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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, considered a disconnection syndrome with regional molecular pattern
abnormalities quantifiable by the aid of PET imaging. Solutions for accurate quantification of network dysfunction are scarce.We
evaluate the extent to which PET molecular markers reflect quantifiable network metrics derived through the graph theory
framework and how partial volume effects (PVE)-correction (PVEc) affects these PET-derived metrics 75 AD patients and
126 cognitively normal older subjects (CN). Therefore our goal is twofold: 1) to evaluate the differential patterns of
[18F]FDG- and [18F]AV45-PET data to depict AD pathology; and ii) to analyse the effects of PVEc on global uptake measures
of [18F]FDG- and [18F]AV45-PET data and their derived covariance network reconstructions for differentiating between patients
and normal older subjects. Network organization patterns were assessed using graph theory in terms of “degree”, “modularity”,
and “efficiency”. PVEc evidenced effects on global uptake measures that are specific to either [18F]FDG- or [18F]AV45-PET,
leading to increased statistical differences between the groups. PVEc was further shown to influence the topological character-
ization of PET-derived covariance brain networks, leading to an optimised characterization of network efficiency and
modularisation. Partial-volume effects correction improves the interpretability of PET data in AD and leads to optimised
characterization of network properties for organisation or disconnection.
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Introduction

Alzheimer’s disease (AD) is a main neurodegenerative disor-
der and the most common form of dementia in older persons
https://www.alz.org/. Neurodegeneration can be understood
as a progressive loss of nerve cells with characteristic
histological damage patterns; often underlying an
aggregation-prone misfolding of proteins (Jeong 2017; Lane
et al. 2018). Several studies have demonstrated that magnetic
resonance imaging (MRI)- and positron emission tomography
(PET)-derived markers of disease, including atrophy and am-
yloid load and regional cerebral hypometabolism, are sensi-
tive indicators of disease state and disease stage (Grothe et al.
2017; Jack et al. 2018; Sakr et al. 2019). Therefore as common
indicators about neuronal injury, synaptic dysfunction and the
degree of neurodegeneration in AD research (Jack et al. 2018;
Shokouhi et al. 2013).

It is currently accepted that AD symptoms are due to re-
gional vulnerability to cellular neurodegeneration, amyloid
protein accumulation and to disconnection of distant cortical
regions (Daianu et al. 2013; Prescott et al. 2014). Recent ev-
idence has highlighted divergent patterns in the spatial evolu-
tion of amyloid pathology and neurodegeneration, where at-
rophy is considered to be mostly driven by tau pathology
(Grothe et al. 2016; Iaccarino et al. 2018; Perani 2014) given
that local grey matter (GM) atrophy (La Joie et al. 2012;
Villain et al. 2010) and tau deposition (Bischof et al. 2016;
Chiotis et al. 2018) correlate with FDG-PET evidenced
hypometabolism.

In previous studies we and others have shown that partial
volume effects (PVE)-correction (PVEc) improves the inter-
pretation of amyloid PET data, by reducing noise measure-
ment in the GM tissue and increasing group discrimination
between healthy older people and AD patients (Brendel
et al. 2015; Gonzalez-Escamilla et al. 2017; Rullmann et al.
2016; Su et al. 2016). While increased group discrimination
after PVEc may not to be the case for 18F-fluorodeoxyglucose
(FDG)-PET data, in which the magnitude of the group differ-
ences results from a combination of both genuine metabolic
reductions and negative effects of PVE on the FDG-PET sig-
nal, thought to be driven by increased atrophy in the patient
group (Meltzer et al. 1996). However, only little is known
about how different molecular imaging-derived AD hall-
marks, recapitulating disease-related brain abnormalities, re-
late to network characteristics and how they add to the under-
standing of reorganization patterns due to disease.

Because PET imaging offers a unique opportunity assess
molecular brain processes in vivo, recent efforts have focused
on how the study of regional interrelations (i.e. covariance) in
the PET signal can complement our current understanding of
the accumulation of AD pathology (Arnemann et al. 2018;
Carbonell et al. 2014; Huang et al. 2010; Titov et al. 2017).
An emerging approach for studying disease-related large-scale

topological re-organization is graph theory (Bullmore and
Sporns 2009). Studies using graph theory analysis based on
molecular imaging have recently shown disrupted networks in
AD patients in comparison to cognitively healthy age matched
controls (CN) for glucose metabolism and amyloid tracers
(Chung et al. 2016; Pereira et al. 2018; Sanabria-Diaz et al.
2013; Seo et al. 2013; Son et al. 2015; Yang et al. 2017; Yao
et al. 2010). Nevertheless, the reliability of PET measures
greatly depends on the use of quantification methods (Cohen
et al. 2013; Villemagne et al. 2012). In this sense, most of
these studies have attributed changes in network topology to
the disease, without considering possible effects introduced by
methodological constraints of the PET images, leading to in-
conclusive results and some discrepancies in the reported di-
rection of changes in local and global metrics between control
and AD groups. Moreover, only little attention has been paid
to the possible benefits of PVE correction to quantitatively
study PET-based covariance networks (Yang et al. 2017).
Since, factors such as the use of different PET tracers for
studying the same molecules (e.g., based on Carbon-11
(11C) or Fluorine-18 (18F) for amyloid imaging), and the de-
gree of brain atrophy showing differential effects over distrib-
uted brain regions (Shidahara et al. 2017; Stam 2014) may
impact the findings. Knowledge on how PVE affects the re-
gional covariance patterns and its impact on the quantification
of topological organization patterns is essential for a better
understanding of molecular network alterations in AD.

Therefore, we provide an in-vivo characterization of the
condition- specific effects of PVEc for metabolic and amyloid
PET imaging quantitation and use graph theory to further in-
vestigate the effects of PVEc on PET-derived network topol-
ogy. Based on the existing differences between the biological
processes as measured with amyloid- and FDG-PET tracers,
we hypothesize that disease-specific topological network pat-
terns should arise. We assume that: 1) we assume that PVEc
affects the data depending on the underlying, investigated bi-
ology, 2) a spatial association between amyloid deposition or
hypometabolism and neurodegeneration exist and further, that
this regional associations spatially correspond with indicators
of regional network susceptibility (degree), 3) the distributed
pattern of high accumulation, detected by brain amyloid PET,
should result in a globally less efficient and less modular net-
work in AD compared to CN; whereas hypometabolism,
known to occur in a more focalized set of regions, should
result in more structured networks. Here, we expect network
differences before and after partial volume effects correction
due to confounding disease-related factors on raw data.
Altogether, PVEc should enhance group differentiation, thus,
improving the interpretability of PET-derived networks. In
order to test our hypotheses, we calculated molecular covari-
ance networks for [18F]AV45- and [18F]FDG-PET data, as the
correlation strength between pairs of brain regions, across pa-
tients and normal older subjects. The network topological

191Brain Imaging and Behavior  (2021) 15:190–204

https://www.alz.org/


architecture was characterized by the metrics “degree”, “mod-
ularity”, “local efficiency” and “global efficiency” (cf.
“Materials and Methods/ Region-based uptake covariance
and network metrics” section).

Materials and methods

Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) da-
tabase (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI),
PET, other biological markers, and clinical and neuropsycho-
logical assessment can be combined to measure the progres-
sion of mild cognitive impairment (MCI) and AD.

Subjects and imaging data

Detailed explanation of the ADNI imaging data retrieval is
given in (Gonzalez-Escamilla et al. 2017). 18F-florbetapir
([18F]AV45)-PET, 18F-deoxyglucose ([18F]FDG)-PET and
structural MRI scans were retrieved from already well-
characterized CN subjects and AD patients clinically
diagnosed with AD dementia, see M. J. Grothe et al. (2018)
for details on sample selection. General diagnostic procedures
as well as inclusion and exclusion criteria for the selected
ADNI cohort have been previously reported (M. J. Grothe
et al. 2018). Written informed consent was obtained from all
study participants according to the Declaration of Helsinki,
and ethical approval for data collection and sharing was given
by the institutional review boards of the participating institu-
tions in the ADNI study.

According to validated cut-off threshold for [18F]AV45-
PETstandard uptake value ratios (SUVR) in the ADNI cohort,
subjects were divided into positive- (SUVR >1.11) and
negative-amyloid (SUVR <1.11) (Landau et al. 2012). To bet-
ter dissect the effects of amyloid and diagnosis on SUVR and
network topology, only AD patients with PET evidence of
cerebral amyloidosis were included in the patient sample
(N = 75), whereas the control sample (N = 126) consisted of
CN participants with no evidence of cerebral amyloidosis.

Image processing

MRI data was processed using the SPM8 software (http://
www.fil.ion.ucl.ac.uk/spm/) and the intensity-based segmen-
tation algorithm from the VBM8-toolbox (http://dbm.neuro.
uni-jena.de/vbm/). In brief, segmentation into GM, white
matter (WM) and cerebrospinal fluid (CSF) tissue compart-
ments in subject’s native space was obtained from the inten-
sity distribution of the image and using an adaptiveMaximum

a Posterior (AMAP) approach (Rajapakse et al. 1997) with
partial volume estimation (Tohka et al. 2004), and further
refined by applying an iterative hidden Markov random field
model (Cuadra et al. 2005) to remove isolated voxels unlikely
to be assigned to a determinate tissue type. Intensity values in
the resulting maps represent a probability to belong to a pure
tissue type (Gaser 2009).

Given that structural brain characteristics change consider-
ably in advanced age and AD, and spatial registration accura-
cy worsens with deviance from the template characteristics,
the tissuemaps of each subject were spatially normalized to an
aging/AD-specific reference template (M. Grothe et al. 2013)
using high-dimensional warping with DARTEL (Ashburner
2007). This template was derived by DARTEL-alignment of
50 healthy old subjects and 50 subjects with very mild, mild
and moderate AD retrieved from an open access MRI data-
base (http://www.oasis-brains.org), and is intended to reflect
unbiased aging/AD-specific structural characteristics.

The MRI co-registered [18F]FDG- and [18F]AV45-PET
scans in native space were corrected for PVE using the 3
compartment algorithm (Muller-Gartner et al. 1992) as imple-
mented in the PETPVE-toolbox (Gonzalez-Escamilla et al.
2017). In brief, assuming that the PET signal within WM
and CSF compartments is homogeneous, the mean tracer up-
take is computed within the respective tissue maps (threshold
at 99% tissue probability). This signal is assigned to its respec-
tive compartment mask and convolved by the point spread
function of the PET scan (8 mm3 for ADNI scans). Spill-in
effects of WM/CSF signal into the GM are corrected by
subtracting the convolved maps of WM/CSF PET activity
form the original PETscan. Spill-out effects of GM signal into
WM/CSF compartments are corrected by dividing the spill-in
corrected PET scan by a convolved version of the GM map.
Only regions with a GM probability of at least 50% were
retained in the PVE corrected versions of the [18F]FDG- and
[18F]AV45-PET scans. Figure 1 illustrates the image process-
ing workflow.

Whole-brain patterns of AD-typical amyloid deposition
and hypometabolism were additionally estimated by comput-
ing Z-score maps (z-map) as the mean difference between AD
patients and CN scaled by the standard deviation of the CN
group at each voxel using pre-processed PET scans.

PET uptake values

The specific effects of PVE-correction were assessed via glob-
al and regional uptake values (see “Supplementary informa-
tion”) corresponding to the cortical and subcortical brain re-
gions defined in the Hammers Maximum Probability atlas
(Hammers et al. 2003), while excluding the ventricles and
cerebellum. The resulting 75 regionalmasks were transformed
to native space by inverting the DARTEL flow-fields derived
from the processing of the corresponding MRI scans. Before
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uptake extraction, the native cortical masks were restricted to
the individual’s GM map (50% tissue probability threshold).
Then, the average uptake across all voxels covered by the
masks was computed to obtain a global mean uptake value
for each PET tracer.

Tominimize inter-subject variability, the regional and glob-
al [18F]FDG- and [18F]AV45-PET uptake means were con-
verted to SUVRs by scaling to the mean uptake value within
a mask of the cerebellum derived from the same atlas.

For [18F]AV45- and [18F]FDG-PET measurement analyses,
the effect of PVEc on global brain SUVRs was assessed qual-
itatively using Bland-Altman plots, i.e. by plotting the differ-
ence between the PVEc and non-corrected values against the
mean of the two values. The correspondence among the PVE-
corrected and non-corrected SUVRs was assessed by the non-
parametric Kendall’s W test (Kendall and Smith 1939) and
confirmed by Pearson correlation analysis. Inter-subject vari-
ability was determined by the coefficient of variation
(%COV= standard deviation/mean × 100%).

Region-based uptake covariance and network metrics

Regional [18F]AV45- and [18F]FDG-PET SUVRs were used
to calculate molecular covariance networks, as the correlation
strength (network edges) between pairs of brain regions (net-
work nodes), computed across individuals within each group.
The connection between regions is thus given by their shared
molecular properties, i.e., level of amyloid deposition or glu-
cose metabolism. For each PET modality/group, this proce-
dure resulted in 75 × 75 covariance matrices.

To quantify between group differences in molecular
network organization, first, each covariance matrix was
binarized with a minimum density threshold. The mini-
mum density is calculated as the proportion of connec-
tions that allow the network of each group to be fully
connected, avoiding the evaluation of fragmented net-
works. This value (0.6 in our study) is used as starting
point for computing network metrics at further densities
(Hosseini et al. 2012), and ensures that group differ-
ences are not confounded by differing numbers of nodes
and edges as for an absolute threshold at a single den-
sity. Subsequent network metrics were computed across
20 densities in steps of 5% using the Brain Connectivity
Toolbox (BCT, (Rubinov and Sporns 2010)).

Based on recent studies using PET data to compare HC and
AD individuals (Chung et al. 2016; Duan et al. 2017; Pereira
et al. 2018; Sanabria-Diaz et al. 2013; Yang et al. 2017), the
following metrics were computed to characterize the network
topological architecture:

The degree of a region, the most fundamental metric com-
monly known as its centrality, is equal to the number of edges
connecting that region to the rest of the network (Rubinov and
Sporns 2010), and allows to characterize the node importance
in the network.

Modularity, considered the main measure of network seg-
regation, reflects the degree to which the network may be
subdivided into clearly delineated and non-overlapping
groups of nodes, with a maximally possible number of within
group links, and sparsely connected to the rest of the network
(Sporns and Betzel 2016).

Fig. 1 Study pipeline. Firstly, intra-subject registration of the PET images
into the space of the subject’s T1-weighted MRI image is effectuated,
followed by partial volume effects correction (PVEc) using the
PETPVE toolbox for SPM. The spatial normalization parameters based
on the DARTEL deformation are calculated on the corresponding MRI

data and used to deform the brain parcellation (75 regions from the
Hammers atlas) into the individual PET space allowing the computation
of average global and regional standardized uptake value ratios (SUVR)
used for subsequent SUVR and network analyses
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Another related metric is the local efficiency, which is the
ratio of the number of connections between each node’s neigh-
bours to the total number of possible connections between
them. This metric is predominantly associated with short-
range connections among nearby regions that mediate modu-
larized pathology accumulation or tolerance to network damage
(Vito Latora and Marchiori 2003; Vragovic et al. 2005).

Given that the covariance paths represent sequences of sta-
tistical associations and may not correspond to anatomical
connections, the characteristic path length metric is not
straightforward to interpret (Rubinov and Sporns 2010). A
more meaningful metric is the global efficiency (V. Latora
and Marchiori 2001), reflecting how efficiently the informa-
tion can be exchanged over the network, is computed as the
average of the efficiencies over all network nodes. Unlike the
path length, the global efficiency can be meaningfully mea-
sured on both fully connected and disconnected networks,
where lower values indicate weaker connections between
modules, hence a less integrated network.

Formal mathematical definitions of the metrics can be
found in the supplementary information according to the work
of Rubinov and Sporns (2010).

Statistical analyses

Demographics and cognitive scores were compared be-
tween diagnostic groups using two-sample t-tests (for
continuous variables) and chi-square tests (for categori-
cal variables). Differences in global SUVRs were
assessed using analysis of variance (ANOVA) with fac-
tors group (CN and AD) and method (non-corrected and
PVEc) applying the Bonferroni method (p < 0.05) at the
post hoc analyses. In addition, effect sizes (Cohen’s d’)
were calculated for group differences (CN vs AD) in
both non-corrected and PVEc data.

To create a reference for the local associations be-
tween the pa t t e r n s o f amylo id pa tho logy o r
hypometabolism with neurodegeneration, association
maps were created by computing the partial correlation
across AD patients between each PET z-map (cf.
“Materials and Methods/ Image processing” section)
and the MRI-derived GM-atrophy z-map at each voxel,
while correcting for the effects of age, gender and
MMSE. In doing so, the change of MRI-derived GM
volume with respect to controls, is considered as a con-
sequence of neurodegeneration; this term is utilized in
this manner throughout this manuscript.

For each PET modality we assessed the potential for de-
gree, modularity, local and global efficiency to differentiate
between CN and AD groups. Group differences in network
characteristics were assessed by taking the group values
across all network densities into two-sample t-tests. The area
under the curve (AUC) was additionally computed across

network density thresholds (cf. supplementary methods) to
provide a summary p value of the between-groups difference
(pAUC). An advantage of this approach is that taking into
account the whole set of thresholds at the same time, the
problem of multiple testing per threshold is avoided.

Results

Demographic and clinical characteristics and group differ-
ences of the included ADNI participants are summarized in
Table 1. The full characteristics of this population have been
described previously (M. J. Grothe et al. 2018). APOE geno-
type was not available for eight participants (3 CN and 5 AD).

Effects of partial volume correction on PET data

For [18F]AV45-PET data PVEc yielded lower SUVR values
for the CN group (−18.4%, p < 0.0001) and higher SUVR
values for the AD group (+21.2%, p < 0.0001) with respect
to the non-corrected data (Fig. 2, boxplots), which is in line
with previous studies (Brendel et al. 2015; Gonzalez-
Escamilla et al. 2017; Su et al. 2016; Su et al. 2015). The
inter-subject variability of the amyloid data in terms of
%COV was increased after PVE-correction (CN: from 5.3 to
8.9 %COV; AD: from 14.1 to 17.3 %COV). Group differ-
ences (CN vs. AD) using non-corrected data (T = 11.4, p <
0.0001, Cohen’s d’ = 2.26) were also increased after PVEc
(T = 16.2, p < 0.0001, Cohen’s d’ = 3.85). For [18F]FDG-
PET PVEc increased global SUVR values for both the CN

Table 1 Demographic characteristics of the study cohort

CN AD statistic p value

n 126 75

Age in years 72.7 ± 6.4 75.0 ± 8.5 2.05 0.043

Sex (F/M) 65/61 35/40 0.06 0.8

Education, years 16.8 ± 2.5 15.6 ± 2.8 3.2 0.002

APOE4 (%) 22 79 58.53 <0.001

CDR (0/0.5/1/2/3) 126/0/0/0/0 0/32/42/1/0 N/A N/A

CDR-SOB N/A 4.5 ± 1.5 N/A N/A

MMSE 29.1 ± 1.2 22.9 ± 2.1 18.2 <0.001

Average values are reported as mean ± SD

Demographic variables and cognitive scores were compared two-sample
t-tests

Categorical variables were analysed using chi-square tests

CN = cognitively normal controls; AD =Alzheimer’s disease dementia
patients; CDR-SOB =Clinical Dementia Rating – Sum of Boxes; F =
female; M =male; MMSE =Mini-Mental State Examination; n = sample
size; N/A = not applicable

Comparisons between diagnostic groups were carried out using two-
sample t-tests for continuous variables, and chi-square tests for categori-
cal variables

194 Brain Imaging and Behavior  (2021) 15:190–204



(+68.3%, p < 0.0001) and AD (79.9%, p < 0.0001) group.
Using this tracer, the inter-subject variability was only
slightly increased after PVE-correction in CN (from 6.5
to 6.7 %COV) but decreased in AD (from 6.8 to 5.8
%COV). Group differences (CN vs. AD) using non-
corrected data (T = 10.2, p < 0.0001, Cohen’s d’ = 1.51)
were also increased after PVEc (T = 3.85, p = 0.00016,
Cohen’s d’ = 0.55). The same trend was shown during
the regional analyses (see supplementary information).
Confirming previous suggestions that PVEc exerts dif-
ferential effects depending on the investigated underly-
ing processes (Gonzalez-Escamilla et al. 2017).

The Bland-Altman-Plots for [18F]AV45- and [18F]FDG-
PET SUVR values (Fig. 2, right side) also depicted tracer-
specific effects for PET data. For [18F]AV45-PET the mean
and standard deviation of differences were − 0.01 and 0.25

and the 95% confidence interval was given by [−0.5;0.48],
evidencing a good relation between the difference in the mea-
surements and their mean value. The concordance and corre-
lation analyses revealed a strong correspondence between the
corrected and non-corrected values as indicated by W= 0.92
(p = 4.8e-12) and rho = 0.926 (p = 7.1e-86).

For the [18F]FDG-PET data, the mean and standard
deviation of differences were 0.76 and 0.09 and the
95% confidence interval was given by [−0.59;0.93].
The Bland-Altman-Plot depicted a slight relation be-
tween the difference in the estimates and their mean
values; differences between methods are throughout pos-
itive. The concordance and correlation analyses also
showed good correspondence between the corrected and
non-corrected data as given by W = 0.84 (p = 7.8e-9) and
r = 0.685 (p = 3.3e-29).

Fig. 2 Global standard uptake value ratios (SUVR) analysis results for (a)
[18F]AV45-PET and (b) [18F]FDG-PET. Left side: Box-plots depicting
the distribution of the data before and after partial volume effects correc-
tion (PVEc) and further indicating the increased variability outside upper
and lower quartiles after PVEc. On each boxplot, the central mark indi-
cates the median, and the bottom and top edges of the box the upper
(75th) and lower (25th) percentiles, the whiskers extend to the most ex-
treme points of the data distribution that are not considered as outliers,

while outliers are plotted beyond with a circle. Right side: Bland-Altman
plots showing the agreement between non-corrected (unc/uncorrected)
and PVE-corrected PET images. * indicates significant differences in
the ANOVA model after correcting for multiple comparisons in the post
hoc analyses (Bonferroni, p < 0.05). The light blue colour indicates
healthy control (CN) subjects; orange colour indicates Alzheimer’s dis-
ease dementia (AD) subjects
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Spatial association between amyloid deposition
or hypometabolism and neurodegeneration
and impact of PVEc on network degree

To determine the ability of network analysis in depicting
local changes related to AD, first, the degree of each brain
region was compared between the groups, evidencing re-
gional differences in the network organization for both
PET modalities. For [18F]AV45-PET most of the regions
showing high amyloid deposition (Fig. 3a) show a differ-
ent pattern than the regions associated with neurodegen-
eration (Fig. 3b), and high overlap with the regions show-
ing lower degree centrality (i.e. lower network vulnerabil-
ity) after PVEc (Fig. 3d) but not before (Fig. 3c). The
non-corrected amyloid data showed less structures (31
regions) with significant connectivity differences than af-
ter PVE-correction (52 regions). For [18F]FDG-PET again

the reg ions showing the known AD-pat te rn of
hypometabolism (Fig. 4a) overlapped with regions asso-
ciated with neurodegeneration (Fig. 4b) and, at some ex-
tent, with those showing high network vulnerability (Fig.
4c, d). Similarly as for amyloid data the non-corrected
network showed connection differences in a lower num-
ber of regions (8 regions) than after PVEc (16 regions).

For the [18F]AV45-PET network (Fig. 5a) the group com-
parison based on non-corrected data showed decreases in
modularity (p = 3.1e-8, t199 = 6.67; pAUC <0.001) in AD sub-
jects, but no significant differences in global efficiency
(p > 0.05, t199 = 1.53, pAUC = 0.07) or local efficiency
(p > 0.05, t199 = 0.02, pAUC =0.5) between groups. In AD
patients PVEc evidenced decreased modularity (p = 9.3e-20,
t199 = 16.8, pAUC <0.001), and decreased global efficiency
(p = 0.001, t199 = 3.3, pAUC <0.001), and local efficiency
(p = 0.02, t199 = 2.13, pAUC = 0.02).

Fig. 3 Local network characteristics in the [18F]AV45-PET amyloid
network. (a) Z-maps depicting the typical brain patterns of amyloid de-
position in Alzheimer’s disease. (b) Association maps showing the spe-
cific distribution of the associations between amyloid deposition and
neurodegeneration. The maps express the partial correlation (r-score) be-
tween each [18F]AV45-PET (z-score) and the MRI-derived GM-atrophy
(z-score) at each voxel after FDR correction, while accounting for the
effects of age, gender and MMSE. (c, d) Regions showing significant
network susceptibility (degree centrality) before and after partial volume
effects correction (PVEc). All presented regions survived after correction
for multiple comparisons with FDR (p < 0.05). The cold colour scale

indicates the regions with low suceptibility, while the hot colour scale
indicates high suceptibility. SupF, superior frontal; InfF, inferior frontal;
PosTL, posterior temporal lobe; PrCG, precentral; PoC, postcentral;
antSupT, anterior superior temporal; aInfT, anterior inferior temporal;
mInfT, middle and inferior temporal; lOrbF, lateral orbitofrontal; mOrb;
medial orbital; OrbF, orbitofrontal cortex; paraHp, parahippocampus;
straiG, Straight gyrus; pCing, posterior cingulate; aCing, anterior cingu-
late; Ling, Lingual; ThL, Thalamus; Ins, Insula; SubCC, subcallosal area;
Amy, amygdala; Sg, pre−/subgenual anterior cingulate; InfP, inferior pa-
rietal; SupP, superior Parietal
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Impact of PVEc on network modularity, local
and global efficiency

For the [18F]FDG-PET network (Fig. 5b), the non-corrected data
showed increases in modularity (p = 0.0009, t199 = 3.34,
pAUC= 0.05) in the AD group compared to the CN group and
no difference in global efficiency (p> 0.05, t199 = 1.32, pAUC=
0.14) or local efficiency (p > 0.05, t199 = 0.12, pAUC= 0.43).
The PVEc data showed significantly increased modularity (p =
5.4e-12, t199 = 9.5, pAUC<0.001), and increased global efficien-
cy (p = 0.008, t199 = 2.51, pAUC= 0.05), and local efficiency
(p= 2.6e-19, t199 = 16.3, pAUC<0.001) in AD compared to CN.

Discussion

In this study we aimed at characterising network organization
in AD. We first evaluated the specific effects of PVEc for

detecting group differences for two of the most used PET
tracers in AD research, [18F]AV45 and [18F]FDG, indicators
of amyloid pathology and hypometabolism, respectively.
Evidencing that regions showing increased network degree
in comparison to other regions corresponded to the typical
patterns of amyloid deposition and hypometabolism, respec-
tively, and in turn with regions correlated with neurodegener-
ation. We then studied the capability of PET-derived covari-
ance networks to differentiate between CN and AD subjects.
we also examined the effects of PVEc on the topological or-
ganization of the networks.

Effects of partial volume correction on PET data

In our study, the signal changes after PVEc were ac-
companied by an increase of inter-subject variability,
which was more pronounced in [18F]AV45-PET data
probably due to the high difference in tracer uptake

Fig. 4 Local network characteristics in the [18F]FDG-PET metabolic
network. (a) Z-maps depicting the typical brain patterns of glucose
hypometabolism in Alzheimer’s disease. (b) Association maps showing
the specific distribution of the associations between hypometabolism and
neurodegeneration. The maps express the partial correlation (r-score) be-
tween each [18F]FDG-PET (z-score) and the MRI-derived GM-atrophy
(z-score) at each voxel after FDR correction, while accounting for the
effects of age, gender and MMSE. (c, d) Regions showing significant
network suceptibility (degree centrality) before and after partial volume

effects correction (PVEc). The cold colour scale indicates the regions with
low suceptibility in the network topology, while the hot colour scale
indicates high suceptibility. PosTL, posterior temporal lobe; PrCG,
precentral gyrus; antSupT, anterior superior temporal; aInfT, anterior in-
ferior temporal; aMedT, anterior medial temporal; pOrbF, posterior
orbitofrontal; InfP, inferior parietal; paraHp, parahippocampus; Amy,
amygdala; Fus, fusiform; SubCC, subcallosal area; LatOcc, lateral occip-
ital; CC, corpus callosum
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Fig. 5 Whole brain network topology differences between Alzheimer
and control groups. Box-plots showing the comparison of network mea-
sures (across densities) between cognitively normal elders (CN) and
Alzheimer’s disease dementia (AD) patients for (a) [18F]AV45-PET and
(b) [18F]FDG-PET data before and after partial volume effects correction
(PVEc). On each boxplot, the central mark indicates the median, and the

bottom and top edges of the box the upper (75th) and lower (25th) per-
centiles, the whiskers extend to the most extreme points of the data dis-
tribution that are not considered as outliers, while outliers are plotted
beyond with a circle. The light blue colour indicates CN; orange colour
indicates AD; the black lower line indicates the non-corrected
(uncorrected) PET data; and green lower line indicates the PVEc values
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between tissues, specifically in the WM, compared to
[18F]FDG-PET data. The increase of variability after
PVEc has been previously reported for the MG PVEc
method (Thomas et al. 2011), and seems to be also
common to different PVEc methods (Harri et al.
2007). Indeed, an overall increase in [18F]FDG SUVRs
after PVEc has been previously shown as a common
result for [18F]FDG-PET data (Meltzer et al. 1996).
For [18F]AV45-PET this increase is only seen in AD
subjects, whereas reduced SUVR is commonly detected
in CN subjects (Brendel et al. 2015; Gonzalez-Escamilla
et al. 2017). Therefore, it can be then argued that the
observed increase in between group global SUVR dif-
ferences after PVEc is an indicator of increased repre-
sentation accuracy of the data and not a correction-
induced error, i.e. increased image noise (Thomas
et al. 2011), see (Gonzalez-Escamilla et al. 2017) for a
detailed explanation on these effects.

It has been recently postulated that the spill-out effects
on PET imaging are influenced not only by the size of the
measured GM region (Hoffman et al. 1979), thus in-
creased by brain atrophy, but also influenced by the effect
of spill-out and spill-in relationship of the specific tracer
binding between GM and WM tissue (Gonzalez-Escamilla
et al. 2017) and subject condition (health/disease)
(Shidahara et al. 2017). Hence, the effects of PVEc may
be specific to the underlying biological process. This hy-
pothesis is supported by our results, in which for example,
after PVEc the [18F]AV45-PET signal presented reduc-
tions in subjects with low tracer binding (i.e., CN sub-
jects) and increases in subjects with high amyloid load,
i.e. AD subjects. PVEc in amyloid sensitive PET data has
been shown to improve its utility when used to compare
healthy and AD groups (Gonzalez-Escamilla et al. 2017;
Yang et al. 2017), and currently corroborated by the in-
creased effect sizes. On the contrary, in the case of
[18F]FDG-PET PVE-correction does not seem to improve
the ability for group differentiation (Ibanez et al. 1998;
Meltzer et al. 1996; Samuraki et al. 2007), and also shown
here by slightly reduced effect sizes, which can be due to
the general increased signal in all subjects after PVEc, as
shown here. A critical factor between the two radiotracers
used in the current study is the degree of unspecific white
matter binding, which can also contribute to some of the
differences reported in this study. Hence, the role of
tracer-specific off-target binding should be studied more
in detail in further studies.

The differential effects of PVEc on different PET
tracers can be further related to their capability to depict
regional vulnerability to cellular neurodegeneration or
amyloid protein accumulation. Then, for tracers such
as [18F]FDG-PET which are highly related to the under-
lying brain anatomy (Horwitz et al. 1984) and correlate

with local GM atrophy and Tau deposition, by contrast
to amyloid tracers (Bischof et al. 2016; La Joie et al.
2012; Villain et al. 2010), it can be expected that the
PVEc causes the global PET signal to be more homo-
geneous across subjects and groups. This is demonstrat-
ed by the low increase in inter-individual variability in
both groups and no improvement of SUVRs to differ-
entiate between groups after PVEc. In contrast, for
[18F]AV45-PET low to middle ranged SUVR values
(corresponding to CN) were reduced, whereas high
SUVR values (present in AD) were increased after
PVEc, facilitating group differentiation. Notably, both
PET tracers showed good concordance after PVEc with
their respective non-corrected data.

Spatial association between amyloid deposition
or hypometabolism and neurodegeneration
and impact of PVEc on network degree

Accurate estimation of Aβ burden is critical for a better under-
standing of underlying disease mechanisms, given its relation-
ship with cortical thinning (Dickerson et al. 2008), hippocampal
atrophy (Andrews et al. 2013; Chetelat et al. 2012), disruption of
functional and structural connectivity (Drzezga et al. 2011;
Horwitz et al. 1984; Mormino et al. 2011; Palmqvist et al.
2017; Racine et al. 2014; Sheline et al. 2010), association with
metabolic connectivity patterns (Carbonell et al. 2014), and its
inversed u-shaped relationship with hypometabolism across dis-
ease stages (Kadir et al. 2012; Mosconi and McHugh 2011).
Previous studies using SUVR-based univariate analyses in AD
have shown characteristic patterns of hypometabolism and in-
creased cerebral amyloid at sets of distributed brain regions,
which in turn differ between tracers (M. J. Grothe et al. 2016;
La Joie et al. 2012; Perani 2014). One of the purposes of applying
PVEc on PET data is to enhance the sensitivity of detecting
regional changes by attenuating the bias induced by the concom-
itantly progressing cortical atrophy, which leads to underestima-
tion of the SUVR in non-corrected PET data (Brendel et al. 2015;
Erlandsson et al. 2012; Rullmann et al. 2016; Su et al. 2015). The
definite improvement of PVEc for both PET tracers, was evi-
denced by the increased regional correspondence between AD
pathology, high network degree centrality (depicting increased
network susceptibility or vulnerability) and the correlation with
neurodegeneration. Furthermore, the regional analyses (see
supplementary information) demonstrated that, even when no
between region spill-over corrections are performed by PVEc,
different regions showed different trends. Altogether, the our
results argue against possible systematic bias introduced by
PVEc on both PET data. Despite the apparent lack of quantitative
improvement for global [18F]FDG-PET SUVR values by PVEc,
the relationship with local atrophy suggests the regional quanti-
tation to be improved, and PVEc may be important for analysis
methods requiring regional quantitation. Therefore, reports based
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on non-corrected data may also bias by the amount of structural
atrophy of the selected participants, which limits the interpret-
ability of the results if the local associations between tracer bind-
ing and neurodegeneration are not considered.

Impact of PVEc on network modularity, local
and global efficiency

In accordance with previous studies, our molecular networks
showed prominent topographical differences between CN and
AD patients, indicating a change in the balance of integration
and segregation related to the disease condition. Notably,
PVEc over FDG- and AV45-PET data resulted generally in
no changes in the directionality of the between groups differ-
ences for network measures, but in increased sensitivity to
detect the group differences. For the [18F]AV45-PET the find-
ing of reduced global efficiency in the AD group, in the non-
corrected but also after PVEc, is consistent with recent reports
of Yang and co-workers (Yang et al. 2017), but comparison of
the modular organization with previous studies (Pereira et al.
2018; Yang et al. 2017) is not possible given the lack of this
metric in those studies. In the case of [18F]FDG-PET there is a
lack of consensus, where decreases, increases and no changes
in the local measures of network topology (local efficiency)
have been reported between CN and AD groups (Chung et al.
2016; Sanabria-Diaz et al. 2013; Seo et al. 2013).

Of note, no previous studies have reported on the modular
structure of the molecular networks, a hallmark measure when
studying the organization of complex networks (Sporns and
Betzel 2016). Those studies have rather focused on the small-
world properties of the network. However, covariance net-
works are based on the idea that if the molecular properties
of two regions are statistically associated with each other then
they are connected. Such associations do not necessarily im-
ply the existence of anatomical connections between network
nodes (regions) and the paths may transverse regions with low
correlation weights (Fornito et al. 2016), making the path
lengths of the network difficult to interpret (Rubinov and
Sporns 2010). Care must therefore be taken when interpreting
small-world and related measures.

Related to the fact that hypometabolism and amyloid de-
position reflect different aspects and patterns of regional vul-
nerability to AD pathology (M. J. Grothe et al. 2016; La Joie
et al. 2012; Perani 2014), the direction of group differences for
the measures of network organization in both [18F]FDG- and
[18F]AV45-PET data was opposed.

In contrast to previous studies we limited our AD sample to
include only amyloid-positive patients, hence the strong alter-
ations in network structure can be most likely attributed to the
effects of amyloid accumulation and hypo-metabolism. In this
respect, the opposite directions of groups differences, in both
[18F]AV45-PET and [18F]FDG-PET network reconstructions,
is not surprising. Therefore, decreases in modularity in the

[18F]AV45-PET, can be though to be related to increased am-
yloid accumulation in key regions for the communication be-
tween different modules (namely network hubs), such as the
posterior and anterior cingulate and frontal cortices. Then,
disruption of network efficiency can be directly explained by
propagated amyloid pathology across the brain region of AD
subjects. On the other hand, the increases in modularity for
[18F]FDG-PET, accentuated after PVEc, match commonly re-
ported findings from structural and functional MRI network
studies into the neurodegenerative side of AD(Lopez-Sanz
et al. 2017; Pereira et al. 2016). The results are in line with
recent studies highlighting the relevance of studying networks
derived from [18F]FDG-PET in AD (Veronese et al. 2019).
This can be directly associated with decreased neural
integrity/activity leading to a more segregated topology.

Limitations

Noteworthy is that the direction of the group differences inmodu-
larity andefficiencymeasureswasnot invertedafterPVEc ineither
amyloidormetabolic tracers.This further suggests that thenetwork
reconstructionsfrommolecular imagingaresensitivetoADpathol-
ogy and are robust to intrinsic methodological limitations of PET
data, which in turn transfer validity to previous reports.

On the regional analyses, PVEc evidences more interpret-
able results. As an example, the superior parietal/precuneus and
posterior cingulate cortices, which before PVEc showed no
group differences in degree, turned to present a reduced degree
after PVEc relative to the CN group, implying a decrease in the
connectivity of these regions in AD patients. These regions are
known to be core regions for brain structural and functional
networks (van denHeuvel and Sporns 2013), and to be strongly
implicated in AD aetiology, being among the main target areas
for neurodegeneration and amyloid deposition. The case for the
[18F]FDG-PETwas also similar where the connectivity changes
appeared in the medial temporal lobe after PVEc, where
hypometabolism in medial temporal areas has been recently
suggested as a specific marker for cognitive changes at the
earliest stages of the AD continuum due to amyloid pathology
(Vannini et al. 2017). These results indicate that the known loss
of connectivity previously reported in AD patients using fMRI
and structural imaging is based on the underlying molecular
properties of the network regions.

Conclusion

The effects of partial volume effects correction are specific to
the underlying biological processes as measured with
[18F]AV45- and [18F]FDG-PET. Increased uptake values for
CN and decreased uptake for AD were shown for [18F]AV45-
PET, whereas for [18F]FDG-PET uptake increased for both
AD and CN groups. These PVEc effects in turn led to better
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group differentiation. For the network analyses, PVEc based
data analysis indicated that the disruption of network efficien-
cy and modular organization could be directly explained by
propagated amyloid pathology and neurodegeneration involv-
ing specific brain areas. Therefore, PVEc is of vast importance
for PET imaging, especially for characterization of the brain
networks using new PET tracers, which in turn opens up new
opportunities to study disease trajectories.
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