We applied GSIRM-TV to the hippocampus dataset calcu-
lated from ADNI. The sample in our investigation includes
n = 403 subjects: 223 healthy controls (HC) (107 females and
116 males) and 180 individuals with AD (87 females and 93
males). We consider binary disease status with 0 being HC
and 1 being AD as responses. The image predictor Xi is the
two-dimensional representation of left hippocampus. Figure 6
displays some observed left hippocampus images. The covari-
ate vector Zi includes constant(=1), gender (Female = 0 and
Male = 1), age (55–92), and behavior score (1–36). Given

Table . ADNI hippocampus dataset: the estimated coefficients of the four scalar
covariates and their standard deviations in parentheses.

Intercept Sex Age Behavior score

θ̂ −. (.) −. (.) −. (.) . (.)

(Xi,Zi),Yi is assumed to follow a Bernoulli distribution with the
success probability pi satisfying

logit(pi) = 〈Xi, β0〉 + θT0 Zi for i = 1, . . . , n.

We used the iterative reweighted algorithm described above to
estimate the unknown parameters.

Table 2 presents the estimates of θ0 and their correspond-
ing standard deviations, which were calculated by using the
bootstrap method. Figure 7 shows the estimated coefficient
images by using the five estimationmethods. The effects around
pixels (5, 40), (40, 40), (95, 40) seem to be captured well
by our TV estimate. The confidence band for the coefficient
image can also be obtained by using the bootstrap method.
We randomly partitioned the hippocampus dataset into a
training set with n1 = 203 and a test set with n2 = 200. We
repeated this random partition for 100 times and computes
100 classification errors. The average classification error of TV
is 8.13% with a standard error 1.56%. We also obtain the
average classification errors for other five methods. The aver-
age classification errors are 12.23%(7.36%), 21.65%(15.56%),
12.03%(11.55%), 17.13%(3.27%), 16.45%(15.57%), respec-
tively, for Lasso, Lasso-Haar, matrix regression, FPCR, and
WNET. For the WNET method, since the R code requires the
image size to be a power of 2, we have added zeros to make
the image size of 256 × 256 as suggested by one of the referees.
Inspecting Table 2 reveals that sex and age are not significant in
GSIRM-TV.We run the sameprocedurewithout sex and age and

Figure . Estimated coefficient images for hippocampus data based four methods: the two-dimensional representation of TV estimator (a) and the surface representation
of TV estimator (b), Lasso estimator (c), Lasso-wavelet estimator (d), matrix regression estimator (e), FPCR estimator (f ), and WNET estimator (g).
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obtained a similar classification result as the full model, which
is omitted from the article.

6. Conclusion

We have developed a class of GSIRM-TVs for scalar response
and imaging and/or scalar predictors, while explicitly assuming
that its slope function belongs to BV(�). We have developed an
efficient penalized total variation minimization to estimate the
coefficient image. We have used simulations and real data anal-
ysis to show that GSIRM-TV is quite efficient for estimating the
slope function, while preserving its edges and jumps. We have
established the nonasymptotic error bound of the TV estimate
for the excess risk.

It is known that many image data have small total varia-
tion and are compressible with respect to wavelet transform.
Therefore, wemay generalize our approach to include both, total
variation penalty and Lasso penalty on the wavelet coefficients.
Specifically, let
 be the wavelet transformation operator and γ
be the wavelet coefficients of the coefficient image β0. We may
calculate γ by minimizing

n∑
i=1

(
Yi −

〈
Xi,


−1γ
〉)2 + λ1‖
−1γ ‖TV + λ2‖γ ‖1, (15)

where 
−1 is the inverse discrete wavelet transform, and β =

−1γ . In (15), there are two smoothing parameters λ1 and λ2
which need to be selected. Efficient algorithm is also needed
to be developed to solve (15). We leave this as further research
work.

We have so far focused on two-dimensional images. It would
be interesting to extend our method to analyze k−dimensional
(k-D) images for k ≥ 2 (Zhou, Li, and Zhu 2013; Zhu, Fan, and
Kong 2014). For example, consider a 3-D image f ∈ R

N3 , where
f = ( fe), in which e = (e1, e2, e3) ∈ {1, 2, 3}3.The inner prod-
uct can be defined as

〈
f , g
〉 = ∑

e∈{1,2,3}3
fe · ge.

For � = 1, 2, and 3, the discrete derivative of f in the direction
of r� is fr� ∈ R

N�−1×N×N3−� ,

( f1)e = f(e1+1,e2,e3 ) − f(e1,e2,e3 ), ( f2)e = f(e1,e2+1,e3 ) − f(e1,e2,e3),
( f3)e = f(e1,e2,e3+1) − f(e1,e2,e3 ),

and the three-dimensional discrete gradient is (∇ f )e = ( fr� )e
for e� ≤ N − 1 and zero elsewhere. Hence, the three-
dimensional anisotropic and isotropic total variation semi-
norm can be defined similarly. We may consider a similar total
variation optimization (4) to estimate the three-dimensional
coefficient image. This research is currently under investigation
and will be presented in another report.

SupplementaryMaterials

The online supplementary materials contain the appendices for the article.
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