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INTRODUCTION
Alzheimer’s disease (AD), the most frequent type of 
dementia, is an incurable and progressive brain disorder 
occurring in the elderly population, mostly for people aged 
65 and older.1 It represents one of the greatest challenges 
for healthcare systems in the 21st century and is the sixth 
leading cause of death in the United States.1 AD destroys 
brain cells, resulting in loss of memory and mental func-
tions. Initially, AD affects the hippocampus region, which 
controls language and memory.2 Therefore, the early 

symptoms of AD are memory loss, confusion and diffi-
culty in speaking, reading or writing. Taken together, AD 
has a significant negative effect on patients’ everyday lives. 
According to the World Alzheimer’s Report 2018, there are 
around 47 million people with AD throughout the world, 
and the number of patients with AD is estimated to increase 
to 152 million patients in 2050.3

AD has three major stages: pre-clinical (normal cognitive 
(NC)), mild cognitive impairment (MCI), and Alzheimer’s 
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Objectives: To employ different automated convolu-
tional neural network (CNN)-based transfer learning 
(TL) methods for both binary and multiclass classifica-
tion of Alzheimer’s disease (AD) using brain MRI.
Methods: Herein, we applied three popular pre-trained 
CNN models (ResNet101, Xception, and InceptionV3) 
using a fine-tuned approach of TL on 3D T1-weighted 
brain MRI from a subset of ADNI dataset (n = 305 
subjects). To evaluate power of TL, the aforementioned 
networks were also trained from scratch for perfor-
mance comparison. Initially, Unet network segment-
edthe MRI scans into characteristic components of gray 
matter (GM), white matter (WM), and cerebrospinal fluid 
(CSF). The proposed networks were trained and tested 
over the pre-processed and augmented segmented and 
whole images for both binary (NC/AD + progressive mild 
cognitive impairment (pMCI)+stable MCI (sMCI)) and 
4-class (AD/pMCI/sMCI/NC) classification. Also, two 
independent test sets from the OASIS (n = 30) and AIBL 
(n = 60) datasets were used to externally assess the 
performance of the proposed algorithms.
Results: The proposed TL-based CNN models achieved 
better performance compared to the training CNN 
models from scratch. On the ADNI test set, Incep-
tionV3-TL achieved the highest accuracy of 93.75% and 
AUC of 92.0% for binary classification, as well as the 

highest accuracy of 93.75% and AUC of 96.0% for multi-
class classification of AD on the whole images. On the 
OASIS test set, InceptionV3-TL outperformed two other 
models by achieving 93.33% accuracy with 93.0% AUC 
in binary classification of AD on the whole images. On 
the AIBL test set, InceptionV3-TL also outperformed two 
other models in both binary and multiclass classification 
tasks on the whole MR images and achieved accuracy/
AUC of 93.33%/95.0% and 90.0%/93.0%, respectively. 
The GM segment as input provided the highest perfor-
mance in both binary and multiclass classification of AD, 
as compared to the WM and CSF segments.
Conclusion: This study demonstrates the potential of 
applying deep TL approach for automated detection 
and classification of AD using brain MRI with high accu-
racy and robustness across internal and external test 
data, suggesting that these models can possibly be used 
as a supportive tool to assist clinicians in creating objec-
tive opinion and correct diagnosis.
Advances in knowledge: We used CNN-based TL 
approaches and the augmentation techniques to over-
come the insufficient data problem. Our study provides 
evidence that deep TL algorithms can be used for both 
binary and multiclass classification of AD with high 
accuracy.
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dementia. AD is an irreversible, progressive neurodegenerative 
disease characterized by a decline in cognitive functioning with 
no effective disease-modifying treatment available today.4 There-
fore, it is very important to develop strategies for the detection 
of AD at its early or prodromal stage to prevent and/or slow its 
progression.5 For example, MCI is a prodromal or transitional 
stage of AD where patients have the risk to develop AD.6 Hence, 
over the past few decades, advanced neuroimaging technologies 
have been widely developed and used for AD and MCI diagnosis, 
such as magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET).7 MRI is a non-invasive imaging tech-
nology providing detailed 3D anatomical images of brain tissue, 
and has been widely used to identify AD-related structural and 
functional changes in the brain.8 In particular, structural MRI 
scans can track the changes in brain structure and measure the 
inevitable cerebral atrophy, which is caused by the neurode-
generative aspect of AD pathology. The symptoms of AD typi-
cally progress slowly and gradually, and also patients may show 
various symptoms at cognitive and behavioral level; therefore, it 
can be difficult and complex to diagnose AD. Within this frame-
work, developing innovative diagnostic tools to help diagnosing 
the disease at an earlier stage is a challenging task. In this context, 
there has been growing interest in using computer-aided diag-
nosis (CAD) systems for automatic detection of AD.9,10

Over the past decade, the automated CAD of Alzheimer has 
employed machine learning (ML) approaches to analyze struc-
tural brain MRI for disease classification and detection. A 
large number of studies have used the MRI data to detect AD 
by means of conventional ML methods such as random forests 
(RF),11 support vector machine (SVM),12,13 and boosting algo-
rithms.14 ML-based classification typically involves four steps: 
feature extraction, feature selection, dimensionality reduction, 
and feature-based classification algorithm selection. There are 
several major problems with the aforementioned procedures. 
For example, feature extraction and feature selection usually 
depend on manual/semi-automated image segmentations, which 
is tedious and prone to inter- and intraobserver variability.15 
Moreover, these procedures require multiple stages of optimi-
zation; e.g., complex image pre-processing, which may be time-
consuming and computationally demanding.16 Also, another 
issue associated with these procedures is reproducibility.16

To overcome the aforementioned issues, more recently, deep 
learning (DL), as a new ML technique, has emerged and shown 
promising results in the field of large-scale, high-dimensional 
medical imaging analysis.17 Convolutional neural networks 
(CNNs), as the most widely used DL architecture, has attracted 
considerable attention owing to its great success in image classifi-
cation, image segmentation and object detection.18–21 CNNs are 
capable of performing ML tasks without manual functions.22 DL 
methods and specifically CNN have outperformed traditional 
ML methods.23 Numerous recent studies have used structural-
MRI-based CNN models for automated diagnosis of AD.15,24–26 
However, the existing DL approaches train deep networks from 
scratch, which has some limitations27,28 : (1) properly training 
a deep CNN architecture requires a huge amount of anno-
tated medical imaging data, which is time-consuming and 

expensive to obtain owing to privacy and cost issues; (2)training 
a deep CNN architecture with huge amount of images requires 
substantial computational resources; and (3) training a deep 
network depends seriously on the careful tuning of many hyper-
parameters, which is a tedious endeavor. An alternative solution 
to resolve these issues is fine tuning a deep CNN architecture 
through transfer learning (TL).29 The concept behind TL is using 
and fine tuning the pre-trained CNNs built using large-scale 
datasets such as ImageNet on different problems with a smaller 
dataset.30 Therefore, the purpose of the current study was to 
apply an automated CNN-based TL approach using three well-
known pre-trained models (ResNet101, Xception, and Inception 
V3) for two classification tasks: (1) binary or 2-way classification 
(NC/AD+progressive MCI (pMCI)+stable MCI (sMCI)) and (2) 
4-way classification (AD/pMCI/sMCI/NC) of 3D brain struc-
tural MRI scans. Furthermore, the aforementioned networks 
have been structured and trained from scratch to compare the 
effectiveness of TL and training from scratch approaches on the 
AD classification tasks. Also, we segmented brain MR images 
into gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) to evaluate the effect of different MRI segments in 
classifying AD.

METHODS AND MATERIALS
Dataset
In this study, we used a publicly available dataset. The study’s 
data were obtained from the Alzheimer Disease Neuroimaging 
Initiative (ADNI) dataset (http://adni.loni.usc.edu/ (accessed 
on February 2021)). The ADNI was established in 2003 as a 
public–private partnership, initiated by Dr Michael W. Weiner. 
It has been designed as a multisite, longitudinal study to develop 
various biomarkers (clinical, imaging, genetic, etc.) for the early 
diagnosis of AD. The primary goal of ADNI has been to test 
whether serial MRI, PET, other biological markers, and clinical 
and neuropsychological assessment can be combined to measure 
the progression of MCI and early AD.

Herein, a subset of ADNI-1 and ADNI-2 datasets has been used. 
Standard 3T baseline 3D T1-weighted structural MRI scans 
for 305 subjects (94 AD, 65 pMCI, 61 sMCI, and 85 NC) were 
considered. From the ADNI-1 dataset, images acquired with 3T 
scanners were included in the study. Structural T1-weighted MRI 
images were acquired using 3T Siemens and Philips scanners 
using MPRAGE sequence with the typical 3T acquisition param-
eters, including repetition time (TR)  =  2300  ms, minimum 
full echo time (TE), inversion time (TI)  =  900  ms, flip angle  =  
8–9°, slice thickness = 1.2 mm without gap, field-of-view 
(FOV)  =  256 × 256  mm2, matrix size  =  256 × 256, and voxel 
size = 1 × 1 × 1.2  mm3. The demographic details of the ADNI 
dataset are outlined in Table  1. Imaging data were randomly 
divided into training, validation and test sets using a ratio of 
80:10:10 respectively. We did not use the test data in the training 
or validation process. Our proposed models were trained and 
tested over whole MRI images from the ADNI dataset along with 
the segments of GM, WM, and CSF.

Moreover, we also included two additional test sets to exter-
nally evaluate the performance of the proposed algorithms for 

http://birpublications.org/bjr
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both binary and multiclass classification tasks on the whole 
MR images as well as segmented tissues including GM, WM, 
and CSF: 1) the Open Access Series of Imaging Studies (OASIS; ​
oasis-​brains.​org) dataset for binary classification, and 2) Austra-
lian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL; 
https://aibl.csiro.au) dataset for both binary and multiclass clas-
sification. As outlined in Table 1, 30 (15 AD and 15 NC) and 60 
(15 AD, 15 pMCI, 15sMCI, and 15 NC) subjects from the OASIS 
and AIBL datasets, respectively, were included, as two indepen-
dent test sets, to evaluate the performance of the proposed algo-
rithms outside of the ADNI dataset. Flowchart of the proposed 

methodology for binary and multiclass classification of AD using 
brain MR images is shown in Figure 1.

IMAGE PREPROCESSING
As a first step of preprocessing, we converted the ADNI T1-
weighted MR images from ​the.​raw to the.NIFTI format and then ​
to.​npy format. All images were resized to a size of 256 × 256. The 
images values were normalized to a range from 0 to 1. Also, a 
contrast limited adaptive histogram equalization (CLAHE) tech-
nique was used to enhance the contrast of MR images, as shown 
in Supplementary Material 1. Skull stripping was performed 

Table 1. Demographic and clinical information of study participants from the ADNI, OASIS, and AIBL datasets

dataset Information NC sMCI pMCI AD
 � Internal  � ADNI  � Train Gender (F/M) 36/35 29/17 35/12 39/38

Age (mean ± SD) 66.9 ± 3.8 69.8 ± 5.3 71.3 ± 6.2 69.7 ± 5.5

CDR (mean ± SD) 0.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.8 ± 0.1

 � Validation Gender (F/M) 3/3 3/4 5/5 3/6

Age (mean ± SD) 64.2 ± 1.1 74.8 ± 2.6 70.7 ± 6.2 69.5 ± 3.7

CDR (mean ± SD) 0.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.7 ± 0.5

 � Test Gender (F/M) 2/6 4/4 3/5 7/1

Age (mean ± SD) 68.5 ± 3.6 67.4 ± 1.3 72.7 ± 2.2 68.6 ± 5.8

CDR (mean ± SD) 0.0 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.7 ± 0.5

 � External  � OASIS  � Test Gender (F/M) 6/9 - - 11/4

Age (mean ± SD) 67.3 ± 2.9 - - 67.1 ± 9.2

CDR (mean ± SD) 0.0 ± .0.0 - - 0.8 ± 0.2

 � AIBL  � Test Gender (F/M) 9/6 5/10 12/3 8/7

Age (mean ± SD) 68.7 ± 3.2 71.3 ± 3.4 70.0 ± 6.9 69.6 ± 5.1

CDR (mean ± SD) 0.0 ± 0.0 0.5 ± 0.0 0.6 ± 0.1 0.7 ± 0.3

F: Female; M: Male; CDR: Clinical dementia rating; NC: Normal cognitive; sMCI: Stable mild cognitive impairment; pMCI: Progressive mild cognitive 
impairment; AD: Alzheimer’s disease;

Figure 1. Flowchart of the proposed methodology for binary and multiclass classification of Alzheimer’s disease

http://birpublications.org/bjr
https://aibl.csiro.au
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using a simple skull stripping algorithm, termed as S3, proposed 
by Roy and Maji.31

IMAGE SEGMENTATION
Segmentation of brain tissue into GM, WM, and CSF can help 
to detect AD. Hence, we adopted the standard 2D-Unet archi-
tecture32 to automatically segment the whole brain into GM, 
WM, and CSF from MRI. Herein, for segmenting brain tissues, 
different preprocessing and augmentation strategies were used 
to train and test Unet model on MICCAI challenge 2018 dataset 
(https://mrbrains18.isi.uu.nl/) and compare the performance 
with Dice Coefficient Similarity as a metric. Schematic repre-
sentation of the proposed 2D-Unet for the segmentation of 
brain tissue is depicted in Supplementary Material 1. The MRI 
preprocessing, including standardization and skull stripping, 
was performed for all T1-weighted MRI images. We also applied 
a CLAHE algorithm for increasing the contrast level of the input 
images. Data augmentation was applied using filliping (left/right), 
rotation range 15 degree, random image cropping, and elastic 
deformation. The dataset was split randomly into three subsets: 
a training set (n = 300 images), a validation set (n = 18 images), 
and a testing set (n = 18 images). The Unet architecture was 
trained using a combined loss function (Dice-loss+categorical 
cross-entropy) and Adam optimizer. We used an initial learning 
rate of 0.01, batch size of 8, and epoch value of 400. Also, during 
training process, we applied learning rate scheduler for reducing 
the learning rate as the number of training epochs increases. 
The network was implemented in Python 3.8 using Pytorch 1.9. 
The training was performed on NVIDIA Tesla T4 GPU 8 GB 
and 12 GB RAM. The training time of Unet model was approxi-
mately 15 h. Then, the trained and tested U-Net architecture on 
MICCAI 2018 challenge dataset was used to segment brain MRI 
from the ADNI dataset into GM, WM, and CSF components 
with a visually evaluation and modification in part if necessary 
by an experienced radiologist.

DATA AUGMENTATION
We also applied aggressive data augmentation techniques to 
artificially increase the size of training data because a lot of data 
is required to train deep neural networks. This approach can 
improve the classification accuracy and make the models more 
generalized, resulting in reduced overfitting. We used different 
augmentation methods such as left and right flipping, rotation 
range 10 degree, random image cropping, elastic deformation, 
and brightness tuning.

NETWORK ARCHITECTURE
As stated earlier, training a deep CNN model with randomly 
initialized weights from scratch is a difficult task, especially in 
medical image analysis, owing to the lack of a massive amount 
of training data. Using pre-trained model can result in a signif-
icant reduction in the amount of training data. In TL, a CNN is 
pre-trained on large-scale dataset like ImageNet; the weights of 
the pre-trained deep CNNs are then adopted and fine-tuned to 
learn a new task.

In this study, we used the pre-trained weights of three different 
CNN architectures and retrained them on target dataset (i.e., 

a subset of ADNI) to classify AD. Three powerful and well-
known pre-trained CNNs were used as backbone model for TL: 
ResNet101,33 Xception,34 and InceptionV3.35 All these networks 
have been pre-trained on the ImageNet dataset. ResNet-101 is 
a CNN that has 101 layers with 33 three-layer residual blocks. 
The Xception model is a 71-layer deep CNN based on depth-
wise separable convolution layers. InceptionV3 is a deep CNN 
architecture of 48 layers. The overall architecture of the afore-
mentioned CNN models consists of multilayered structures 
including convolution, pooling, number of consecutive fully 
connected, and SoftMax layers. The convolution layers were 
followed by the exponential linear unit (ELU) activation func-
tion. During TL, we froze the three first residual blocks, two first 
separable blocks, and two first inception blocks for ResNet101, 
Xception, and InceptionV3 architectures, respectively, to achieve 
the best accuracy of the models. The other layers were open for 
modification. The transformed vectors in the flatten layer were 
fed to a dense layer with 512 neurons, followed by another dense 
layer with 256 neurons. A dropout with a threshold of 0.5 was 
implemented in the fully connected layer. A last dense layer with 
two or four neurons was used with SoftMax activation for binary 
or multiclass classification, respectively. Also, ResNet101, Xcep-
tion, and InceptionV3 were regenerated with randomly initial-
ized weights for all layers to perform the training from scratch 
approach for AD classification tasks.

TRAINING DETAILS
Before starting the training, it is necessary to set hyper-
parameters; i.e., all the training variables, manually. The optimi-
zation of hyper-parameters is performed with an iterative process 
using the validation loss, which is a guide to model performance. 
Validation loss indicates errors within a network and also proves 
how well a network is operating. We trained the networks until 
there was no further improvement in the validation loss. The 
networks with the best performance (i.e., lowest validation loss) 
were saved.

Herein, in order to make a meaningful comparison, we used 
the same training parameters for all experiments. The binary 
and categorical cross-entropy loss functions were applied for 
binary and multiclass Alzheimer’s classification, respectively. 
All proposed networks were trained using an Adaptive Moment 
Estimation (Adam) optimizer, with a learning rate of 0.01, which 
decayed by a factor of 0.1 every 10 epochs whenever loss plateaus, 
batch size of 16, and epoch value of 200. As stated earlier, data 
augmentation techniques were applied on images in order to 
create additional artificial images and consequently reduce over-
fitting. All deep TL models were implemented in Python 3.8 
using Pytorch 1.9 and trained on a computing system with dedi-
cated NVIDIA Tesla T4 GPU 8 GB and 12 GB RAM.

PERFORMANCE EVALUATION
The performance of the proposed classification models was eval-
uated using unseen internal and external test datasets. Confusion 
matrices were calculated to assess the classification performance 
of the proposed models. For classification performance, various 
evaluation metrics, including accuracy, weighted-average based 
precision, sensitivity, specificity, and F1-meaure, were computed. 

http://birpublications.org/bjr
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The value of the area under the receiver operating character-
istic (ROC) curve (AUC) was also calculated. Furthermore, we 
compared binary classification performance of different deep 
networks and training approaches on the ADNI test set in 
terms of AUC using the DeLong test. Statistical analyses were 
done using MedCalc, version 20.0.27 (MedCalc Software, bvba, 
Ostend, Belgium). A p-value less than 0.05 was considered statis-
tically significant.

	﻿‍ Accuracy = TP+TN
TP+FP+TN+FN ‍�

	﻿‍ Sensitivity/Recall = TP
TP+FN ‍�

	﻿‍ Precision = TP
TP+FP‍�

	﻿‍ Specificity = TN
TN+FP‍�

	﻿‍ F1 score = 2 × Precision ×Recall
Precision+Recall ‍�

Where: TP: True Positive. FP: False Positive. TN: True Negative, 
and FN: False Negative.

RESULTS
Figure 2 shows an example of auto-segmentation of input brain 
MR images into WM, GM, and CSF from the MICCAI challenge 
2018 dataset and ADNI dataset. The proposed standard 2D-Unet 
architecture achieved Dice scores of 0.89, 0.88, and 0.92 for WM, 
GM, and CSF segmentation on the MICCAI challenge 2018 
dataset, respectively.

Table 2 summarizes binary (NC/AD+pMCI+ sMCI) and multi-
class (AD/pMCI/sMCI/NC) classification performances of 
various deep networks (ResNet101, Xception, and InceptionV3) 
and training approaches (i.e., TL and training from scratch) on 
the ADNI test set. As shown in Table 2, ResNet101, Xception, 
and InceptionV3, when trained from scratch, resulted in poor 
performance for both classification tasks. The TL outperformed 
the training from scratch approach for all three ResNet101, 

Xception, and InceptionV3. As given in Table  2, InceptionV3 
with TL achieved the highest accuracy of 93.75% and an AUC 
of 92.0% for binary classification of the whole MR images. For 
the multiclass classification task, again InceptionV3 with TL 
obtained the highest accuracy of 93.75% and an AUC of 96.0%, 
when the whole MR images were used as input (Table 2). When 
GM segmentations were provided as an input to deep networks, 
InceptionV3 with TL achieved the best performance in both 
binary and multiclass classification among the three models. As 
can be seen in Table 2, ResNet101-TL method outperformed the 
other proposed deep TL models in terms of AUC in binary classi-
fication of AD, when the WM and CSF segments were applied as 
the individual inputs. The GM segment of the brain MR images 
as input provided the highest performance in both binary and 
multiclass classification of AD, as compared to the WM and CSF 
segments (Table 2).

A comparison of the binary classification performance of the 
proposed models for different training approaches in terms of 
AUC on the ADNI test dataset using the DeLong test is given 
in Supplementary Material 1. Statistically significant differences 
in the AUCs between training from scratch and TL approaches 
were not found. Also, we compared binary classification perfor-
mance of the proposed deep TL models on the ADNI test set in 
terms of AUC using the DeLong test, as shown in Supplemen-
tary Material 1. There were no statistically significant differences 
between the proposed deep TL models for binary classification 
with a same input.

The performance of the proposed TL models on the segmented 
MR images with three labels (i.e., WM, GM, and CSF) and whole 
MR images are presented in the form of confusion matrix in 
Figures 3–5 for both binary and multiclass classification. Confu-
sion matrices for the proposed models with training from scratch 
are shown in Supplementary Material 1.

Figure 2. An example of the auto-segmentation of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) in brain 
MRI from the MICCAI challenge 2018 dataset (a) and ADNI dataset (b) using 2D-Unet architecture.

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
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The results for binary and multiclass classification performances 
of the proposed TL models (ResNet101, Xception, and Incep-
tionV3) on the independent test sets; i.e., OASIS and AIBL testing 
data, are shown in Tables 3 and 4, and corresponding confusion 
matrices are given in Supplementary Material 1, respectively. 
As shown in Table 3, InceptionV3 obtained the highest overall 
performance with 93.33% accuracy and 93.0% AUC in binary 
classification of whole images on the OASIS test set among the 
three models. On the AIBL testing data, InceptionV3 model 
outperformed all other models in both binary and multiclass 
classification of the whole MR images and achieved an accuracy 
of 93.33% and an AUC of 95.0% in binary classification and an 
accuracy of 90.0% and an AUC of 93.0% in multiclass classifica-
tion (Table 4).

DISCUSSION
The main purpose of this study was to exploit three different 
architectures of deep CNN models (ResNet101, Xception, 
and InceptionV3) for both automated binary and multiclass 

classification of AD using 3D brain MR images through a fine-
tuned approach of TL. To assess power of TL, the aforemen-
tioned networks were also trained from scratch for performance 
comparison. Furthermore, the effect of different segments of the 
brain MRI scans (GM, WM, and CSF) was also evaluated in clas-
sifying AD. Herein, 2D-Unet, a type of CNN, was used to auto-
matically segment the MR images into GM, WM, and CSF. Then, 
TL-based methods (ResNet101, Xception, and InceptionV3) 
were trained over the dataset of whole images along with the 
segmented components. We tested our proposed algorithms on 
two test datasets: 10% ADNI set as internal test set and indepen-
dent test sets from the OASIS and AIBL datasets. From our data, 
it can be seen that the proposed TL-based CNN models achieved 
better performance than training deep CNN models from 
scratch. Using TL algorithms reveal promising results in terms 
of classification accuracy, sensitivity, specificity, and AUC. As 
a result, TL-based CNN models prevent the expensive training 
from scratch and achieve higher classification performance with 
a small amount of data.

Figure 3. Confusion matrix of binary and multiclass classification of Alzheimer’s using ResNet101-transfer learning on the ADNI 
test set. WM: white matter; GM: gray matter; CSF: cerebrospinal fluid; WI: whole image

Figure 4. Confusion matrix of binary and multiclass classification of Alzheimer’s using Xception-transfer learning on the ADNI test 
set. WM: white matter; GM: gray matter; CSF: cerebrospinal fluid; WI: whole image

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
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In this study, three popular TL architectures; i.e., ResNet101, 
Xception, and InceptionV3 were implemented. As given in 
Tables  2–4, using InceptionV3 with TL was shown to be the 
best-performing individual architecture in classifying AD 
across internal and external test sets, when whole MR images 
were used as input. On the internal test set, InceptionV3 with 
TL approach outperformed two other models in both binary 
and multiclass classification of AD, when the GM segments and 
whole images were used as individual inputs. As observable in 
Table  2, InceptionV3-TL method achieved the highest classifi-
cation performance in 4-class (AD/pMCI/sMCI/NC) classifica-
tion, regardless of the type of input MR images (i.e., WM, GM, 
CSF, or whole image). Several previous studies focused only 
on the specific GM region because GM segmentation of brain 
MRI is more useful in predicting AD’s early diagnosis.15,36,37 As 
can be seen in Tables  2–4, the GM segments as input resulted 
in higher classification performance than WM and CSF as the 
individual segmented components. However, from our data, it 
can be seen that the proposed models achieved their best clas-
sification performance on the whole MRI scan as input. As a 
consequence, the cumulative information of the segmented 
components (i.e., WM, GM, and CSF) revealed to be distinc-
tive enough for the better binary or multiclass classification of 
Alzheimer’s (Tables 2–4).

Herein, the DeLong test was used to statistically compare binary 
classification performance of TL and training from scratch 
approaches, as well as the proposed deep TL models on the 
ADNI test set in terms of AUC. Although multiclass classifica-
tion has a higher value than binary classification because it can 
distinguish between different stages of the disease, significance 
of AUCs for multiclass classification cannot determine by the 
Delong test. As observable in Table 2 and Supplementary Mate-
rial 1, although using TL algorithms resulted in better AUC, as 
compared to training from scratch, no statistically significant 
differences in the AUCs between two training approaches were 
found. However, from our data (Table 2 and Figures 3–5), it is 
evident that TL approaches lead to better classification perfor-
mance compared to training from scratch. From a clinical 

point of view, the improvement in outcomes observed with TL 
approach is significant because we are able to train models in a 
short time with a small dataset and achieve better performance, 
as compared to training from scratch. Also, we found no statis-
tically significant differences in the AUCs between the proposed 
deep TL models for binary classification with a same input 
(Supplementary Material 1). One possible reason for these non-
significant values could be due to small sample size, and cross-
validation would be suggested to tackle this for further studies.

According to the accuracy metric, we compared the classification 
performance of our proposed deep TL models with other state-
of-the-art models reported in the literature for both binary and 
multiclass classification of AD on the ADNI dataset, as outlined 
in Table 5. It is worthwhile to mention that the direct compar-
ison of our proposed TL approaches with the reviewed methods 
for automated AD diagnosis is not possible, as different ADNI 
databases with different dataset sizes and different partitions of 
training and testing sets were used in each study. Also, different 
MRI modalities, including functional imaging, were used, as 
shown in Table 5. Furthermore, various classification problems 
were challenged. The majority of studies focused on the 2-way 
AD/NC classification15,24,36,38,39,41 and 3-way classification (AD/
MCI/NC).24,38–41 However, some studies considered 4-way clas-
sification of AD.44–46 A limited number of studies used func-
tional MRI (fMRI) and Diffusion Tensor Imaging (DTI) data 
for 4-class AD/early MCI (EMCI)/late MCI (LMCI)/NC clas-
sification.42,43 For 4-way classification (AD/pMCI/sMCI/NC), 
the proposed fine-tuned InceptionV3 and ResNet101 achieved 
the highest accuracy of 93.75% and the four-highest accuracy of 
90.63%, respectively, as shown in Table 5. The model proposed 
by Odusami et al achieved the second-highest accuracy for 
4-class (AD/LMCI/EMCI/NC) classification46 ; however, they 
stated that overfitting may have occurred.46 Hence, Odusami et 
al suggested that a larger dataset is needed to drastically decrease 
overfitting.46 Compared to the study by Odusami et al,46 we 
applied a relatively large dataset (three-fold larger) and data 
augmentation techniques to avoid overfitting. It should be noted; 
however, that our results are not comparable in a straightforward 

Figure 5. Confusion matrix of binary and multiclass classification of Alzheimer’s using InceptionV3-transfer learning on the ADNI 
test set. WM: white matter; GM: gray matter; CSF: cerebrospinal fluid; WI: whole image

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
www.birpublications.org/doi/suppl/ 10.1259/bjr.20211253/suppl_file/Supplementary Material 1.docx
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fashion given that the other studies considered EMCI and LMCI 
as two distinct phases of MCI, while we used sMCI and pMCI, 
which seems to be different in literature.16 Therefore, owing to 
overlapping features of different stages of AD, classification of 
various stages of AD is a challenging task. In 4-class classifica-
tion of AD, our proposed InceptionV3 model outperformed all 
other state-of-the-art methodologies by achieving an accuracy 
of 93.75%. Of note, Song et al42 and Harshit et al43 used DTI and 
fMRI modalities with a small size of dataset for 4-class classi-
fication, respectively, while other studies applied structural MR 
images and had a relatively larger dataset. Compared to other 
studies which applied 3D structural MR images as input, the 
proposed ResNet101 and Xception achieved the third-highest 
and four-highest accuracy for 4-way classification of AD, respec-
tively. In this research, 2-way classification was used to separate 
NC from abnormal cases (AD, pMCI, and sMCI), whereas most 
of the studies aimed to perform a binary classification of two 
AD stages that include NC and AD (AD vs NC), as shown in 
Table  5. However, the classification of sMCI and pMCI is the 
most challenging task because these classes have similar features. 
From Table 5, it is evident that our proposed models achieved 
comparable results to previous studies for binary classification 
(i.e., NC vs abnormal case). It should be noted that we discrim-
inate NC from AD + pMCI+ sMCI, whereas Hosseini-Asl et 
al24,39 classified NC vs MCI + AD. These empirical comparison 
studies proved that our proposed architectures outperform other 
competing methods for 4-way AD/pMCI/sMCI/NC classifica-
tion and demonstrate competitive performance for NC/AD + 
pMCI+ sMCI classification. As a consequence, the use of deep 
TL approach helped to achieve better performance.

To investigate the robustness, we tested our proposed models on 
two independent test sets (i.e., external test set from the perspec-
tive of the algorithms), which contains T1-weighted MR images 
from the OASIS (15 AD and 15 NC) and AIBL (15 AD, 15 pMCI, 
15 sMCI, and 15 NC) datasets. From Tables 2–4, it can be seen 
that the performance of the proposed models does not fluctuate 
remarkably when tested on the external test sets. It is essential 
to point out that our external test sets were small and collected 
from public datasets. Thus, the performance of our proposed 
models on a more general patient population remains unproven. 
It should be noted, however, that a robust CAD model should 
be able to detect and classify AD in a normal patient population 
in presence or absence of other brain disorders. We applied TL 
approaches with the augmentation techniques to increase the 
size of dataset for improving performance accuracy. Also, the 
augmentation techniques can resolve the overfitting issue on 
a small dataset. Herein, we tested the proposed models on the 
public datasets. The pre-trained CNN models achieved strong 
performance on small test sets. In the light of these results, our 
proposed TL-based methods can be a promising supplementary 
diagnostic approach.

CONCLUSION
This study demonstrates the potential of application of deep TL 
approach for the automated detection and classification of AD 
from MRI studies of the brain with high accuracy and robustness 
across internal and external test data. In this study, we proposed Ta
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three popular pre-trained networks; i.e., ResNet101, Xception, 
and InceptionV3, and fine-tuned the CNNs for both binary and 
multiclass classification of AD. Our models were fine-tuned over 
both segmented (i.e., WM, GM, and CSF) and whole images. 
We compared the performance classification of the proposed 
models, among which InceptionV3 with TL achieved the best 
performance with an accuracy of 93.75% on the internal test for 
both 2-class and 4-class classification, an accuracy of 93.33% on 
the OASIS test set in the 2-class classification, and an accuracy 
of 90.0% on the AIBL test set in the 4-class classification of AD, 
when the whole images were used as input. Furthermore, the 
pre-trained TL-based CNN models achieved higher classifica-
tion performance with limited number of dataset compared to 
the training CNN models from scratch. The performance and 

robustness of our models cannot yet be guaranteed on real-life 
scenario patient cohorts. Hence, further large-scale studies with 
multiinstitutional data will be required to our proposed models 
integrate into clinical workflow and serve as a computer-assisted 
decision support system to aid physicians in detecting AD from 
MRI studies. Currently, our proposed TL-based methods can 
possibly be employed to provide diagnostic support.
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Table 5. Performance comparison of our transfer learning approaches with the state-of-the-art models in both binary and multi-
class classification of Alzheimer’s disease on the ADNI dataset

Study/ 
year Architecture

Subjects

Modality

Classification accuracy

NC MCI AD
AD vs 
NC

NC vs 
AC

3-way 
classification

4-way 
classification

Payan et al./ 
201538

3D-CNN 755 755 755 MRI 95.39% - 89.47% -

Hosseini-Asl 
et al./ 201639

3D-ACNN 70 70 70 sMRI 97.6% 90.3% 89.1% -

Hosseini-Asl 
et al./ 201824

3D-DSA-CNN 70 70 70 sMRI 99.3% 95.7% 94.8% -

Khvostikov 
et al./ 201840

3D Inception-
based CNN

250 228 53 sMRI, DTI 93.3% - 68.9% -

Sahumbaiev 
et al./ 201826

3D-CNN HadNet 160 185 185 MRI - - 88.31% -

Jain et al./ 
201941

2D transfer 
learning-based 
CNN

50 50 50 sMRI 99.14% - 95.73% -

Song et al./ 
201942

Graph CNN 12 12(E)
12(L)

12 DTI - - - 89.0%

Basaia et al./ 
201915

3D deep CNN 352 253(c)
510(s)

294 sMRI 98.0% - - -

Harshit et 
al./ 202043

Modified 3D-CNN 30 30(E)
30(L)

30 4D fMRI - - - 93.0%

Abrol et al./ 
202044

3D ResNet 237 245(s)
189(p)

157 sMRI - - - 83.01%

Ruiz et al./ 
202045

3D DenseNet 
ensemble

120 120(E)
120(L)

120 MRI - - - 83.33%

Mehmood et 
al./ 202136

Layer-wise transfer 
learning approach

85 70(E)
70(L)

75 MRI 98.73% - - -

Odusami et 
al./ 202246

Resnet18 and 
DenseNet121 
with Randomized 
weight

25 25(E)
25(L)

25 MRI - - - 93.06

 � Present 
study

ResNet101 85 61(s)
65(p)

94 sMRI - 90.78% - 90.63%

Xception - 84.38% - 87.50%

Inception v3 - 93.75% - 93.75%

NC: Normal cognitive; MCI: Mild cognitive impairment; AD: Alzheimer’s disease; AC: Abnormal case (e.g., MCI, sMCI, pMCI, AD); E: Early MCI; L: Late 
MCI; c: Convertor MCI; s: Stable MCI; p: Progressive MCI; DTI: Diffusion tensor imaging; 4D fMRI: Four-dimensional functional MRI
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