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Abstract 

Background: Previous models of Alzheimer’s disease (AD) progression were primarily hypothetical or based on data 
originating from single cohort studies. However, cohort datasets are subject to specific inclusion and exclusion criteria 
that influence the signals observed in their collected data. Furthermore, each study measures only a subset of AD‑
relevant variables. To gain a comprehensive understanding of AD progression, the heterogeneity and robustness of 
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Background
Alzheimer’s disease, in combination with its clinical 
manifestation/syndrome (AD) [1], is a progressive, mul-
tifaceted disease whose cognitive symptoms surface years 
after disease onset [2]. In order to identify crucial oppor-
tunities for medical interventions that could potentially 
prevent or delay symptoms, it is vital to understand the 
temporal relationship of pathological changes underly-
ing the progressive nature of AD. To this end, cognitive 
assessments and a wide range of biomarkers, including 
cerebrospinal fluid (CSF) markers and neuroimaging-
derived measures, have been established to monitor the 
disease’s progression. Measuring these markers enables 
the observation of biochemical, structural, functional, 
and cognitive changes that occur as the disease pro-
gresses [3] and the resulting data can build the basis for 
data-driven approaches that aim to determine the relative 
temporal dependencies between biomarkers and cogni-
tive symptoms [4]. Previously, a variety of data-driven 
models have been developed with the aim of accomplish-
ing this task [5–10].

One model archetype that has found wide success in 
the context of neurodegenerative diseases [11–14] and 
AD specifically [15] is the event-based model (EBM) 
[13]. It is a data-driven probabilistic generative model 
that characterizes the progression of a disease in the 
form of a single sequence of events which describes the 
relative order of measured markers turning from a nor-
mal state to a diseased state (i.e., abnormal state). Such 
event sequences carry the benefit that they are highly 
interpretable and, although describing disease progres-
sion, can already be learned from cross-sectional cohort 
study data. Previously, EBMs have been used to derive 

event sequences [13], stage subjects in their disease pro-
gression [15], predict conversion from one clinical stage 
to the other (i.e., cognitively unimpaired (CU) to mild 
cognitive impairment (MCI), or MCI to AD) [16], and 
uncover disease phenotypes with distinct temporal pro-
gression patterns.

To build an EBM, patient-level data are needed on 
which the model can be fit. In recent decades, an increas-
ing number of observational cohort studies have released 
their collected data for research purposes, including the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
[17], the European Prevention of Alzheimer’s Dementia 
(EPAD) [18], and AddNeuroMed [4]. So far, however, only 
a few studies in the AD domain have applied EBMs to 
data from other cohorts besides ADNI [19, 20]. Previous 
work evaluating data-driven progression modeling based 
on cohort datasets has shown that the participant recruit-
ment procedures can introduce cohort-specific system-
atic statistical biases into the collected data [21], which, in 
turn, can bias the estimation of disease progression [22]. 
Therefore, it is necessary to replicate and validate data-
driven results in independent cohorts to ensure robust 
conclusions. Consequently, it remains unclear whether 
event sequences determined from one cohort dataset 
would generalize beyond the discovery cohort itself and, 
further, if sequences generated across several cohorts 
were concordant among each other. Simultaneously, 
gaining a comprehensive event sequence combining all 
relevant AD biomarkers, cognitive assessments, and func-
tional scores is infeasible, since cohort studies can only 
measure a limited set of variables that are often only par-
tially overlapping between them [23]. In theory, however, 
this allows for an estimation of individual event sequences 

estimated progression patterns must be understood, and complementary information contained in cohort datasets 
be leveraged.

Methods: We compared ten event‑based models that we fit to ten independent AD cohort datasets. Additionally, 
we designed and applied a novel rank aggregation algorithm that combines partially overlapping, individual event 
sequences into a meta‑sequence containing the complementary information from each cohort.

Results: We observed overall consistency across the ten event‑based model sequences (average pairwise Kend‑
all’s tau correlation coefficient of 0.69 ± 0.28), despite variance in the positioning of mainly imaging variables. The 
changes described in the aggregated meta‑sequence are broadly consistent with the current understanding of AD 
progression, starting with cerebrospinal fluid amyloid beta, followed by tauopathy, memory impairment, FDG‑PET, 
and ultimately brain deterioration and impairment of visual memory.

Conclusion: Overall, the event‑based models demonstrated similar and robust disease cascades across independent 
AD cohorts. Aggregation of data‑driven results can combine complementary strengths and information of patient‑
level datasets. Accordingly, the derived meta‑sequence draws a more complete picture of AD pathology compared to 
models relying on single cohorts.

Keywords: Alzheimer’s disease, Event‑based models, Biomarker ordering, Disease progression, External validation, 
Meta‑sequence
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from distinct cohorts which cover complementary sets of 
markers. Aggregating results across cohorts would har-
ness this complementary information by assembling a 
meta-sequence that provides a more complete picture of 
the development and progression of AD.

In this work, we present a systematic, in-depth com-
parison of AD event sequences derived from ten inde-
pendent landmark cohort studies to investigate the 
generalizability and robustness of EBM-derived AD 
progression patterns. Furthermore, we designed a novel 
rank aggregation algorithm which we used to aggregate 
the event sequences into a single meta-sequence, thereby 
fusing the complementary information in all variables 
assessed across the studies. Our work harnesses the het-
erogeneity in cohort study designs and measurements to 
produce a meta-sequence providing a more complete, 
and robust, picture of the temporal order of pathological 
marker changes in AD progression.

Methods
Investigated cohort datasets
We selected ten independent AD cohort studies for our 
analysis by systematically exploring suitable datasets 
using the ADataViewer [23]. The prerequisite for includ-
ing a cohort into our analysis was that (1) diagnostic 
staging into CU, MCI, and AD was performed [24]; (2) 
cross-sectional data was available for at least 10 patients 
per diagnostic group; and (3) multiple data modali-
ties were collected. The cohorts that were ultimately 
selected are presented in Table  1. All cohorts followed 
the NINCDS-ADRDA diagnostic criteria [24].

Variable selection
We aimed at including a wide spectrum of variables to 
uncover the temporal relationship across multimodal 

markers of AD pathology that capture, for example, dif-
ferent biochemical, cognitive, or structural changes. In 
order to include a specific variable, it must have been 
measured in at least the CU and AD groups of the 
respective study to allow for later modeling. Further-
more, only a minimal amount of missing values was tol-
erable, as participants with missing values in any of the 
ultimately selected variables had to be excluded from the 
analysis. This led to a trade-off between the inclusion of 
an increasing number of variables and the amount of par-
ticipants available for analysis. We present an example 
of variable inclusion and the effect on sample size in the 
supplementary material (Table  S1). In total, 36 unique 
variables were selected from different data modalities 
covering neuropsychological and cognitive tests, CSF 
markers, and MRI-derived brain region volumes. The 
complete list of selected biomarkers and their corre-
sponding modality are presented in Table 2. The number 
of variables per cohort is given in Table 1.

Participants
An available diagnosis of a participant as either CU, MCI, 
or AD was a prerequisite for inclusion. Furthermore, any 
participant with a diagnosis of cognitive impairment that 
was not linked to AD by the respective study’s clinicians 
was excluded. Furthermore, only participants with com-
plete data across all selected biomarkers could be used in 
our modeling approach. The number of participants per 
cohort and diagnostic group is described in Table 1.

Progression modeling via event‑based models
The EBM derives a probabilistic sequence from patient-
level data that describes the temporal order in which 
measured values of variables turn from a normal to an 
abnormal state. Each of these transitions is called an 

Table 1 Selected cohorts, their number of participants per disease stage, and their number of considered variables

Cohort Consortium CU MCI AD Total Number 
of CSF, 
PET, and 
imaging 
biomarkers

Number of 
cognitive 
tests

ADNI [17] The Alzheimer’s Disease Neuroimaging Initiative 38 63 35 136 9 9

JADNI [25] Japanese Alzheimer’s Disease Neuroimaging Initiative 17 87 10 114 9 9

AIBL [26] The Australian Imaging, Biomarker Lifestyle Flagship 
Study of Ageing

92 23 13 128 0 10

NACC [27] The National Alzheimer’s Coordinating Center 24 42 24 90 9 7

ANM [28] AddNeuroMed 120 161 103 384 6 1

EMIF‑1000 [29] European Medical Information Framework 47 229 53 329 4 5

EDSD [30] European DTI Study on Dementia 26 34 32 92 5 7

ARWIBO [31] Alzheimer’s Disease Repository Without Borders 214 115 38 367 7 3

OASIS‑1 [32], OASIS‑2 [33] Open Access Series of Imaging Studies 135 70 30 235 6 1

WMHAD [34] White Matter Hyperintensities in Alzheimer’s Disease 19 27 42 88 6 7
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event. In this context, normality or abnormality are 
defined non-parametrically using kernel density esti-
mation mixture modeling on the empirical values of 
the modeled cohort’s CU and AD populations, respec-
tively [35]. This probabilistic allocation of measurements 
into two groups allows study participants (in particular, 
patients) to have a mix of occurred and non-occurred 
events across all measurements which lays the founda-
tion to estimate the most likely event sequence. Here, the 
EBM assumes that the biomarkers monotonically change 
towards abnormality as the disease progresses and that 
this process is irreversible. Furthermore, there are no a 
priori assumptions regarding predefined disease stages, 

cut points determining the abnormality of biomarkers, or 
the temporal relationship between them. The most likely 
sequence of events S is then estimated by maximizing the 
likelihood (𝑋|𝑆) (Eq. 1), where variable measurements are 
denoted by x ∈ X for i ∈ M markers and j ∈ N indicates the 
individual samples.

Here, Pr(xij| Ei) and Pr(xij ∣  ¬ Ei) describe the probability 
of observing the value of x given that the event Ei (i.e., 

(1)

Pr(X |S) =

N
∏

j=1

[

M
∑

m=0

{

m
∏

i=1

Pr
(

xij|Ei
)

M
∏

i=m+1

Pr

(

xij|¬Ei

)

}]

Table 2 The selected biomarkers and their corresponding abbreviations

Modality Biomarker Abbreviation Number of cohorts 
containing variable

Clinical assessments Neuropsychiatric Inventory NPI 2

Logical Memory ‑ Delayed Recall Total Number of Story Units Recalled LDEL 5

Alzheimer’s Disease Assessment Scale (13‑items) ADAS13 2

Alzheimer’s Disease Assessment Scale (11‑items) ADAS11 2

Logical Memory ‑ Immediate Recall Total Number of Story Units Recalled LIMM 6

Trail Making Test‑B TRABS 2

Digit‑Symbol Coding Test DIGITS 2

California Verbal Learning Test Delayed Raw Score LIDE 1

Category Fluency (animals ‑ fruits/vegetables) CATFLU 3

Figure Copy FIGC 3

California Verbal Learning Test Recall Raw Score LIRE 2

Figure recall FIGR 2

C/D Stroop Test Raw STROOP 1

Short Term Memory STM 1

Language LANGU 1

Perceptual Orientation ORIENT 2

Mental Manipulation MENMA 1

Attention ATTEN 1

Clock Drawing Test Total Score CLKS 2

Executive Memory EXECUTIVE 1

Word List Learning Trial LICOR 1

Boston Naming Test Score BNTS 2

Digit Symbol Substitution Test WAIS 2

CSF markers Amyloid‑β ABETA 4

Total tau TAU 4

Phosphorylated tau (p‑Tau) PTAU 4

Imaging markers Entorhinal volume ENTOR 8

Hippocampal volume HIPPO 8

Fusiform volume FUSIF 8

Ventricles volume VENT 8

Middle temporal volume MIDTEPM 8

Accumulated CSF in the brain CSFVOL 5

Fluorodeoxyglucose positron emission tomography (FDG PET) FDG 2



Page 5 of 14Golriz Khatami et al. Alzheimer’s Research & Therapy           (2022) 14:55  

variable x turning abnormal) has, or has not, occurred, 
respectively. For more details, we refer to the Supple-
mentary Material and the original publication of the KDE 
EBM by Firth et al. [35]. The derived mixture models per 
cohort and measurement are presented in Fig. S3.

To quantify the similarity of distinct event sequences, 
we calculated the pairwise Kendall’s tau rank correla-
tion coefficient (KTC) across sequences and the Bhat-
tacharrya coefficient (BC) for specific events as explained 
in Oxtoby et  al. [12]. The KTCs were calculated pair-
wise across all cohorts while considering only the rela-
tive ranks of variables which were common among the 
respective two cohorts’ sequences. An average KTC that 
is close to 1 and shows low standard deviation across the 
cohorts would indicate high concordance. An average BC 
close to 1 implies high similarity in the positional vari-
ance of ranks while the BC amounts to 0 for completely 
different patterns.

Generating a meta‑sequence based on event sequences 
derived from multiple cohort studies
To generate a meta-sequence, we propose a method 
that combines individual event sequences (called “base 
sequences”) stemming from independent datasets. We 
assemble a meta-sequence in a two-step procedure: first, 
building on the ideas presented in [36] and [37], we gen-
erate all possible sequences comprising k variables that 
are randomly drawn from the union of variables encoun-
tered in the base sequences (with k < total number of 
variables). The generated sequence with the minimum 
average distance to all base sequences is selected as a 
starting sequence for the next step. In step 2, this starting 
sequence is extended by iteratively adding the remaining 
variables to it (i.e., those not in the k variables of the start-
ing sequence), such that the average distance between 
the altered sequence and all base sequences remains 
minimal. Here, the new variable is not necessarily added 
to the end of the sequence but all possible positions are 
considered. This process is repeated until all variables 
have been included into the sequence which finally forms 
the aggregated meta-sequence. Therefore, the algorithm 
is deterministic once the base sequences are calculated. 
Splitting the algorithm in two steps (an exhaustive search 
for the first k variables followed by the greedy insertions) 
was necessary, as the search space (i.e., all possible meta-
sequences) grows exponentially with the number of vari-
ables in the base sequences. Further explanations about 
the algorithm, the handling of partially overlapping lists, 
and access to the corresponding python code are pro-
vided in the Supplementary Material and Fig. S1.

We designed and applied two algorithms for generating 
a meta-sequence: one based on the maximum likelihood 
(ML) sequences presented by EBMs and one relying on 

bootstrapping. In the former, only the ML base sequences 
of each cohort were used as an input to our algorithm. 
Therefore, however, solely the rank of each event is con-
sidered while its positional variance within a sequence is 
not taken into account.

During the bootstrapping approach, all base sequences 
are resampled b-times with replacement. This means that 
a new base sequence is generated per cohort based on a 
sample of that cohort’s participants that was randomly 
drawn with replacement and is of equal size to the orig-
inal cohort. For each of these b sets of base sequences, 
one meta-sequence is generated. The resulting consensus 
over the b meta-sequences is visualized using a positional 
variance diagram which displays the variation in event 
ranks exhibited across the generated meta-sequences.

For this work, we generated a meta-sequence consid-
ering only variables which were present in at least three 
cohorts (Table  2) and set k equal to eight. In our boot-
strapped version, we drew 500 bootstrap samples. The 
distance metric chosen was Spearman’s footrule distance 
which takes the absolute difference in positions of vari-
ables into account.

Patient staging according to the determined 
meta‑sequence
Once a meta-sequence was determined, one possible way 
to evaluate its plausibility across cohorts was to evaluate 
the assignment of subjects of the respective cohorts to 
the disease stages defined by the meta-sequence. In this 
process, each participant of a study was assigned to a dis-
ease stage which represents the current step in the meta-
sequence at which the participant most likely resides. 
Therefore, stage 0 refers to the absence of any abnormal 
markers, while the farthest progressed stage m (with m 
being equal to the length of the sequence) implies that 
all events occurred for that particular subject. The corre-
sponding equation underlying the patient staging is pro-
vided in the Supplemental Material.

Here, we staged only participants from cohorts that 
contained measurements of all investigated modalities 
(i.e., ADNI, JADNI, EMIF, and NACC) and were bound 
to consider only those variables of the meta-sequence 
that were found in the respectively staged cohort.

Results
Comparing event sequences derived from multiple cohort 
studies
We observed broad consistency with respect to the 
position of events across all cohorts’ sequences which 
resulted in an average KTC of 0.69 ± 0.28 (pairwise KTCs 
are presented in Table S4; sequence similarity is also indi-
cated visually through an approximately diagonal line of 
the event ranks from top-left to bottom-right in Fig. 1). 
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In most cohorts’ sequences, CSF markers ranked highly, 
before cognitive impairments, which were again followed 
by MRI-derived brain volumes in the lower ranks.

The relative order among clinical assessments meas-
uring different cognitive domains (e.g., memory, lan-
guage, visuospatial, executive) was consistent across 
most cohorts (see Table  S2 for a mapping of tests to 
cognitive domains). The cognitive impairment in all 
investigated cohorts started with memory dysfunc-
tion detected by logical memory tests (e.g., LDEL and 
LIMM), proceeded with language impairments exposed 
by tests such as the BNT and CATFLU. Thereafter, in 
most cohorts, visual dysfunction identified through the 
CLKS or FIGC followed, and finally, executive dysfunc-
tion recognized by, for example, the DIGIT and WAIS, 
occurred.

Among the cohorts where CSF biomarkers had been 
measured (ADNI, JADNI, EMIF, NACC), the relative 
positions of these biomarkers, in particular of tau (TAU) 
and phosphorylated tau (PTAU), varied. ABETA consist-
ently placed first in all of these cohorts’ sequences, and 
TAU and PTAU were mainly found in early positions as 
well (ADNI, JADNI, and EMIF), with the exception of 
NACC where they placed in the middle of the sequence. 
However, in all cases except JADNI, PTAU and TAU were 
direct neighbors, indicating the consistent, direct link 
between them.

The relative order of the MRI-derived brain volume 
events was consistent across cohorts, albeit with some 
variance (average KTC of 0.64 ± 0.29 for MRI varia-
bles only). While the volume changes in ADNI, JADNI, 
ARWIBO, and WMHAD started with ventricular expan-
sion and were then followed by atrophy of the temporal 
lobe (here, hippocampus, entorhinal, middle temporal, 
and fusiform gyrus), in other cohorts (ANM, OASIS, 
NACC, EDSD), atrophy of the temporal lobe regions was 
the first detected variables of the MRI modality. The posi-
tion that was taken by each respective brain region varied 
again among the cohorts. However, in many cases, the 
probabilistic nature of the EBMs indicated that the order 
of MRI events could be interchangeable among them-
selves (average BC of 0.17 ± 0.13 for MRI variables only) 
and events occurred most probably in close temporal 
proximity or even simultaneously (Fig. S2), as far as the 
model could discern from the data.

The position of FDG-PET, another well-established 
imaging biomarker measuring brain hypometabo-
lism, was consistent in both cohorts it was measured in 
(ADNI, JADNI). It preceded the MRI marker changes 
and occurred concurrently with clinical symptoms, being 
placed after logical memory tests such as the LIMM and 
LDEL. However, its positioning of FDG-PET related to 
assessments of executive function differed between the 
two cohorts.

A multimodal meta‑sequence of AD progression
To aggregate and investigate the complementary infor-
mation from the base sequences in each cohort, we 
combined them into a single meta-sequence. Here, the 
position of a variable was determined based on its rela-
tive positions in all cohort sequences. Both versions of 
our algorithm (i.e., ML sequence-based and bootstrap-
ping) were applied.

In the meta-sequence generated based on each cohort’s 
ML sequence (Fig. 2), ABETA was ranked first, followed 
by PTAU and TAU. The latter were again closely linked 
and seemingly interchangeable given their ambiguous 
positioning across the base sequences. In positions four 
and five, LDEL and LIMM followed respectively, two 
clinical assessments measuring memory impairment. 
Next, the volume of CSF in the brain was positioned in 
the meta-sequence. The later event ranks were covered by 
MRI markers of brain volume, starting with the temporal 
lobe (e.g., hippocampus and entorhinal cortex) and ending 
with the ventricles. The previously described ambiguity 
in the order of MRI regions is not reflected in the ML-
based meta-sequence because the algorithm considers 
only the ranks, and not the uncertainty estimated by the 
individual EBMs. However, it seems sensible to consider 
MRI events as fairly interchangeable in the meta-model. 
FIGC, an assessment of visual function, positioned before 
FUSIF and MIDTEMP near the end of the sequence, yet 
its position with respect to those two variables remained 
rather indefinite across the base sequences in which it was 
assessed (ARWIBO, AIBL, EDSD).

The consensus meta-sequence generated using the boot-
strapping approach resembled the ML meta-sequence 
closely (KTC between both meta-sequences: 0.79; Fig. 3). 
Again, CSF markers placed first in the meta-sequence, 
were followed by cognitive assessments, and MRI events 

(See figure on next page.)
Fig. 1 Individual event sequences estimated from the ten investigated cohorts. To facilitate the comparison of relative event positions, the 
y‑axes follow the ADNI sequence. Common events between ADNI and the other cohorts are presented above a dashed green line. The closer 
the sequences are to the ADNI sequence, the more diagonal the probabilistic position (colored squares) will align from top‑left to bottom‑right. 
Lateral shifts due to additional events which were not available in ADNI have to be disregarded (as for example observed in WMHAD and EDSD). 
Event order 1 corresponds to the first position in the sequence. The shading of squares indicates the positional probability with darker shades 
corresponding to higher probabilities. The relative sizes of the squares do not encode any information. The event sequences in their original form 
are presented in Fig. S2
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Fig. 1 (See legend on previous page.)
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started with the temporal lobe and further progressed with 
the ventricles. The main difference to the ML-based meta-
sequence, as well as the major region of model uncertainty, 
was again found among the MRI variables. This further 
underlined the impression that the MRI events were fairly 
interchangeable and probably occurred in close temporal 
proximity. The highest ambiguity was in the positioning 
of FIGC which showed a slight tendency towards the last 
ranks. The average KTC across all bootstrapped meta-
sequences was 0.5 ± 0.20, with the highest discordance 
found among the MRI modality.

Staging the patients of cohorts with available CSF, MRI, 
and cognitive scores (i.e., ADNI, JADI, NACC, EMIF) 
revealed a consistent pattern across them (Fig. 4). For all 
cohorts, the vast majority of CU subjects were assigned to 
the first stage which corresponds to no event occurrences. 
As expected, MCI patients were largely staged between 
CU subjects and AD patients with some overlap in both 
directions. This suggests that these subjects experienced 
CSF marker abnormalities and some cognitive symptoms. 
Finally, the majority of AD patients were assigned to the 
last stages, indicating their abnormality along CSF mark-
ers, cognitive performance, and brain region atrophy.

Discussion
In this work, we used EBMs to investigate AD progression 
across ten independent cohort studies by evaluating the 
concurrence of their individually derived event sequences. 

Furthermore, we proposed an algorithm to combine event 
sequences estimated from partially overlapping, and thus 
complementary, sets of variables into a single meta-sequence 
describing AD progression more comprehensively. Finally, 
we applied said algorithm on the ten event sequences to esti-
mate a meta-sequence comprising 13 AD variables spanning 
CSF biomarkers, MRI measures, and clinical assessments of 
cognitive and functional performance.

Consistent trends across cohorts’ event sequences
The derived event sequences proved to be broadly con-
sistent across cohorts, with the most notable variability 
in the ordering of MRI brain volume events. This could 
be caused by (1) distinct statistical biases of the cohorts 
for example introduced through specific recruitment cri-
teria [21], (2) distinct prevalence of AD disease progres-
sion subtypes that follow different disease mechanisms 
[38–40], or (3) mixed neuropathologies.

Inclusion and exclusion criteria of a study shape the 
demographic compositions of its cohort and thus can 
directly affect the data-driven disease progression pat-
terns (Table S3). For instance, ADNI held a higher pro-
portion of APOE4 carriers compared to JADNI. Given 
that it has been repeatedly reported that early TAU depo-
sitioning is more prominent in APOE4 carriers [41–43], 
this difference might explain the earlier positioning of 
TAU in ADNI’s sequence opposed to its relatively lower 
rank in JADNI’s.

Fig. 2 All ML base sequences from the ten investigated cohorts and the resulting meta‑sequence. Due to only partially overlapping lists, the 
determining factor for an event’s position in the meta‑sequence was not its absolute position in each base sequence (i.e., rank 1, 2, …, 11), but its 
relative position to other biomarkers in the same sequence (e.g., ABETA commonly places before MMSE when they were assessed together; thus, it 
appears before MMSE in the meta‑sequence)
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Previously, for example, two empirically determined 
AD progression subtypes called “hippocampal-sparing” 
and “limbic-predominant” were described and associated 
with distinct patterns of brain atrophy [38, 44]. While 
structural changes in the brain start with atrophy in the 
medial temporal lobe (e.g., entorhinal and hippocampus) 
for the limbic-predominant subtype, the brain deterio-
ration in the hippocampal-sparing subtype begins with 
atrophy of the frontal cortex and with the enlargement of 
ventricles [44]. Given their respective event sequences, 
this could indicate that OASIS, ADNI, and NACC might 
have included more patients expressing the limbic-pre-
dominant subtype, while the hippocampal-sparing sub-
type was more dominant among patients from ARWIBO 
and JADNI.

We observed that CSF biomarkers placed first in all 
cohorts which measured them. This finding is in con-
cordance with previous biomarker studies that observed 
the occurrence of both ABETA accumulation and brain 
atrophy before global cognitive decline [45–48].

Autopsies of AD patients have shown that AD 
pathology hardly appears in isolation and that patients 
often suffer from a mixture of brain pathologies [49]. 
While most studies aim to exclude patients affected 
by other cognitive diseases, an AD clinical diagnosis 
is still mainly symptom driven and misclassification 
errors are possible.

Meta‑sequence combines heterogeneous event sequences 
from multiple cohorts
A particular strength of our meta-sequence algorithm is 
that it works agnostic towards the differences in variable 
value representations exhibited across cohorts. A direct 
comparison of the provided data values often remains chal-
lenging without introducing statistical biases since stud-
ies differ, for example, in their data collection procedures, 
employed imaging machinery, and used assays. Using our 
approach, such semantically equivalent but statistically het-
erogeneous information can be combined as all computa-
tions are performed solely on the base sequences and thus 

Fig. 3 Bootstrapped meta‑sequence generated from 500 samples of the base sequences of the 10 cohorts. Event order 1 corresponds to the first 
position in the sequence. The shading of squares indicates the positional probability with darker shades corresponding to higher probabilities



Page 10 of 14Golriz Khatami et al. Alzheimer’s Research & Therapy           (2022) 14:55 

potential across-cohort-biases due to value representations 
are avoided.

The biggest advantage of the bootstrapping approach 
compared to ML sequence-based one is that it allows for 
uncertainty quantification. However, bootstrapped EBM 
sequences tend to display a substantially higher posi-
tional variance (i.e., “fuzziness”) than ML derived ones 
(for an example, see Firth  et al. Figures  1 and 2 [35]). 
Comparing our ML-based meta-sequence to the boot-
strapping-based meta-sequence revealed high similarity 
between them. Observed differences seemed to be within 
variational limits expressed in the bootstrapped meta-
sequence and mainly affected MRI variables.

Generated meta‑sequence resembles AD pathology
One possibility to validate the derived meta-sequence 
was to evaluate its concordance with previous findings 
describing the temporal relationship between smaller 
subgroups of variables.

The ordering of CSF biomarkers discovered in previ-
ous EBM studies supported our observations in the meta-
sequence (ABETA followed by PTAU and TAU) [15]. Our 
findings were also in line with a recent study [50] which 
demonstrated that TAU and PTAU become abnormal after 
ABETA and that their abnormality occurred in close tem-
poral relationship with cognitive decline. The latter was also 
in concordance with our findings; however, the cognitive 

Fig. 4 Number of subjects from each diagnostic group per meta‑sequence stage. Each step along the x‑axis corresponds to the occurrence of a 
new biomarker abnormality event. Stage 0 corresponds to no event occurrence while the last stage implies abnormality of all variables. Events are 
ordered according to the bootstrapped meta‑sequence, always considering only variables in common between the measurements available in the 
respective cohort and the meta‑sequence
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assessments we investigated (i.e., LDEL and LIMM) were 
not directly included in the referenced study. Furthermore, 
there is a well-established association between cognitive 
decline and ABETA abnormality and abundant evidence 
that changes in cognition typically occur after abnormali-
ties related to CSF biomarkers [45, 50, 51].

Our observation that memory function showed abnor-
mality before brain volumes agrees with previous studies 
which suggested that individual-level brain atrophy rates 
(not assessed in our study) precede cognitive events; 
however, MRI-derived brain volumes become abnormal 
afterwards [15].

In our meta-sequences, changes in MRI biomarkers 
were ranked after cognitive decline. In agreement with 
this, for example, Hadjichrysanthou et  al. reported that 
changes in MRI markers appear in close succession with 
memory decline [52]. Also, the positioning of MRI vari-
ables with respect to CSF markers was concordant with 
previous observations where significant correlations 
between CSF biomarkers and temporal lobe atrophy were 
found [53–55]. These studies argue that increases of TAU 
and PTAU are attributable to the deposition of neurofi-
brillary tangles in the temporal lobe, including the hip-
pocampus and entorhinal cortex, which we found to be 
the first brain region volumes turning abnormal. Further-
more, elevated CSF  biomarkers predicted future brain 
atrophy in these regions (i.e., CSF  biomarkers became 
abnormal before brain volumes).

In concordance with the relative positioning of MRI 
biomarkers in the meta-sequence, various studies have 
shown that volumetric changes start with the temporal 
lobe areas, including the hippocampus which preceded 
the abnormality of the entorhinal cortex, fusiform, and 
middle temporal, and further proceed to other brain 
regions such as the ventricles [56–59].

Finally, in agreement with a previous study [60–63] in 
which visual memory dysfunction was identified as one 
of the last stages in AD progression, the FIGC test was 
ranked among the end of the sequences. The fact that it 
was positioned after the enlargement of ventricles is in 
agreement with experimental evidence that changes in 
the ventricles may precede a deficit in visual memory 
function [64, 65]. Another EBM study [35] also suggested 
that visual processing becomes impaired after episodic 
memory in typical AD.

The conducted patient staging provided further evi-
dence that the generated meta-sequence described a sen-
sible cascade of AD progression: participants from the 
three diagnostic groups were distributed according to 
their disease severity with CU subjects being staged first, 
MCI patients spreading around the intermediate stages, 
and AD cases occupying the later stages of the sequence. 
Observing MCI subjects at stage 0 could be explained 

by CSF biomarker values and cognitive scores that were 
close to the probabilistic event threshold but did not yet 
exceed it and, consequently, the model considered them 
to be normal. The few AD cases that were staged early 
in the sequence were amyloid-negative subjects which 
potentially indicated their misclassification.

Limitations
To build a robust meta-sequence, each variable had to be 
present in at least some of the base sequences to allow for 
meaningful distance calculations. Furthermore, the high 
amounts of missing data occurring when multiple data 
modalities are combined led to a substantial decrease of 
the number of available participants per study. This could 
have led to more noise in the EBM’s reference distribu-
tions. Additionally, modeling signals from heterogeneous 
data sources, such as AD cohort data, as some form of 
average bears the potential risk that the resulting aver-
age will resemble a rather artificial construct that cannot 
be observed in its specific form in the real world. How-
ever, the similarity among the base sequences as well as 
between base sequences and the final meta-sequence was 
quite high and our identified meta-sequences were highly 
concordant with results from both data-driven and 
experimental studies. Furthermore, the patient staging 
along the meta-sequence displayed a sensible distribution 
of CU, MCI, and AD subjects along the disease stages. 
Consequently, it is improbable that the presented meta-
sequence represents such an artificial average. Finally, we 
want to highlight again that AD was considered primar-
ily from a clinical perspective in all of our investigated 
cohort studies. As such, there is a chance that misdiag-
nosed patients were present in the cohorts and therefore 
included in this analysis as well.

Conclusion
In the light of the reproducibility crisis, it becomes 
especially important that we look beyond single data 
resources, validate achieved results across multiple 
cohort studies, and constantly develop and evaluate data-
driven methods. To this end, we revealed general consist-
ency across data-driven event sequences derived from 
ten independent cohorts using EBMs. Here, only rela-
tively minor differences in the ranking of the core features 
that were available in all ten cohorts were observed. In 
addition, our novel algorithm estimated a meta-sequence 
that exploits the additional information available in other 
variables unique to each study and thus could assemble 
an event sequence that is highly multimodal and more 
comprehensive than sequences built from single data-
sets. This is important for ensuring the transferability of 
models and results across AD (sub)populations and for 
improving our understanding of disease progression.
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