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Background: Amnestic mild cognitive impairment (MCI) is a transitional stage between normal aging and Alzheimer’s
disease (AD). However, the clinical conversion from MCI to AD is unpredictable. Hence, identification of noninvasive
biomarkers able to detect early changes induced by dementia is a pressing need.
Purpose: To explore the added value of histogram analysis applied to measures derived from diffusion tensor imaging
(DTI) for detecting brain tissue differences between AD, MCI, and healthy subjects (HS).
Study Type: Prospective.
Population/Subjects: A local cohort (57 AD, 28 MCI, 23 HS), and an Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort (41 AD, 58 MCI, 41 HS).
Field Strength: 3T. Dual-echo turbo spin echo (TSE); fluid-attenuated inversion recovery (FLAIR); modified-driven-
equilibrium-Fourier-transform (MDEFT); inversion-recovery spoiled gradient recalled (IR-SPGR); diffusion tensor imaging
(DTI).
Assessment: Normal-appearing white matter (NAWM) masks were obtained using the T1-weighted volumes for tissue
segmentation and T2-weighted images for removal of hyperintensities/lesions. From DTI images, fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AXD), and radial diffusivity (RD) were obtained. NAWM histograms of FA,
MD, AXD, and RD were derived and characterized estimating: peak height, peak location, mean value (MV), and quar-
tiles (C25, C50, C75), which were compared between groups. Receiver operating characteristic (ROC) and area under
ROC curves (AUC) were calculated. To confirm our results, the same analysis was repeated on the ADNI dataset.
Statistical Tests: One-way analysis of variance (ANOVA), post-hoc Student’s t-test, multiclass ROC analysis.
Results: For the local cohort, C25 of AXD had the maximum capability of group discrimination with AUC of 0.80 for
“HS vs. patients” comparison and 0.74 for “AD vs. others” comparison. For the ADNI cohort, MV of AXD revealed the
maximum group discrimination capability with AUC of 0.75 for “HS vs. patients” comparison and 0.75 for “AD vs. oth-
ers” comparison.
Data Conclusion: AXD of NAWM might be an early marker of microstructural brain tissue changes occurring during the
AD course and might be useful for assessing disease progression.
Level of Evidence: 1
Technical Efficacy: Stage 2
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Amnestic mild cognitive impairment (MCI) is regarded

as a transitional stage between normal aging and fully

developed Alzheimer’s disease (AD).1 However, the short-

term clinical conversion from MCI to AD remains largely

unpredictable. The identification of noninvasive biomarkers

with the ability of staging MCI patients is becoming more

and more critical for patients’ management and clinical tri-

als. While the standard diagnostic criteria for MCI are based

on clinical/neuropsychological assessment,1 several bio-

markers,2 have been proposed to improve diagnostic accu-

racy, such as medial temporal lobe atrophy,3 positron

emission tomography (PET) imaging measures such as beta-

amyloid plaque load and index of cerebral glucose metabo-

lism,4,5 and cerebrospinal fluid (CSF) levels of beta-amyloid

and phospho-tau.6 However, medial temporal lobe atrophy

has been shown not to be an early biomarker, being not evi-

dent in the asymptomatic stage of AD,7 while CSF assess-

ment is an invasive procedure and PET imaging requires the

injection of a radioactive tracer that could present side

effects (eg, allergic reaction). A large body of literature has

demonstrated that white matter (WM) damage is present

since the early clinical stages of AD, and strongly contrib-

utes to the disease progression.8

Diffusion tensor imaging (DTI) is one of the preferred

magnetic resonance imaging (MRI) methods for WM inves-

tigation in vivo, detecting macro- and microscopic tissue

abnormalities.9 To date, several DTI-derived indices (eg,

fractional anisotropy [FA], mean diffusivity [MD], axial

[AXD], and radial diffusivity [RD]) have been proposed as

reflecting different aspects of WM microstructure and dam-

age.10 Against this background it is conceivable that these

different DTI parameters may change differently across AD

evolution, possibly reflecting different aspects of AD patho-

physiology (eg, axonal damage and loss, demyelination,

etc.).

Histogram analysis has been largely used to analyze

data coming from MRI for the investigation of various neu-

rological disorders.11–13 This approach offers the advantage,

compared to region of interest or voxel-based analyses, of

being operator-independent and of summarizing the infor-

mation from a whole image into a few simple numerical

indices.

The principal aim of this study was to define the evo-

lution of WM damage as assessed by different DTI-based

histogram parameters at different AD stages. The secondary

aim was to identify the most promising prognostic parame-

ter (or set of parameters) to be used in clinical settings.

Materials and Methods

Subjects
This prospective study was approved by the local Ethics Commit-

tee and written informed consent was obtained from all partici-

pants before the study initiation.

One hundred patients were recruited from the Specialist

Dementia Clinics of our institution (Table 1). Fifteen patients

were excluded for the following reasons: 1) claustrophobia or poor

cooperation during MRI, with scanning interruption before com-

pleting the protocol acquisition (n 5 7); and 2) the presence of

artifacts on MR images (n 5 8). Out of the 85 enrolled patients,

57 fulfilled the diagnostic criteria for AD and 28 those of amnestic

MCI, as defined below. The diagnosis of AD was made according

to the National Institute of Neurological and Communication Dis-

orders and Stroke/Alzheimer’s Disease and Related Disorders Asso-

ciation criteria (NINCDS-ADRDA).14 AD patients also had to

fulfill the Diagnostic and Statistical Manual of Mental Disorders

(DSM-5) criteria for major neurocognitive disorders.15

MCI patients had to show episodic memory disorders1 and

no or very mild impairment in daily living activities, with a total

Clinical Dementia Rating score not exceeding 0.5.16 Within 3 days

after recruitment, patients underwent neuropsychological and

behavioral assessments and an MRI scan. With respect to the pres-

ence and severity of macroscopic WM lesions, there are no definite

cutoff criteria available to discriminate between vascular and neuro-

degenerative dementia. To reduce as much as possible the risk of

including patients with vascular MCI, principal comorbidities (ie,

diabetes, hypertension, hyperlipidemia, arrhythmias) and risk fac-

tors (ie, alcohol abuse) for developing cerebrovascular pathology

were ruled out in all patients. Additionally, in every patient, the

Hachinski score,17 a clinical tool often used to differentiate

between AD and vascular dementia, had to be less than 4, and the

total WM lesion volume had not to exceed 25 ml.18

Twenty-three healthy elderly subjects (HS) were also

recruited from the relatives of patients and served as a control

group (Table 1). All HS with major systemic and neurological ill-

nesses, cognitive deficits, and Behavioral and Psychological Symp-

toms of Dementia (BPSD) were excluded. Finally, to reduce any

potential source of variability due to hemispheric dominance, all

subjects had to be right-handed, as assessed by the Edinburgh

Handedness Inventory.19 From now on, we refer to this group of

108 subjects as the local cohort.

Neuropsychological Assessment (Local Cohort)
All subjects of the local cohort underwent a neuropsychological

battery, including the following tests: verbal episodic long-term

memory: 15-Word List (Immediate and 15-min Delayed recall)20

and Short Story Test (Immediate and 20-min Delayed recall)20;

visuospatial episodic long-term memory: Complex Rey’s Figure

(Immediate and 20-min Delayed recall)20; short-term memory:

Digit span and the Corsi Block Tapping task21; executive func-

tions: Phonological Word Fluency20 and Modified Card Sorting

Test20; language: Naming objects subtest of the BADA (Batteria

per l’Analisi dei Deficit Afasici)22; reasoning: Raven’s Coloured

Progressive Matrices20; constructional praxis: Copy of simple draw-

ings with and without landmarks,20 and Copy of Complex Rey’s

Figure20; general cognitive efficiency: Mini-Mental State Examina-

tion (MMSE).20,23 For all employed tests, we used the Italian nor-

mative data for both score adjustment (sex, age, and education)

and to define cutoff scores of normality, determined as the lower

limit of the 95% tolerance interval for a confidence level of 95%.
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For each test, normative data are reported in the corresponding

references.

MRI Data Acquisition (Local Cohort)
All subjects of the local cohort underwent MRI scanning at 3T

(Magnetom Allegra, Siemens, Erlangen, Germany), including the

following acquisitions: 1) dual-echo turbo spin echo (dual-echo

TSE, repetition time [TR] 5 7600 msec, echo time [TE] 5 12/

109 msec, matrix 5 256 3 192, field of view [FOV] 5 230 3

172.5 mm2, slice thickness 3 mm); 2) fast-fluid-attenuated inver-

sion recovery (FLAIR; TR 5 8170 msec, TE 5 96 msec, inversion

time [TI] 5 2100 msec, same matrix, FOV, and slice thickness as

the TSE); 3) 3D modified-driven-equilibrium-Fourier-transform

(MDEFT; TR 5 1394 msec, TE 5 2.4 msec, TI 5 910 msec,

matrix 5 256 3 224 3 176, in-plane FOV 5 256 3 224 mm2,

slice thickness 5 1 mm); 4) diffusion-weighted (DW) twice-

refocused spin-echo echo planar imaging (SE EPI; TR 5 10.2 sec,

TE 5 85 msec, b factor 5 1000 s/mm2, isotropic resolution 5

2.3 mm3). This last sequence collects seven images with no diffu-

sion weighting (b0) and 61 images with diffusion gradients applied

in 61 noncollinear directions.

Image Processing and Histogram Analysis (Local
Cohort)

BRAIN TISSUE SEGMENTATION. White matter hyperintensities

(WMHs) were identified by consensus of two trained observers

(with 3 and 10 years of experience in head imaging analysis,

respectively) on the T2-weighted image (the longest echo time

image of sequence1), using semiautomated local thresholding con-

touring software (Jim 4.0, Xinapse System, Leicester, UK, http://

www.xinapse.com/). FLAIR images were used to increase confi-

dence in lesion identification.

Binary lesion masks and lesion volumes were then calculated.

The T2-weighted images were then affine-registered to the

TABLE 1. Principal Demographic and Clinical Characteristics of the Participants Belonging to the Local (Upper
Numbers) and ADNI (Lower Numbers) Cohorts

AD MCI HS P-value

AD vs. MCI

P-value

AD vs. HS

P-value

MCI vs. HS

N 57
41

28
58

23
41

Age (years) 72.2 [6.6]
74.5 [8.5]

70.9 [8.5]
72.2 [6.9]

68.4 [6.9]
71.9 [6.1]

ANOVA ns: 0.11
ANOVA ns: 0.18

Female/male ratio 36/21
15/26

16/12
20/38

10/13
23/18

chi-square ns: 0.27
chi-square ns: 0.07

Education (years) 9.2 [4.3]a

not available
9.9 [4.6]
not available

12.2 [2.9]
not available

0.302
/

0.011
/

0.043
/

MMSEc 21.0 [3.9]a,b

22.3 [3.6]a,b
26.8 [1.8]a

27.0 [1.9]a
29.0 [1.0]
28.9 [1.1]

< 0.001
< 0.001

< 0.001
< 0.001

< 0.001
< 0.001

GM fraction 0.42 [0.02]a,b

0.37 [0.03]a,b
0.43 [0.02]
0.40 [0.03]a

0.44 [0.01]
0.42 [0.02]

0.009
0.002

< 0.001
< 0.001

0.053
< 0.001

NAWM fraction 0.31 [0.02]
0.29 [0.03]a,b

0.32 [0.02]
0.31 [0.02]

0.32 [0.02]
0.31 [0.02]

ANOVA ns: 0.33
0.005 < 0.001 0.249

WMHs fraction 0.003 [0.003]
0.003 [0.003]

0.003 [0.004]
0.003 [0.002]

0.001[0.002]
0.002 [0.002]

ANOVA ns: 0.17
ANOVA ns: 0.10

Unless otherwise noted, all values are expressed as mean [standard deviation]. All measures were compared between groups using Stu-
dent’s t-test. Bonferroni correction was used to account for multiple comparisons (P < 0.05). Statistically significant P-values are
highlighted in bold. AD 5 Alzheimer’s disease; GM 5 gray matter; HS 5 healthy subjects; MCI 5 mild cognitive impairment;
MMSE 5 Mini-Mental State Examination (raw); NAWM 5 normal appearing white matter; WMHs 5 white matter hyperinten-
sities; ns 5 not significant.
aStatistically significant difference between patients (AD or MCI) and HS.
bStatistically significant difference between AD and MCI.
cDue to lack of data in ADNI database, mean values of MMSE in ADNI cohort were computed in only 30 out of 41 AD, 49 out of
58 MCI and 36 out of 41 HS (115 out of 140 subjects).
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T1-weighted images (MDEFT) using ANTs.24 The same transfor-

mation parameters were applied to the lesion mask. Then lesions

were stripped from the T1-weighted images, which were then proc-

essed using SPM8 (www.fil.ion.ucl.ac.uk/spm/) toolbox VBM8

(www.neuro.uni-jena.de/vbm/download/) to yield local volumes

maps of gray matter (GM), normal-appearing white matter

(NAWM), and CSF. These maps were used to compute global

brain tissues volumes (GMvol, NAWMvol, CSFvol). To account

for subjects’ head size differences, the global brain tissue volumes

were expressed as percentages of the total intracranial volume (ICV

5 GMvol1NAWMvol1WMHs_vol1CSFvol), by computing

GM fraction (GMvol/ICV), NAWM fraction (NAWMvol/ICV),

and lesion fraction (WMHs_vol/ICV). These measures were

obtained to further characterize the patient groups included in the

study and ensure consistency with previously reported cohorts.

DTI ANALYSIS. DW images were processed using tools from the

FMRIB software library (FSL, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)

and CAMINO (http://camino.cs.ucl.ac.uk/).

First, diffusion data were corrected for misalignment between

volumes according to the following steps:

1. the seven b0 images were realigned to the first b0 volume with

a rigid body transformation and averaged (obtaining meanb0);

2. the seven b0 images were rigidly coregistered to meanb0;

3. the 61 DW volumes were averaged obtaining meanDW;

meanDW was then rigidly coregistered to the scalp stripped

meanb0 image through the transformation T_1;

4. all DW volumes (i 5 1, 2, . . ., 61) were separately realigned

to the meanDW image (with a rigid body transformation,

T_2(i)), and the transformation matching each DW volume

with the meanb0 image was obtained by combining T_2(i) and

T_1.

The b matrices were rotated accordingly.25 The final real-

igned DW volumes were obtained by merging the images from

steps 2 and 4. Therefore, the diffusion tensor was estimated in

every voxel and maps of FA, MD, RD, and AXD were obtained

for each subject.

HISTOGRAM COMPUTATION AND FEATURES EXTRACTION. For

all participants, T1-weighted images were warped to the FA map

using ANTs24; the same nonlinear transformation was then applied

to the NAWM mask. This way we could create histograms of each

DTI measure (FA, MD, AXD, RD) distribution in the NAWM

(four histograms per subject).

An absolute histogram was created by dividing the full range

of image intensity into a number of bins, each spanning a fraction

of the full range and counting the number of voxels with a value

falling in each bin. Absolute NAWM histograms were computed

using 0.5% of the maximum wide bins (200 bins). Absolute histo-

grams were then normalized, dividing by both the bin width and

the total number of voxels contributing to the histogram. The

effect of normalization is to make the shape of the histograms

independent from the brain size.26 Histograms were analyzed fol-

lowing guidelines available in Ref. 26, using in-house MatLab

(MathWorks, Natick, MA) scripts. To increase the reliability of

peak detection, the histograms of NAWM were smoothed using an

8th order median filter. Next, from each normalized and smoothed

histogram, we derived: peak height (PH), peak location (PL), 25th

centile (C25), 50th centile (C50), 75th centile (C75), and mean

value (MV). These six parameters are able to appropriately charac-

terize histograms with unimodal shape.26

Repeated Analysis on the ADNI Cohort
In order to test if the results obtained in the local cohort were

independent from both scanner and clinical evaluation for patients’

dementia staging, we replicated all the analyses using a completely

different dataset, obtained from the Alzheimer’s Disease Neuroim-

aging Initiative (ADNI, http://adni.loni.usc.edu). ADNI is a global

research effort that actively supports the investigation and develop-

ment of treatments that slow or stop the progression of AD; in

this view, ADNI makes publicly available neuropsychological

(including MMSE) and imaging data for HS, early MCI (EMCI),

late MCI (LMCI), and AD patients, often including different

timepoints per subject (longitudinal data).

From the ADNI database, we downloaded data relative to

subjects whose MRI protocol included at least T1 3D, DTI, and

FLAIR sequences (not available, dual-echo TSE); if there were

more than one MRI dataset per subject (longitudinal acquisitions),

we selected the oldest timepoint for which the MMSE score was

available. In every patient the total WM lesion volume, as assessed

from FLAIR images, did not exceed 25 ml.18 Using these con-

straints, we were able to collect data including 41 HS, 58 MCI

(27 EMCI, 31 LMCI), and 41 AD. We refer to this dataset of

140 subjects as the ADNI cohort, whose main demographic charac-

teristics are given in Table 1.

MRI Data Acquisition (ADNI Cohort)
MRI data for the ADNI cohort were collected at several sites, all

equipped with a whole-brain 3T MRI scanner (GE Medical Sys-

tems, Milwaukee, WI). The protocol included: 1) fast-fluid-

attenuated inversion recovery (FLAIR; TR 5 11,000 msec, TE 5

150 msec, TI 5 2250 msec, matrix 5 256 3 256, FOV 5 220

3 220 mm2, slice thickness 5 5 mm); 2) inversion-recovery

spoiled gradient recalled T1-weighted (IR-SPGR; TR 5 1422

msec, TE 5 3 msec, TI 5 400 msec, matrix 5 256 3 256 3

196; in-plane FOV 5 260 3 260 mm2, slice thickness 5 1.2

mm); 3) DW twice-refocused spin-echo echo planar imaging (TR

5 13 sec, TE 5 70 msec, b factor 5 1000 s/mm2, voxel size 5

1.37 3 1.37 3 2.7 mm3). This last sequence collects five images

with no diffusion weighting and 41 diffusion-weighted images.

Image Processing and Histogram Analysis (ADNI
Cohort)
Brain tissue segmentation, DTI analysis, and histogram computa-

tion were performed following the same pipelines described for the

local cohort.

Statistical Analysis
Statistical analysis was performed using the Statistics Toolbox avail-

able in MatLab. In all the analyses of variance (ANOVAs) and

post-hoc Student’s t-tests, we set the statistical significance thresh-

old to P 5 0.05 and then applied the Bonferroni correction for

multiple comparisons. The same analyses were performed for both

local and ADNI cohorts.
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All demographic characteristics but female/male ratio, clinical

characteristics, and brain tissue volumetrics were compared between

all groups (HS, AD, MCI) using a one-way ANOVA; on the mea-

sures surviving the ANOVA analysis, post-hoc Student’s t-tests

were performed. The female/male ratios were compared between

groups using a chi-square test, considering as significant P < 0.05.

For the local cohort, the neuropsychological scores (not available in

the ADNI cohort) were compared between all groups using a one-

way ANOVA; on the scores surviving the ANOVA analysis, post-

hoc Student’s t-tests were performed.

MULTICLASS ROC ANALYSIS OF HISTOGRAM-DERIVED FEA-

TURES. The six histogram-derived indices (PH, PL, C25, C50,

C75, MV) relative to FA, MD, AXD, and RD in NAWM were

compared between groups using a one-way ANOVA. On the indi-

ces surviving the ANOVA analysis, post-hoc Student’s t-tests were

performed. In the ANOVA and t-test analyses, we considered as

significant P < 0.05, applying the Bonferroni correction for multi-

ple comparisons (we set the statistical threshold to 0.05/24 in the

ANOVA analysis, and to 0.05/3 in the post-hoc t-tests).

To assess the capability of group discrimination of each

histogram-derived index, we employed a multiclass receiver operat-

ing characteristic (ROC) curve analysis. ROC analysis is typically

used for two-groups diagnostic problems.27 In our case (three

groups) we used the multiclass problem approach. One method for

handling n > 2 classes is to produce n different ROC curves, one

for each class. In particular, the ROC curve for class j (with j span-

ning from 1 to n) refers to the classification performance in which

j is the positive class and all other n-1 classes are combined to

form the negative class.27 While this approach can be straightfor-

wardly applied to n mutually independent classes, the three classes

involved in this study (HS, MCI, AD) do not fulfill this criterion,

MCI being a prodromal stage of AD. Consequently, the compari-

son of MCI vs. HS plus AD is meaningless and was not modeled.

We thus retained only the two class comparisons “MCI plus AD

vs. HS,” and “AD vs. HS plus MCI.” For each comparison we

considered the feature with the highest AUC (area under the ROC

curve) as the “best discriminator.”

POST-HOC CORRELATION ANALYSIS. In the patients group

only, Spearman partial correlation (controlled for age, gender, and

education) was used to test for associations between general cogni-

tive efficiency (measured by the MMSE score) and the “best dis-

criminator” histogram features as revealed by ROC analyses. P <

0.05 was considered statistically significant.

Results

Demographic and Neuropsychological Data
Demographic and clinical characteristics of the studied sub-

jects are summarized in Table 1.

Local Cohort: According to the inclusion criteria, there

were no significant differences in age (F2,105 5 2.26, P 5

0.11) or gender distribution (chi-square 5 2.60, P 5 0.27)

between the groups. Conversely, there were differences in

years of formal education (F2,105 5 4.61, P 5 0.012),

resulting AD patients being less educated than HS. As

expected, the three groups showed significantly different

MMSE scores (F2,105 5 67.77, P < 0.0001). From a neu-

ropsychological viewpoint, MCI patients performed worse

than HS at tests exploring long-term verbal episodic mem-

ory and verbal and visuospatial short-term memory. More-

over, MCI patients reported significantly lower scores than

HS in the Modified Card Sorting Test. Patients with AD

reported a widespread cognitive impairment involving all

domains (Table 2).

ADNI Cohort: There were no significant group differ-

ences with respect to age (F2,137 5 1.72, P 5 0.18) and

gender distribution (chi-square 5 5.19, P 5 0.07), while

MMSE scores (available for 115 out of 140 subjects) were

significantly different (F2,112 5 38.43, P < 0.0001) across

groups (Table 1).

Brain Tissue Volumetrics
Brain volumetrics of all subjects are summarized in Table 1.

Local Cohort: AD patients showed a significantly

lower GM fraction than MCI patients and HS (F2,105 5

14.04, P < 0.0001). When comparing MCI patients to HS,

no significant difference was found. No differences in

NAWM fraction were detected between any of the groups

(F2,105 5 1.12, P 5 0.33). Although the average lesion frac-

tion was higher in both patients group compared to HS,

these differences were not statistically significant (F2,105 5

1.79, P 5 0.17).

ADNI Cohort: GM fractions were different in each

group (F2,137 5 37.20, P < 0.0001). AD patients also

showed a significantly lower NAWM fraction than MCI

patients and HS (F2,137 5 8.07, P < 0.0001); when com-

paring MCI patients to HS, no significant difference was

found. The average lesion fractions were not significant dif-

ferent between groups (F2,137 5 2.38, P 5 0.10).

Histograms Computation
Local Cohort: With the exception of FA, all NAWM histo-

grams had a clear unimodal shape for all participants (Fig.

1A). The FA histograms, in several subjects, presented

instead a maximum with a plateau or two maxima with

similar height and close to each other. For this reason, for

the FA histograms we computed C25, C50, C75, and MV,

but not PH and PL.

ADNI Cohort: For all subjects, all NAWM histograms

had a clear unimodal shape (Fig. 1B).

Multiclass ROC Analysis of Histogram-Derived
Features
Local Cohort: No between-group difference was found in

PH, PL, and C75 of MD, AXD, and RD. Both patient

groups, compared to HS, showed higher C25, C50, and

MV relative to MD, AXD, and RD. AD compared to MCI

patients showed a significant increase in C25 of AXD histo-

gram (C25AXD). No between-group difference was found in

any of the FA histogram-derived metrics (Table 3). The

Giulietti et al.: DTI Histograms for Staging AD
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TABLE 2. Performance Obtained by Patients and Healthy Control Subjects (Belonging to the Local Cohort) on
Neuropsychological Testing

Cognitive domain Neuropsychological
test

AD

(n 5 57)

MCI

(n 5 28)

HS

(n 5 23)

Verbal episodic
Long-term memory

15-Words List:

Immediate recall
(cutoff � 28.5)

23.2 (9.1)a,b 29.9 (5.8)a 45.8 (8.8)

Delayed recall
(cutoff � 4.6)

2.5 (2.4)a,b 4.5 (2.3)a 9.4 (2.0)

Short story test:

Immediate recall
(cutoff �3.1)

2.2 (2.0)a,b 4.6 (1.3) 6 (1.4)

Delayed recall
(cutoff � 2.6)

0.9 (1.8)a,b 3.7 (2.2)a 5.9 (1.2)

Visuo-spatial episodic
long-term memory

Complex Rey’s
Figure:

Immediate recall
(cutoff � 6.4)

5.6 (5.2)a,b 10.9 (6.6) 14.2 (7.9)

Delayed recall
(cutoff � 6.3)

4.7 (5.1)a,b 9.5 (7.1)a 14.3 (6.2)

Verbal
Short-term memory

Digit span
(cutoff � 3.7)

4.7 (1.2)a 5.2 (0.9) 5.9 (1.1)

Visuo-spatial
Short-term memory

Corsi span
(cutoff � 3.5)

3.6 (1.3)a,b 4.3 (0.6) 5 (0.9)

Executive functions

Phonological Word
Fluency
(cutoff �17.3)

26.8 (8.2)a 31.8 (7.3) 36.6 (8.8)

Modified Card
Sorting Test
Criteria achieved
(cutoff � 4.2)

2.4 (1.7)a,b 3.7 (1.9)a 5.7 (0.8)

Modified Card
Sorting Test
Perseverative errors
(cutoff �7.6)

11.3 (11.5)a 6.6 (4.9) 1.9 (3.5)

Language

Naming of objects
(cutoff � 22)

24.4 (5.6) 28.4 (1.6) 29.1 (0.9)
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ROC analyses were thus performed on the following indi-

ces: C25, C50, and MV of AXD, RD, and MD.

C25AXD was the best between-group discriminator,

having a maximum AUC of 0.80 (95% confidence intervals

[CI]: 0.65–0.95) for MCI plus AD vs. HS (Fig. 2A) and of

0.74 (95% CI: 0.60–0.88) for AD vs. HS plus MCI com-

parison (Fig. 3A).

ADNI Cohort: As in the local cohort, no between-

group difference was found in any of the FA histogram-

derived metrics. Both AD and MCI, compared to HS,

showed higher C25, C50, C75, MV of AXD, C50, MV of

MD, and MV of RD. AD compared to HS also showed

lower PH of AXD and higher C75 of MD and RD. AD

compared to MCI had lower PH of AXD and higher C75

and MV of AXD and MV of MD (Table 3). The ROC

analyses were thus performed on the following indices: PH,

C25, C50, C75, and MV of AXD, C50, C75, and MV of

MD, and C75 and MV of RD.

MVAXD was the best between-group discriminator,

having a maximum AUC of 0.75 (95% CI: 0.62–0.87) for

MCI plus AD vs. HS (Fig. 2B) and of 0.75 (95% CI:

0.63–0.87) for AD vs. HS plus MCI (Fig. 3B) comparison.

Post-Hoc Correlation Analysis
Local Cohort: In the patients group (MCI plus AD) we

found a significant Spearman partial correlation (adjusted

for age, gender, and education) equal to r 5 –0.34 (P 5

0.0016) between MMSE raw score and C25AXD.

ADNI Cohort: In the patients group (MCI plus AD)

a significant Spearman partial correlation (adjusted for age

and gender; education scores were not available) equal to r
5 –0.30 (P 5 0.0079) between MMSE raw score and

MVAXD was found.

Discussion

In this study we assessed the ability of NAWM diffusivity

changes to classify patients at different stages of the clinical

course of AD and evaluated the suitability of histogram-

derived metrics for patient staging and monitoring disease

progression. Several previous studies attempted to define the

features of diffusivity changes in the advanced stages of

AD28 and to identify correlations with clinical evaluations

or measures of cognitive decline such as the MMSE score.7

However, it remains to be clarified whether a simple quanti-

fication of DTI parameters can support patient staging.

In the current study we used histogram analysis, which

is able to detect subtle global changes in the brain tissue

and is particularly indicated when dealing with a diffuse dis-

ease such as AD.29 Histograms summarize the information

derived from large portions of tissue (in our case, the whole

NAWM) into a curve, which can be characterized by simple

metrics. In this work we compared the diagnostic reliability

of a number of histogram metrics, computed for FA, MD,

AXD, and RD.

Our study strongly suggests that the information deliv-

ered by AXD of NAWM is the most informative DTI

TABLE 2: Continued

Cognitive domain Neuropsychological
test

AD

(n 5 57)

MCI

(n 5 28)

HS

(n 5 23)

Reasoning

Raven’s Colored Pro-
gressive Matrices
(cutoff � 18.9)

22.9 (6.3)a,b 27.7 (4.7)a 32.6 (2.8)

Constructional praxis

Copy of drawings
(cutoff � 7.1)

7.4 (3.3)a,b 9.4 (1.7) 10.7 (1.3)

Copy of drawings
with landmarks
(cutoff � 61.8)

56.7 (16.4)a,b 66 (4.4) 69.3 (0.9)

Copy of Complex
Rey’s Figure
(cutoff � 23.7)

20.5 (12.5)a,b 29.8 (6.7) 32.6 (2.1)

All values are expressed as: mean (SD). All measures were compared between groups using Student’s t-test. Bonferroni correction was
used to account for multiple comparisons (P < 0.05). For each administered test appropriate adjustments for gender, age, and educa-
tion were applied according to the Italian normative data. Available cutoff scores of normality (>95% of the lower tolerance limit of
the normal population distribution) are also reported for each test. AD 5 Alzheimer’s disease; HS 5 healthy subjects; MCI 5 mild
cognitive impairment.
aStatistically significant difference between patients (AD or MCI) and HS.
bStatistically significant difference between AD and MCI.
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measure regarding the biological evolution of AD in the

human brain. The data analysis identically performed on a

local dataset (108 subjects) and ADNI dataset (140 subjects)

has indeed found in both cases that AXD histogram-related

parameters had the best performance in distinguishing AD,

MCI, and HS.

In particular, with the post-hoc t-test analysis we

found that, for the local cohort dataset, C25, C50, MV of

MD, AXD and RD were able to distinguish patients

(MCI, AD) from healthy subjects. More interestingly,

C25AXD was as the only parameter different in each group

and the most sensitive parameter to differentiate either AD

FIGURE 1: Group-averaged histograms of FA, MD, AXD, and RD in NAWM of three groups: HS (green), MCI (black) and AD
patients (red). A: Local cohort dataset. B: ADNI cohort dataset.
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TABLE 3. Histogram-Derived Indices of DTI Measures in NAWM of Patients (AD, MCI) and HS, for the Local
(Upper Numbers) and ADNI (Lower Numbers) Cohorts

FA

PH PL C25 C50 C75 MV

AD /
2.79 [0.16]

/
0.34 [0.02]

0.18 [0.01]
0.27 [0.02]

0.29 [0.02]
0.36 [0.02]

0.42 [0.02]
0.47 [0.02]

0.31 [0.02]
0.38 [0.02]

MCI /
2.83 [0.15]

/
0.34 [0.03]

0.18 [0.02]
0.28 [0.02]

0.29 [0.02]
0.37 [0.02]

0.42 [0.02]
0.47 [0.02]

0.31 [0.02]
0.39 [0.02]

HS /
2.75 [0.18]

/
0.35 [0.03]

0.18 [0.02]
0.28 [0.01]

0.30 [0.02]
0.37 [0.02]

0.42 [0.02]
0.48 [0.02]

0.32 [0.02]
0.39 [0.02]

MD

PH PL C25 C50 C75 MV

AD 2.75 [0.45]
4.14 [0.61]

0.80 [0.03]
0.76 [0.03]

0.75 [0.03]a

0.71 [0.02]
0.85 [0.04]a

0.78 [0.03]a
1.00 [0.06]
0.85 [0.03]a

0.92 [0.04]a

0.83 [0.03]a,b

MCI 2.63 [0.45]
4.55 [0.72]

0.79 [0.04]
0.76 [0.03]

0.74 [0.03]a

0.71 [0.03]
0.84 [0.04]a

0.77 [0.03]a
1.00 [0.07]
0.84 [0.04]

0.92[0.05]a

0.81 [0.04]a

HS 2.78 [0.35]
4.61 [0.65]

0.77 [0.03]
0.74 [0.03]

0.72 [0.02]
0.69 [0.02]

0.81 [0.03]
0.75 [0.03]

1.00 [0.05]
0.82 [0.03]

0.88 [0.04]
0.79 [0.03]

AXD

PH PL C25 C50 C75 MV

AD 1.67 [0.16]
1.95 [0.14]a,b

1.11 [0.04]
1.06 [0.03]

1.01 [0.03]a,b

0.98 [0.03]a
1.17 [0.04]a

1.11 [0.03]a
1.36 [0.05]
1.29 [0.04]a,b

1.23 [0.04]a

1.19 [0.04]a,b

MCI 1.59 [0.14]
2.04 [0.14]

1.10 [0.04]
1.05 [0.04]

0.99 [0.03]a

0.97 [0.03]a
1.16 [0.04]a

1.10 [0.04]a
1.36 [0.06]
1.27 [0.05]a

1.22 [0.05]a

1.17 [0.04]a

HS 1.62 [0.10]
2.08 [0.12]

1.08 [0.03]
1.03 [0.03]

0.97 [0.03]
0.96 [0.02]

1.13 [0.03]
1.08 [0.03]

1.32 [0.04]
1.24 [0.03]

1.18 [0.04]
1.14 [0.03]

RD

PH PL C25 C50 C75 MV

AD 2.25 [0.29]
3.30 [0.35]

0.65 [0.04]
0.61 [0.03]

0.58 [0.03]a

0.53 [0.02]
0.70 [0.04]a

0.61 [0.03]
0.87 [0.06]
0.70 [0.03]a

0.77[0.04]a

0.66 [0.03]a

MCI 2.20 [0.29]
3.55 [0.41]

0.64 [0.05]
0.60 [0.04]

0.57 [0.04]a

0.53 [0.03]
0.69 [0.05]a

0.60 [0.03]
0.86 [0.07]
0.68 [0.04]

0.77[0.05]a

0.64 [0.04]a

HS 2.35 [0.22]
3.56 [0.33]

0.62 [0.03]
0.59 [0.03]

0.55 [0.04]
0.51 [0.03]

0.67 [0.03]
0.59 [0.03]

0.82 [0.05]
0.67 [0.03]

0.73 [0.04]
0.62 [0.03]
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patients from the HS plus MCI group and HS from the

MCI plus AD group, as demonstrated by ROC curves and

AUC values.

Similarly, the analysis on the ADNI dataset has shown

that MV of MD and AXD and C75 of AXD were all signif-

icantly different in each group, but the ROC analysis

highlighted MVAXD as the measure with the maximum

AUC value in the two comparisons.

C25AXD and MVAXD accounted also for the patients’

level of global cognitive impairment of the two cohorts, as

highlighted by the post-hoc correlation analysis.

It is meaningful that in two independent datasets we

observed that AXD was the best discriminator between

groups (C25AXD for local dataset and MVAXD for ADNI

dataset). In terms of histogram features, however, we found

some differences between datasets. For the local dataset,

C25 was the best discriminator, while for the ADNI dataset

it was MV. We can speculate on the source of this inconsis-

tency, bearing in mind that these features ultimately reflect

the shape of the histograms, which in turn depend on the

NAWM masks, on the DTI maps and on the anatomical to

DTI space coregistration.

FIGURE 3: ROC curves relative to the comparison AD vs. HS plus MCI in local cohort dataset (A) and ADNI cohort dataset (B). In
these figures, sensitivity is the proportion of AD patients correctly classified and specificity is the proportion of HS and MCI sub-
jects correctly classified. Different features are represented with different colors; the features with maximum AUC are highlighted
with colored circles.

FIGURE 2: ROC curves relative to the comparison of MCI plus AD vs. HS in local cohort dataset (A) and ADNI cohort dataset (B).
In these figures, sensitivity is the proportion of MCI and AD patients correctly classified and specificity is the proportion of HS cor-
rectly classified. Different features are represented with different colors; the features with maximum AUC are highlighted with col-
ored circles.

All values are expressed as: mean [SD]. Diffusivity measures are expressed in 10-3mm2/s.
All indices were compared between groups using Student’s t-test. Bonferroni correction was used to account for multiple comparisons
(P < 0.05). AD 5 Alzheimer’s disease; AXD 5 axial diffusivity; C25 5 25th centile of histogram; C50 5 50th centile of histogram;
C75 5 75th centile of histogram; FA 5 fractional anisotropy; HS 5 healthy subjects; MCI 5 mild cognitive impairment; MD 5
mean diffusivity; MV 5 histogram mean value; NAWM 5 normal appearing white matter; PH 5 peak height of histogram; PL 5
peak location of histogram; RD 5 radial diffusivity.
aStatistically significant difference between patients (AD or MCI) and HS.
bStatistically significant difference between AD and MCI.
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NAWM masks and anatomical to DTI space warping

were carefully checked to assure accuracy. DTI data were

acquired with similar but not identical protocols, differing

in number of diffusion gradients and spatial resolution. The

number of gradients (61 vs. 41) should not substantially

influence the DTI diffusivity measures,30,31 but the in-plane

resolution (about 3 times lower in the local dataset) affects

the amount of partial volume effects. Comparing the histo-

gram shapes and the range of diffusivity values relative to

local and ADNI cohorts with the DTI values referred by

the literature32 confirms this hypothesis, as the histograms

of the local cohort dataset (suffering a greater partial volume

effect) tend to include more bins with low FA and high dif-

fusivity values. This observation accounts for both the FA

histogram not being unimodal and diffusivity histograms

having right tails with lower slope when compared to the

ADNI ones.

Nevertheless, the results of the two histogram analyses

converged in selecting axial diffusivity as the best discrimi-

nator, and yielded similar AUC values for C25AXD (for the

local cohort dataset) and MVAXD (for the ADNI cohort

dataset), therefore indicating a similar group discrimination

capability.

WM damage in AD has been interpreted on the basis

of two coexisting main pathophysiological mechanisms33:

neurodegeneration and myelin damage. The former mecha-

nism induces axonal damage caused by Wallerian degenera-

tion,34 secondary to the effect of cortical neuronal loss.

Concurrently, homeostatic repair mechanisms are activated

by demyelinating processes, with amyloid and tau accumu-

lating as by-products of these mechanisms. Evidence34 sug-

gests that in the early stage of the disease these pathological

processes coexist and are relatively independent, while at

later stages Wallerian degeneration seems to prevail.

Reduced AXD and increased RD have been proposed as

specific markers of axonal degeneration and demyelination,

respectively, based on animal models.34,35 However, this

interpretation in human brain data has been challenged.36

In particular, little evidence of reduced AXD has been

reported, with the majority of studies reporting increased

AXD in multiple conditions, including AD.37 A previous

study comparing these indices in patients with AD at differ-

ing stages38 showed increased axial diffusivity as the earliest

sign of white matter change. They speculated that these

changes could reflect early inflammatory events such as

microglial activation, which has been implicated in AD

pathophysiology.39 In accordance with these findings, we

found in both the local and ADNI datasets an increase of

MD, AXD, and RD in the NAWM of patients (MCI,

AD—probably driven by the latter) when compared with

healthy subjects, while only changes in AXD were able to

also distinguish MCI from AD.

The interpretation of increased AXD as a marker of

inflammation is very speculative, and alternative explana-

tions are possible, including some form of axonal degenera-

tion. This would fit with the hypothesis of Wallerian

degeneration secondary to distal cortical atrophy, as the neu-

ropathological process underlying WM damage in AD, par-

ticularly along the main cholinergic pathways. Currently,

our data do not allow us to draw a firm conclusion on the

substrate of the measured change.

Regardless of the pathological substrate, our data indi-

cate that AXD histogram-derived parameters are the most

promising indexes among the ones here investigated for

patient stratification. With regard to the potential clinical

impact of our study, the results of ROC analyses and post-

hoc correlation analysis are promising. Although these

results need to be confirmed by further studies on larger

patient populations and different MRI scanners and DTI

protocols, the ROC analyses results indicate that AXD fea-

tures in the NAWM have the capability of discriminating

between groups, while the post-hoc correlation results high-

light that AXD features account for the patients’ level of

global cognitive impairment, thus expressing the clinical

impact of brain involvement. These findings suggest that

histogram features of AXD might be reliable biomarkers to

be used in clinical trials (ie, patients’ staging and follow-up)

and, possibly, as a diagnostic tool in clinical settings. In

future work, it will be interesting to test if the classification

performance, and consequently the clinical usefulness, could

be improved by using a linear/nonlinear combination of

AXD features and/or exploiting more sophisticated classifi-

cation algorithms, such as those used in machine learning

(eg, Support Vector Machine, Random Forest).

One might argue that neuropsychological assessments

provide a comparable performance at a lower cost. However,

MRI is typically performed at the time of diagnosis, and

current DTI protocols (available on all clinical scanners)

would add only a few minutes to the basic clinical protocol.

The advantage of imaging biomarkers is that they are more

objective and might be more sensitive than MMSE at the

very early stages. Clearly, more validation is needed before

these tools can be translated into the clinic.

There were some limitations in our study. First, this

study lacked longitudinal data. Moreover, data for DTI

analysis are relatively easy to acquire; nevertheless, recent

development in microstructural imaging suggest that more

sophisticated approaches40 can provide more specific infor-

mation about WM. Future studies are warranted to investi-

gate whether more accurate biomarkers for AD progression

can be obtained by applying histogram analysis to indices

derived from these advanced models of diffusion. An impor-

tant observation is that the spatial resolution of DTI might

affect the results of histogram analysis. While further investi-

gations are required, the current recommendation would be
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to match the ADNI protocol. Another potential source of

bias is the different resolution of T1-weighted and T2-

weighted data, which were coregistered for the purpose of

obtaining the NAWM mask. While ideally one would

acquire data with similar geometry, in this case the sequen-

ces were optimized for brain segmentation and lesion seg-

mentation, respectively. Regarding lesion segmentation, it is

also legitimate to wonder whether, as patients tend to have

higher lesion load, this could introduce a bias. However, we

excluded participants with lesion volume larger than 25 ml

and all histograms were normalized by the total voxel count.

This implies that, for every participant, the number of total

lesion voxels was at least 20–30 times less than the number

of NAWM voxels. Including/excluding in the NAWM histo-

grams such a small amount of voxels would not affect the

shape of the histograms, which would be substantially

unchanged.

Finally, it should be noted that the local cohort groups

were well matched for age and gender, but the level of edu-

cation was higher in healthy controls compared to the

patients’ groups (education is not available for the ADNI

cohort). While this may introduce a potential bias, it is a

fairly common occurrence in this kind of study.

In conclusion, our findings suggest that histogram-

derived measures of AXD in NAWM might be a sensitive

marker of microstructural brain tissue changes occurring

during the course of AD and might be useful to predict the

rate of disease progression, and hopefully to be used as an

index of response to medication in pharmacological trials.
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