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Structural MR images concomitantly acquired with PET images can
provide crucial anatomic information for precise quantitative anal-

ysis. However, in the clinical setting, not all the subjects have

corresponding MR images. Here, we developed a model to gener-

ate structural MR images from amyloid PET using deep generative
networks. We applied our model to quantification of cortical amyloid

load without structural MR. Methods: We used florbetapir PET and

structural MR data from the Alzheimer Disease Neuroimaging Initia-

tive database. The generative network was trained to generate re-
alistic structural MR images from florbetapir PET images. After the

training, the model was applied to the quantification of cortical am-

yloid load. PET images were spatially normalized to the template
space using the generated MR, and then SUV ratio (SUVR) of the

target regions was measured by predefined regions of interest. A

real MR-based quantification was used as the gold standard to

measure the accuracy of our approach. Other MR-less methods—
a normal PET template–based, a multiatlas PET template–based,

and a PET segmentation–based normalization/quantification—were

also tested. We compared the performance of quantification meth-

ods using generated MR with that of MR-based and MR-less quan-
tification methods. Results: Generated MR images from florbetapir

PET showed signal patterns that were visually similar to the real MR.

The structural similarity index between real and generated MR was

0.91 ± 0.04. The mean absolute error of SUVR of cortical composite
regions estimated by the generated MR-based method was 0.04 ±
0.03, which was significantly smaller than other MR-less methods

(0.29 ± 0.12 for the normal PET template, 0.12 ± 0.07 for the multi-
atlas PET template, and 0.08 ± 0.06 for the PET segmentation–

based methods). Bland–Altman plots revealed that the generated

MR-based SUVR quantification was the closest to the SUVRs esti-

mated by the real MR-based method. Conclusion: Structural MR
images were successfully generated from amyloid PET images us-

ing deep generative networks. Generated MR images could be used

as templates for accurate and precise amyloid quantification. This

generative method might be used to generate multimodal images of
various organs for further quantitative analyses.
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The anatomic information of structural MR can help quanti-
tative analysis of PET as well as provide detailed anatomic struc-
tures for functional images (1,2). Despite this usefulness, not all
subjects have both PET and MR images in the clinical setting. For
instance, either amyloid PET or structural MR could be acquired
for subjects suspected of having cognitive decline in the clinic. In
terms of quantitative analysis of PET, lack of structural informa-
tion limits segmentation and accurate quantification.
Several imaging biomarkers were developed to characterize

Alzheimer disease (AD) or to predict cognitive decline in mild
cognitive impairment (MCI). In particular, on amyloid PET such
as 11C-Pittsburgh compound B and 18F-florbetapir PET, a core
pathologic marker, cortical amyloid deposition, can be quantita-
tively measured (3,4). Cortical amyloid load has been commonly
quantified using SUV ratio (SUVR) between target and reference
regions (3,5). In this quantification endeavor, accurate region seg-
mentation is crucial for these regions, and structural MR has been
used for the delineation of these regions (6–8). Typically, these
methods have used MR for spatial normalization to template space
and regional segmentation. The MR-based processing can be ap-
plied to the amyloid PET to measure the target and reference
uptake of the radiotracers. Instead of structural MR, a PET tem-
plate without MR has been attempted by direct spatial normaliza-
tion to the PET template (9); however, this simpler trial resulted in
biased estimation of SUVR. To overcome this bias, multiple PET
template–based processing was developed for MR-less quantifica-
tion. The method chose a PET template most similar to the sub-
ject’s image for normalization (10,11).
Until now, direct generation of structural MR from PET

imaging has not yet been attempted. Because PET images have
relatively low spatial resolution compared with structural MR, it
has been challenging to directly generate mapping from PET to
MR. In this study, we developed a model for generating structural
MR images from amyloid PET. This model was trained by pairs of
amyloid PET and MR images of AD and MCI patients and normal
controls. We applied this model to the quantification of cortical
amyloid load without structural MR and compared this method
with the MR-based quantification as a gold standard. Furthermore,
other MR-less quantification methods were also compared.

MATERIALS AND METHODS

Patient Population

In this study, image data were collected from the Alzheimer Disease
Neuroimaging Initiative (ADNI) (http://adni.loni.usc.edu) database. The

ADNI was launched in 2003 as a public–private partnership, led by

Received Jul. 18, 2017; revision accepted Nov. 15, 2017.
For correspondence or reprints contact: Dong Soo Lee, Department of

Nuclear Medicine, Seoul National University Hospital, 28 Yongon-Dong,
Jongno-Gu, Seoul, 110-744, Korea.
E-mail: dsl@plaza.snu.ac.kr
Published online Dec. 7, 2017.
COPYRIGHT© 2018 by the Society of Nuclear Medicine and Molecular Imaging.

STRUCTURAL MR GENERATION • Choi and Lee 1111

only. 
by Univ of Southern California - Norris Med Lib on July 23, 2018. For personal usejnm.snmjournals.org Downloaded from 

http://adni.loni.usc.edu
mailto:dsl@plaza.snu.ac.kr
http://jnm.snmjournals.org/


Principal Investigator Michael W. Weiner, MD, VA Medical Center and

University of California San Francisco. ADNI included subjects from

more than 50 sites across the United States and Canada. The primary
goal of ADNI has been to develop combined biomarkers by testing

whether serial imaging and biologic markers and clinical and neuropsy-
chologic assessment can be combined to measure the progression of MCI

and early AD. For up-to-date information, see http://www.adni-info.org.
Two hundred sixty-one subjects who underwent both florbetapir

PET and structural MR as baseline studies were included for this
study. Test set data were independent from the training data to develop

and validate the model that was generally compatible with various
scanners at different sites. Thus, we divided the subsets according to

image acquisition sites. Image data of training set were obtained from
10 sites, and those of the test set were obtained from 8 sites different

from the training set. One hundred sixty-three pairs of PET and MR
images were used for the training, and 98 pairs of the images were

used for the independent test set. The institutional review boards of all
participating institutions approved imaging studies, and all partici-

pants signed a written informed consent form. Demographics and
baseline clinical diagnosis of the subjects are summarized in Table 1.

Image Preprocessing for Generative Model

Florbetapir PET images were downloaded with minimally prepro-

cessed data to develop the generative model compatible with the
image data acquired from various sites. The raw image data consisted

of four 5-min frames 50–70 min after injection. We used the data of

averaged images of all the 4 registered frames (12). Structural T1

images acquired concurrently with the baseline florbetapir images
were used. High resolution 3-dimensional T1 images were acquired

in the sagittal plane.
Because the images were acquired from different sites, they have

different matrix sizes as well as orientations. The voxel size of axial
slices ranged from 1.02 · 1.02 to 2.57 · 2.57 mm, and slice thickness

ranged from 1.02 to 4.25 mm. Preprocessing was performed to fit the
voxel size for the generative model; thus, the model used minimally

processed PET images of different scanners without normalization. To
train the generative model, PET images were coregistered to corre-

sponding MR images using rigid transformation under statistical para-
metric mapping (SPM8, www.fil.ion.ucl.ac.uk/spm). For PET images

of the test set, coregistration was not performed. We resliced the
images to have the same voxel and matrix sizes. Voxel size of the

resliced PET and MR images was 1.2 · 1.0 · 1.0 mm3. The matrix
size of an axial slice of resliced images was 192 · 256. For the

training data, axial slices of MR images out of range of PET scans
were replaced by zero. After the reslicing, voxel values of PET and

MR volumes of each subject were adjusted in the range of 21 to 1.

Thus, the input image of the generative model was resliced PET
images, which have different orientations but same matrix size.

Adversarial Training for MR Image Generative Model

The MR generation model was based on image-to-image translation

using the GAN model (13). The model has 2 convolutional neural
networks, generator, and discriminator (Fig. 1). The generator is

trained to translate PET to MR images, which cannot be discriminated
from real MR. The discriminator is trained to discriminate real MR

from generated MR by the generator. This adversarial training results
in realistic MR image generation. Axial slices of coregistered PET and

MR images were used for the training. The total axial slices for the
training process were 32,659 images. For the independent test and

application to the quantitation of amyloid load, MR images of the test
set, which included 98 subjects recruited from 8 sites different from

training data, were generated by corresponding PET images. Detailed
methods and architectures of neural networks are described in the

supplemental materials, and in Supplemental Tables 1 and 2 (supple-
mental materials are available at http://jnm.snmjournals.org).

Quantification of Amyloid Load

Cortical amyloid load was quantified for normalized florbetapir

PET images of the test set. We compared the quantification results
according to the different methods (Fig. 2).

As a standard method, MR of each subject
was segmented into gray matter (GM), white

matter, and cerebrospinal fluids after image-
intensity nonuniformity correction, and then

nonlinear transformation parameters were
calculated between the tissues of native

space and the Montreal Neurologic Institute.
The transformation was applied to the corre-

sponding PET image. We applied the same
normalization methods for generated MR.

As an MR-less quantification method, PET
template–based normalization, using a nor-

mal PET template or multiatlas PET tem-
plate, was also performed. Normal subjects’

PET templates were generated by the MR-
based normalized PET images of normal con-

trols. All subjects’ PET images of native
spaces were spatially normalized into the

PET template. As a modified MR-less quan-
tification method, multiatlas normalization

TABLE 1
Demographics and Clinical Diagnosis of Training

and Test Dataset

Characteristic

Training dataset

(n 5 163)

Test dataset

(n 5 98)

Age 73.2 ± 6.7

(56.0–90.0)

72.2 ± 5.9

(57.0–88.0)

Sex (M:F) 75:88 53:45

Diagnosis
(AD:MCI:NC)

34:80:49 21:41:36

NC 5 normal control.

FIGURE 1. Adversarial training for MR generation network. GAN consists of multiple convolu-

tional and deconvolutional layers to translate florbetapir PET to structural MR images. Training of

network was aimed at generating MR images, which cannot be distinguished from real images. In

contrast, another discriminator network was trained to distinguish real MR from generated MR

images. They competed in entire training process.
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was adopted as a Web-based tool, Capaibl (https://capaibl-milxcloud.
csiro.au/) (11,14). Briefly, this method chose the best template among

multiple PET templates by calculating similarity, and then a subject’s

PET image was registered to the normalized space. As another mod-
ified method, amyloid PET of each subject was used for tissue seg-

mentation by directly inputting PET instead of MR for the tissue
segmentation algorithm of SPM8 and then nonlinear transformation

was performed.
After normalization comprising these 5 methods, authentic MR-

based, generated MR-based, a normal PET template–based, multiatlas
PET template–based, and PET segmentation-based, cortical uptake

(SUVR) was scaled using the GM-masked cerebellum defined by
automated anatomic labeling map. A template GM mask of SPM8

was identically applied regardless of normalization methods. Composite
cortical SUVRs were computed using the mean SUVR in the GM-

masked region consisting of the frontal, superior parietal, lateral

temporal, and anterior and posterior cingulate regions. As uptake in

specific regions, frontal, cingulate, superior parietal, and lateral tempo-
ral SUVRs were also obtained and compared.

Statistics

To measure the similarity between generated MR and real MR, the
structural similarity (SSIM) index was calculated (15).

SSIMðx; yÞ 5
ð2mxmy 1 c1Þð2sxy 1 c2Þ

ðm2
x 1 m2

y 1 c1Þðs2
x 1 s2

y 1 c2Þ
where m and s represent mean and SD of image x and y. c1 and c2
represent 2 constant variables determined by pixel-value range. SSIM
can have a value between 21 and 1, and SSIM 5 1 means that 2

images are the same. Because PET and MRI have different fields of-
view, tissues outside the brain are differently included in generated

and real MR. Thus, SSIM was measured for the extracted brain of
both images. One-way ANOVA was conducted to compare the effect

of subjects’ diagnosis on SSIM.
SUVRs of MR-less methods were compared with those of authentic

MR-based methods using the paired t test. Mean absolute errors

(MAEs) of SUVR for each MR-less method were calculated using
the MR-based method as a gold standard. MAEs of different methods

were compared using the paired t test. Bland–Altman plots were drawn
to evaluate the agreement between MR-less and MR-based methods.

RESULTS

Our model generated structural MR images using amyloid PET
images. The processing time for a subject was approximately 11 s
under GPU (GTX 1080Ti; NVIDIA) and 49 s under CPU (i7-7700;
Intel). The examples of generated MR images are represented in
Figure 3. The generated MR image had signal intensity patterns
similar to those of real MR. Note that generated MR images could
be obtained in both AD patients and normal subjects regardless of
various tracer uptake patterns. Overall, SSIM was 0.91 6 0.04
(range, 0.77–0.98) for the brain. Subjects’ diagnosis had no effect
on SSIM (0.916 0.04, 0.926 0.04, and 0.916 0.04 for AD, MCI,
and normal controls, respectively; F2,97 5 0.68, P 5 0.52).
We applied this model to the quantitative assessment of amyloid

PET images. We compared the quantification of cortical amyloid
load using different normalization methods. MAEs of MR-less
methods were computed using the MR-based method as a gold
standard (Table 2). The MAE of SUVR of composite regions esti-
mated by the generated MR-based method was 0.04 6 0.03, which
was significantly smaller than other MR-less methods (0.29 6 0.12
for the normal PET template–, 0.12 6 0.07 for multiatlas PET
template–, and 0.08 6 0.06 for PET segmentation–based methods).
MAEs of generated MR-based methods for other regions of interest
were significantly lower than other methods (P , 0.0001 for all
regions). SUVRs calculated by MR-based and MR-less methods for
each subject were plotted (Fig. 4). Bland–Altman plots were also
drawn to compare the methods (Supplemental Fig. 1). As shown in
the figures, SUVRs of generated MR-based method most highly
corresponded to those of the MR-based method, whereas PET-based
methods (normal template–based, multiatlas-based, and PET seg-
mentation–based) showed relatively higher errors and biases. In
particular, normal PET template–based and PET segmentation–
based methods showed higher bias when a subject had AD. The
multiatlas-based method showed less bias than the normal PET
template–based method; however, it still tended to underestimate
SUVRs. SUVRs of different regions calculated by these 5 different
methods were compared (Table 3). The normal PET template–based

FIGURE 2. Amyloid PET quantification using different methods. We

applied MR generation model to quantification of amyloid PET. As gold

standard method, MR-based normalization was used. PET images were

coregistered to corresponding MR and then nonrigid transformation of

MR was performed for spatial normalization. Predefined cortical and

reference regions were used for calculating SUVR. For normal PET tem-

plate–based method, averaged florbetapir PET images of normal con-

trols were used as template, and then all PET images were directly

normalized to this template. Multiatlas PET template–based quantifica-

tion chose PET template most similar to a subject’s PET image among

various PET templates with different tracer uptake patterns, and then

images were normalized to selected templates. In addition, as modified

method, PET was directly used for tissue segmentation and segmented

tissues were normalized into template space. As application of our GAN

model, generated MR images were spatially normalized to MR template,

and corresponding PET images were transformed to template space. We

compared SUVRs measured by these 4 different normalization methods.
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and PET segmentation–based methods showed significant underes-
timation compared with MR-based methods regardless of subjects’
diagnosis as well as cortical regions of interest. The multiatlas PET
template–based method also showed significantly lower SUVRs in
composite cortical, frontal, and lateral temporal regions. SUVRs cal-
culated by the generated MR-based method showed no significant
difference with the gold standard in most brain regions of interest.

DISCUSSION

The MR generation from PET is challenging because PET has
relatively less structural and textural information than MR. We
used a recently developed deep neural network model, GAN (16).
In brief, GAN typically has 2 network components, a generator
and discriminator. The generator is trained to estimate mapping of
realistic images from a few feature vectors with particular distri-
bution, and the discriminator is trained to discriminate between
true and generated data. In our approach, we used the network
translating PET images to MR images as the generator component.

Generated MR was paired with the matched PET and entered into
the discriminator. This type of image translation based on the
adversarial training was recently reported for generating realistic
images from image sketches (13). The image translation could be
useful in medical images because multimodal images have pro-
vided different information. We extended this image translation
method to MR generation from PET and suggested a clinically
feasible application to MR-less amyloid quantification.
Accurate cortical amyloid quantification is crucial in AD

diagnosis as well as for predicting future cognitive decline in
MCI and early dementia patients (17). A simple normal PET
template–based normalization resulted in considerable bias in
SUVR calculation. AD patients showed underestimated SUVR
compared with MR-based methods, which corresponded to the
previous result (9). This bias could be caused by nonrigid regis-
tration error as it used intensity-based registration. For AD pa-
tients, high florbetapir uptake in the cortex tends to shift to the
white matter of the template atlas during normalization, which
could lead to the underestimation (9). The biased results were much

FIGURE 3. Examples of generated MR images. After training, MR images were generated from amyloid PET images of independent test set.

Regardless of subjects’ diagnosis, MR images were generated, and signal patterns similar to corresponding real MR images were observed.

Quantitative similarity measured by structural similarity index measurement between real and generated brain was 0.91 ± 0.04.

TABLE 2
Errors of SUVR of Florbetapir Measured by MR-Less Methods

Mean absolute error compared with MR-based method

Brain region
Generated
MR-based

Normal PET
template–based

Multiatlas PET
template–based PET segmentation–based

Cortical 0.04 ± 0.03 0.29 ± 0.12 0.12 ± 0.07 0.08 ± 0.06

Frontal 0.05 ± 0.04 0.31 ± 0.13 0.15 ± 0.08 0.09 ± 0.07

Cingulate 0.04 ± 0.05 0.31 ± 0.12 0.07 ± 0.06 0.13 ± 0.08

Superior parietal 0.03 ± 0.03 0.33 ± 0.10 0.07 ± 0.05 0.13 ± 0.07

Lateral temporal 0.04 ± 0.03 0.26 ± 0.12 0.11 ± 0.06 0.07 ± 0.05
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less in multiatlas PET template–based and PET segmentation–based
methods; however, they also showed a trend of underestimation.
The generated MR-based method was highly correlated with real
MR-based normalization results as well as unbiased. Bland–Altman
plots showed that SUVR measured by the generated MR-based
method was the closest to SUVR of MR-based method. The de-
viation of SUVR from the MR-based SUVR was also lower than the
other methods. In addition, MAEs of the generated MR-based
method were significantly lower than those of other methods. The
accurate MR-less quantification method enables the use of PET data
without MR for large clinical trials, and it can be used clinically as a
quantitative marker for predicting cognitive outcome.
Though the amyloid load was variable according to the

subjects’ diagnosis and the regions of interest, our model could

generate pseudo–MR images irrespective of the uptake patterns.
This is a crucial advantage of our GAN method in PET image
quantification because common spatial normalization algorithms
are used in intensity-based nonrigid transformation (18). As afore-
mentioned, when regional tracer uptake is variable between re-
gions and between individuals according to the disease status, the
normalization based on intensity-based nonrigid transformation
could cause seriously biased results. Other examples were report-
ed when the investigators applied normalization for dopamine
transporter imaging; the results were biased in severe patients
(19,20). Quantification of tracer accumulation using generated
MR could substantially overcome these biases. Furthermore, our
GAN model could be trained for a variety of other PET imaging,
and the generated MR images could be easily used for further

FIGURE 4. Scatterplots of SUVRs calculated by different normalization methods. SUVRs measured by MR-less methods were compared with MR-

based quantification results. Generated MR-based SUVR quantification results were highly correlated with MR-based quantification results. How-

ever, normal PET template–based method showed biased results. Multiatlas PET template–based and PET segmentation–based methods showed

less biased results than normal PET template–based method, however, relatively higher error than generated MR-based method. CN 5 controls.
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spatial normalization and region segmentation. We think that
this GAN method might be also used for quantitative analysis
of other organs. Several unsolved problems in multimodal imaging
can be solved with this GAN method. For example, MR generation

could be applied to lesion segmentation in cancer imaging and CT

generation could be used for attenuation correction without real CT

images (21). It could be also used in partial-volume correction

without anatomic images (22,23). As a future work, various valida-

tion studies are warranted by the application of a generative network

model to multimodal imaging.
Despite promising quantification results in our proposed GAN

model, there are some limitations. Even though our model could

generate realistic MR images, they could not reach the quality of

the real MR images. Generated MR images tended to be blurred,

making it difficult to visually distinguish between gray and white

matter. Specifically, several generated MR images showed artifacts

and inhomogeneous intensity across the brain (Supplemental Fig. 2).

These artifacts could be caused by GAN, which tends to generate

noisy images compared with other generative models. In addition,

model learning based on patches instead of a whole image may cause

inhomogeneous signal intensity. Therefore, in terms of amyloid load

quantification, the benefit of generated MR could be a rough tissue

segmentation for spatial normalization instead of definite brain tissue

contrast. Nonetheless, as the direct PET segmentation–based method

showed significant bias for the quantification, the generated MR

seemed to play a role in accurate MR-less processing. Further

modification in network architectures and training processes might

improve the image quality in the near future. In addition, our model
was optimized for the training dataset, which limits the use of the
generated MR images in the patients with seriously distorted architec-
ture such as tumors or large tissue losses. Because the training dataset
in our study included all the subjects with various amounts of amyloid
deposit and brain atrophy, MR generation for this clinically observed
spectrum of florbetapir PET would be feasible. Another strength of
this model was the compatibility of PET images obtained by various
scanners as training was performed by minimally processed images
acquired from various sites. We reiterate that MR generation was
successfully achieved in the test set regardless of PET images of
different image quality that were due to various machines. Thus, we
expect that our model could be applied to another florbetapir PET
database. As a further work, the GAN model could be applied to
prospectively acquired PET images other than those in the ADNI
database to establish the generalized use of this method.

CONCLUSION

We developed a model for generating structural MR from florbetapir
PET using deep generative networks. Generated brain MR images were
similar to real MR images, and they were successfully applied to MR-
less quantification of cortical amyloid load. Cortical florbetapir uptake
measured using generated MR was the closest to that measured using
real MR among MR-less quantification methods. Because our
model generating MR from brain PET and application to PET
quantification is one of the most feasible applications for the image
generation, we expect that the model will be used for various

TABLE 3
SUVR of Cortical Florbetapir PET Measured by Different Methods

Amyloid SUVR quantification methods

Diagnosis Brain region MR-based

Generated

MR-based

Normal PET

template–based

Multiatlas PET

template–based PET segmentation–based

Normal

controls

Cortical 1.29 ± 0.18 1.28 ± 0.17* 1.04 ± 0.11† 1.17 ± 0.17† 1.24 ± 0.14†

Frontal 1.27 ± 0.18 1.26 ± 0.18* 1.00 ± 0.12† 1.12 ± 0.17† 1.22 ± 0.14†

Cingulate 1.52 ± 0.23 1.50 ± 0.24* 1.24 ± 0.17† 1.48 ± 0.25‡ 1.41 ± 0.20†

Superior parietal 1.49 ± 0.23 1.49 ± 0.25* 1.17 ± 0.18† 1.45 ± 0.26† 1.38 ± 0.20†

Lateral temporal 1.30 ± 0.18 1.32 ± 0.18‡ 1.07 ± 0.10† 1.20 ± 0.17† 1.26 ± 0.14†

MCI Cortical 1.34 ± 0.20 1.32 ± 0.18‡ 1.05 ± 0.10† 1.21 ± 0.18† 1.26 ± 0.15†

Frontal 1.32 ± 0.20 1.30 ± 0.17‡ 1.05 ± 0.10† 1.16 ± 0.17† 1.23 ± 0.14†

Cingulate 1.57 ± 0.26 1.57 ± 0.25* 1.27 ± 0.17† 1.57 ± 0.27* 1.45 ± 0.22†

Superior parietal 1.55 ± 0.27 1.55 ± 0.27* 1.22 ± 0.21† 1.53 ± 0.30* 1.42 ± 0.23†

Lateral temporal 1.35 ± 0.22 1.35 ± 0.21* 1.08 ± 0.11† 1.23 ± 0.19† 1.28 ± 0.17†

Alzheimer

dementia

Cortical 1.41 ± 0.19 1.41 ± 0.18* 1.08 ± 0.12† 1.32 ± 0.16† 1.35 ± 0.15†

Frontal 1.40 ± 0.20 1.38 ± 0.18* 1.04 ± 0.13† 1.29 ± 0.17† 1.31 ± 0.15†

Cingulate 1.74 ± 0.21 1.73 ± 0.22* 1.37 ± 0.16† 1.76 ± 0.22* 1.59 ± 0.16†

Superior parietal 1.73 ± 0.25 1.72 ± 0.26* 1.35 ± 0.21† 1.74 ± 0.27* 1.57 ± 0.20†

Lateral temporal 1.43 ± 0.18 1.45 ± 0.18* 1.12 ± 0.12† 1.34 ± 0.15† 1.38 ± 0.15†

*No significant difference with the MR-based method.
†P , 0.01.
‡P , 0.05.
P values are obtained by paired t tests compared with the MR-based method.
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imaging modalities as well as applications for developing quanti-
tative imaging biomarkers.
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