
T E C HN I C A L R E PO R T

Hippocampal segmentation for brains with extensive atrophy
using three-dimensional convolutional neural networks

Maged Goubran1,2 | Emmanuel Edward Ntiri1,2 | Hassan Akhavein1,2 |

Melissa Holmes1,2 | Sean Nestor1,3 | Joel Ramirez1,2 | Sabrina Adamo1,2 |

Miracle Ozzoude1,2 | Christopher Scott1,2 | Fuqiang Gao1,2 | Anne Martel4 |

Walter Swardfager2,5 | Mario Masellis2,6 | Richard Swartz1,2,6 |

Bradley MacIntosh2,4 | Sandra E. Black1,2,7

1LC Campbell Cognitive Neurology Unit, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada

2Canadian Partnership for Stroke Recovery, Heart and Stroke Foundation, Toronto, Ontario, Canada

3Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada

4Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

5Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada

6Department of Medicine (Neurology division), University of Toronto, Toronto, Ontario, Canada

7Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada

Correspondence

Maged Goubran, 2075 Bayview Avenue, M6

West RM 176, Toronto, ON M4N 3M5,

Canada.

Email: maged.goubran@sri.utoronto.ca

Funding information

Canadian Institute for Health Research (CIHR)

MOP Grant, Grant/Award Number: 13129;

CIHR Foundation, Grant/Award Number:

159910; L.C. Campbell Foundation;

Alzheimer's Disease Neuroimaging Initiative

(ADNI), Grant/Award Number: U01

AG024904; Department of Defense ADNI,

Grant/Award Number: W81XWH-12-2-0012;

National Institute on Aging; National Institute

of Biomedical Imaging and Bioengineering;

AbbVie, Alzheimer's Association; Alzheimer's

Drug Discovery Foundation; Araclon Biotech;

BioClinica, Inc.; Biogen; Bristol-Myers Squibb

Company; CereSpir, Inc.; Cogstate; Eisai Inc.;

Elan Pharmaceuticals, Inc.; Eli Lilly and

Company; EuroImmun; F. Hoffmann-La Roche

Ltd and its affiliated company Genentech, Inc.;

Fujirebio; GE Healthcare; IXICO Ltd.; Janssen

Alzheimer Immunotherapy Research and

Development LLC.; Johnson and Johnson

Pharmaceutical Research and Development

LLC.; Lumosity; Lundbeck; Merck and Co., Inc.;

Meso Scale Diagnostics, LLC.; NeuroRx

Abstract

Hippocampal volumetry is a critical biomarker of aging and dementia, and it is widely used

as a predictor of cognitive performance; however, automated hippocampal segmentation

methods are limited because the algorithms are (a) not publicly available, (b) subject to

error with significant brain atrophy, cerebrovascular disease and lesions, and/or

(c) computationally expensive or require parameter tuning. In this study, we trained a 3D

convolutional neural network using 259 bilateral manually delineated segmentations col-

lected from three studies, acquired at multiple sites on different scanners with variable

protocols. Our training dataset consisted of elderly cases difficult to segment due to

extensive atrophy, vascular disease, and lesions. Our algorithm, (HippMapp3r), was vali-

dated against four other publicly available state-of-the-art techniques (HippoDeep,

FreeSurfer, SBHV, volBrain, and FIRST). HippMapp3r outperformed the other techniques

on all three metrics, generating an average Dice of 0.89 and a correlation coefficient of

0.95. It was two orders of magnitude faster than some of the tested techniques. Further

validation was performed on 200 subjects from two other disease populations

(frontotemporal dementia and vascular cognitive impairment), highlighting our method's

low outlier rate. We finally tested the methods on real and simulated “clinical adversarial”

cases to study their robustness to corrupt, low-quality scans. The pipeline and models are

available at: https://hippmapp3r.readthedocs.ioto facilitate the study of the hippocampus

in large multisite studies.
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1 | INTRODUCTION

The hippocampus is implicated in many neurological diseases

including Alzheimer's disease (AD), epilepsy, and schizophrenia,

among others (Barnes et al., 2009; Bernasconi, Natsume, &

Bernasconi, 2005; Goubran et al., 2016; Santyr et al., 2017; Steen,

Mull, McClure, Hamer, & Lieberman, 2006). Hippocampal vol-

umetry has been found to be a critical biomarker of aging and

dementia (Courchesne et al., 2000; Jack Jr et al., 1998). It repre-

sents a central correlate of memory function and is widely used as

a predictor of cognitive decline, both in research and clinical set-

tings (Jack et al., 2000; Rusinek et al., 2003; Scahill et al., 2003;

Sullivan, 2002). Hippocampal delineation is also employed for

investigation of the hippocampal–neocortical connectivity and

studying diffusion magnetic resonance imaging (MRI) changes in

the medial temporal lobe. The hippocampal anatomy is variable,

and its complex structure is selectively affected in different disor-

ders (Goubran et al., 2014). Manual segmentation of the hippocam-

pus is very time consuming and may suffer in reproducibility across

different raters. While numerous algorithms have been developed

for automated segmentation of the whole hippocampus (Fischl

et al., 2002; Iglesias et al., 2015; Nestor et al., 2013; Thyreau, Sato,

Fukuda, & Taki, 2018), the overwhelming majority suffer from at

least one the following issues: (a) the algorithms are not made pub-

licly available or the trained models are not released, (b) they have

been trained on young adult brain images and are unable to accu-

rately deal with brain atrophy or lesions associated with aging and

neurodegeneration, or (c) they require parameter tuning, large

computational time or advanced programming knowledge to exe-

cute them. With the increasing amounts of data and large multi-

center studies, there is a great need for efficient, easy-to-use

software that performs accurate quantification of structural bio-

markers in elderly subjects while also enabling personalized

assessments.

Recently, deep neural networks, and particularly convolutional

neural networks (CNNs), have shown superior performance to other

machine learning techniques on computer vision tasks such as image

classification (Krizhevsky, Sutskever, & Hinton, 2012) and semantic

segmentation (Long, Shelhamer, & Darrell, 2015). These deep net-

works have been more recently applied in medical imaging (Çiçek,

Abdulkadir, Lienkamp, Brox, & Ronneberger, 2016; Kamnitsas et al.,

2017; Kayalibay, Jensen, & van der Smagt, 2017; Milletari, Navab, &

Ahmadi, 2016; Ronneberger, Fischer, & Brox, 2015), among other

domains. However, there are several challenges to applying these

networks to biomedical data. These supervised machine learning

techniques, specifically deep networks, require very large amounts

of labeled (ground truth) data, typically in the thousands or millions

in the computer vision field, in order to train and optimize millions

of weights. Creating databases of manually delineated ground truth

labels (in 3D) for medical images requires a large amount of time and

training, and hence these databases are scarce or commonly consist

of smaller cohorts, typically in the hundreds or even less. Most of

the networks developed for computer vision applications rely on a

2D architecture which is suitable for stacks of 2D images or 3D

images with small depth. Most whole brain T1-weighted structural

brain scans have close to isotropic resolutions, that is, similar sizes in

each dimension, making slice-by-slice application of 2D architec-

tures inefficient (Kayalibay et al., 2017). Novel network architec-

tures tend to train on larger sections or entire images as opposed to

small patches. This training approach creates a class imbalance as it

is bound to the original distribution of classes in the dataset, which

in medical images is dominated by background (negative) voxels

(Kamnitsas et al., 2017).

In this paper, we present HippMapp3r, an open-source, efficient

whole hippocampal segmentation algorithm based on 3D CNNs that

is robust to brain atrophy due to neurodegenerative changes. Our

deep learning-based segmentation model was trained on a large

database consisting of 209 meticulously hand-drawn segmentations

of elderly subjects with brain atrophy and lesions from multiple

studies. Individuals in the current cohort spanned a range of cogni-

tive neurology presentations: cognitively unimpaired controls,

patients with mild cognitive impairment (MCI), AD, or temporal lobe

epilepsy (TLE). Consequently, numerous types of brain injury were

included in the datasets: gray matter atrophy, ventricular enlarge-

ment, white matter hyperintensities (WMH) and perivascular spaces.

These scans were part of multisite studies using different scanners,

field strengths, and scanning protocols. We built 3D CNNs with a U-

net architecture, residual units, and a weighted dice coefficient loss

function to deal with class imbalance. The developed model was val-

idated against state-of-the-art techniques to highlight its accuracy

and efficiency. We also investigated outliers and failure rates in all

tested methods using two additional patient populations,

frontotemporal dementia (FTD) and vascular cognitive impairment

(VCI). We further tested our model on corrupt data that did not pass

quality control and on simulated realistic (clinical) adversarial attacks

through sharp decreases in resolution, signal-to-noise ratios (SNR),

and cropping of field of view (FOV). We are making our tools and

models available to the research community and developed an easy-

to-use pipeline with a graphical user interface (GUI) and thorough

documentation to make it accessible to users without extensive pro-

gramming knowledge.
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2 | METHODS

2.1 | Participants and image acquisition

A total of 259 participants were used for the hippocampal segmen-

tation model, combined from three separate studies: 100 were rec-

ruited from the Sunnybrook Dementia Study (SDS) (Deshpande

et al., 2004), 135 from the Alzheimer's Disease Neuroimaging Initia-

tive (ADNI) database and the harmonization study (Boccardi et al.,

2015) and 24 from the University of Pennsylvania (UPenn) TLE atlas

(Das et al., 2009). Table 1 presents left and right hippocampal vol-

umes, as well as WMH and stroke volumes to describes the ranges

of hippocampal atrophy and lesions in these cohorts.

All SDS patients were recruited from the LC Campbell Cognitive

Neurology Research Unit, Sunnybrook Health Sciences Centre at

the University of Toronto (age: 71 ± 10, 28 Males). The

T1-weighted three-dimensional volumetric scan was acquired using

a 1.5 Tesla Signa system (GE Healthcare, Chicago, Illinois). The

acquisition parameters for the T1 spoiled gradient echo sequence

were: 124 slices; matrix, 256 × 192; 22 × 16.5 cm FOV; number of

excitations, 1; echo time/repetition time, 35 ms/5 ms; flip angle,

35�, and in-plane resolution of 0.859 × 0.859 mm with slice thick-

ness between 1.2 and 1.4 mm depending on head size. ADNI sub-

jects were scanned at multiple sites using a mixture of 1.5 T (N = 68)

and 3 T (N = 67) scanners (age: 75 ± 8, 70 males). Participants were

nearly equal in cohort size for the three diagnostic groups (normal,

MCI and AD), and three scanner major manufacturers (GE, Siemens,

and Philips). The ADNI-GO/2 MRI protocol has been optimized to

provide comparable images from different 3 T platforms from the

three manufacturers. The T1 weighted magnetization prepared rapid

gradient echo (MPRAGE) had the following parameters: TR/TE/

TI = 2300/2.95/900 ms, sagittal, 1.1 × 1.1 × 1.2 mm spatial resolu-

tion. UPenn subjects were scanned at a 3 T Siemens Trio scanner

using an eight-channel head coil and body coil transmitter. The

T1-weighted structural MRI scan used the MPRAGE sequence with

the following parameters: TR = 1,620 ms, TE = 3.87 ms, TI = 950 ms,

flip angle = 15�, and voxel size 0.9375 × 0.9375 × 1 mm.

2.2 | Model architecture and contributions

Our algorithm consists of a serial “ensemble” of two networks, an

initial network trained on the whole brain and a second network

with the same architecture trained on the first network's output

(operating on a reduced FOV centered around the initial segmenta-

tion). Defining the architecture of deep CNN networks and loss

functions are important factors in the construction of a deep model

and are often guided by the specific application the network is set

to achieve. Our CNN networks are based on a convolutional

autoencoder-like (U-net) architecture (Çiçek et al., 2016; Milletari

et al., 2016; Ronneberger et al., 2015), which consists of contracting

and expanding pathways (stages) and is trained on the entire image

rather than patches. The contracting pathway encodes context (rep-

resentations of the input) and the expanding pathway recombines T
A
B
L
E
1

P
ar
ti
ci
pa

nt
s
st
ud

y
de

m
o
gr
ap

hi
cs
,c
lin

ic
al
di
ag
no

si
s,
M
M
SE

sc
o
re
s,
W

M
H

an
d
st
ro
ke

vo
lu
m
es
,a
nd

M
R
If
ie
ld

st
re
ng

th
in

th
e
tr
ai
n
an

d
te
st

d
at
as
et
s

P
o
pu

la
ti
o
n

N
A
ge

Se
x

D
x

R
H
p
vo

lu
m
e
(m

m
3
)

L
H
p
vo

lu
m
e
(m

m
3
)

W
M
H

vo
lu
m
e
(c
c)

St
ro
ke

vo
lu
m
e
(c
c)

M
M
SE

F
ie
ld

st
re
n
gt
h

G
T

T
ra
in

(N
=
2
0
9
)

SD
S

8
0

8
5
.3

±
1
1
.2

5
6
%

M
/4

4
%

F
5
8
%

A
D
,2

6
%

N
C
,

1
6
%

V
C
I

2
,7
0
0
.8

±
5
3
7
.5

(1
,6
1
0
.8
,3

,8
1
5
.6
)

2
,6
3
3
.5
7
±
5
5
3
.8
2

(1
,4
1
7
.2
,3

,8
5
4
.9
)

1
1
.3
7
±
1
6
.4
7

0
2
1
.4
1
±
1
5
.1
2

1
.5

T
Y

A
D
N
I

1
0
9

7
4
.1

±
7
.8

5
1
%

M
/4

9
%

F
4
3
%

A
D
,1

6
%

N
C
,

1
0
%

M
C
I

2
,7
9
7
.4

±
5
8
2
.3
2

(1
,0
5
4
.0
,5

,0
2
9
.0
)

2
,6
9
3
.5
7
±
5
8
6
.2
8

(1
,4
2
8
.1
,5

,1
4
0
.0
)

1
.7
1
±
3
.9
5

0
2
2
.0
2
±
6
.9
9

1
.5

T
/3

T

(5
0
/5

0
%
)

Y

U
pe

nn
2
0

1
0
0
%

T
LE

3
,2
2
4
.4

±
4
8
2
.9

(2
0
9
6
.6
,4

,9
4
8
.6
)

3
,1
2
4
.6

±
4
8
2
.5

(2
0
5
9
.4
,4

,9
4
8
.6
)

—
—

—
3
T

Y

T
es
t
(N

=
3
0
0
)

M
ix
tu
re

fr
o
m

tr
ai
n
se
t

5
0

1
.5

T
/3

T
Y

F
T
LD

9
5

7
8
.0

±
1
1
.4

5
2
%

M
/4

8
%

F
1
0
0
%

F
T
LD

3
,0
3
9
.6

±
5
9
1
.3

(1
,4
7
0
.3
,4

,0
6
1
.6
)

2
,8
1
3
.6

±
5
6
3
.9

(1
,3
2
1
.1
,3

,9
3
8
.7
)

5
.4
9
±
9
.3
6

0
2
2
.2
7
±
7
.1
1

1
.5

T
N

V
C
I

1
0
5

9
0
.6

±
9
.5

5
4
%

M
/4

6
%

F
1
0
0
%

V
C
I

3
,0
4
3
.6

±
6
1
8
.2

(4
9
4
.5
,4

,3
8
5
)

2
,8
9
8
.8

±
6
3
4
.7

(5
5
8
.8
,4

,5
1
5
)

1
8
.8
6
±
1
9
.9
3

1
7
.1
4
±
3
4
.1
5

2
3
.9
5
±
4
.5
8

1
.5

T
N

A
dv

er
sa
ri
al

ca
se
s

5
0

9
0
.5

±
5
.6

6
4
%

M
/3

6
%

F
4
4
%

A
D
,2

4
%

N
C
,

1
8
%

V
C
I,
1
4
%

F
T
D

3
,1
7
3
.6

±
6
2
0
.1

(1
,7
7
2
.9
,4

,4
5
7
.0
)

3
,0
5
0
.5

±
6
3
9
.0

(1
,2
8
2
.0
,4

,0
4
0
.0
)

—
—

2
1
.3
8
±
6
.3
4

1
.5

T
N

A
bb

re
vi
at
io
ns
:A

D
,A

lz
he

im
er
's
di
se
as
e;

A
D
N
I,
A
lz
he

im
er
's
di
se
as
e
ne

ur
o
im

ag
in
g
in
it
ia
ti
ve

;D
x,
di
ag
no

si
s;
F
T
LD

,f
ro
nt
o
-t
em

po
ra
ll
o
ba

r
de

m
en

ti
a;

G
T
,g
ro
u
n
d
tr
u
th
;H

p
,h

ip
p
o
ca
m
p
u
s;
M
M
SE

,m
in
i-
m
en

ta
ls
ta
te

ex
am

in
at
io
n;

M
R
I,
m
ag
ne

ti
c
re
so
na

nc
e
im

ag
in
g;

N
C
,n

o
rm

al
co

nt
ro
ls
;S

D
S,

Su
nn

yb
ro
o
k
D
em

en
ti
a
St
ud

y;
U
pe

nn
,U

ni
ve

rs
it
y
o
f
P
en

ns
yl
va
ni
a;

V
C
I,
va
sc
u
la
r
co

gn
it
iv
e
im

p
ai
rm

en
t;
W

M
H
,w

h
it
e
m
at
te
r

hy
pe

ri
nt
en

si
ty
.

GOUBRAN ET AL. 293



encoded representations with shallower features to enable precise

localization of the voxels of interest (i.e., the hippocampus). The over-

all architecture of the proposed 3D network (Figure 1) is inspired by

the original 2D U-net (Ronneberger et al., 2015) with a few modifica-

tions: (a) In this work we updated the original design with residual

blocks (He, Zhang, Ren, & Sun, 2016; Kayalibay et al., 2017; Milletari

et al., 2016) that ease optimization convergence by improving gradi-

ent flow and enable higher accuracy through a deeper network.

(b) Our custom residual blocks consisted of two convolution blocks

(convolution layer with normalization and nonlinearities) separated by

a dropout layer to avoid overfitting. (c) We employed deep supervi-

sion (Kayalibay et al., 2017; Lee, Xie, Gallagher, Zhang, & Tu, 2014) at

the expanding pathway by adding earlier feature maps at different

levels of the network and combining them via element-wise summa-

tion to form the final network output. (d) Since the 3D network is

memory expensive, we opted to use instance normalization (Isensee,

Kickingereder, Wick, Bendszus, & Maier-Hein, 2018; Ulyanov,

Vedaldi, & Lempitsky, 2016) instead of the commonly used batch nor-

malization as the stochasticity generated by a small batch size may

destabilize batch normalization. (e) To generate segmentation maps

from the entire input image, we relied on trainable deconvolution ker-

nels as the upsampling operations. (f) Finally, we chose a loss function

based on the Dice similarity coefficient (Dice, 1945) (see Section 2.3).

The network is fully convolutional, that is no fully connected

layers are added, and hence can predict a variable number of voxels in

a forward pass without the need for architectural changes (Long et al.,

2015). It employs skip connections to combine feature maps across

stages through concatenation. The network has a depth of five and

16 initial filters, with the number of filters doubling every contraction

step. The building blocks of the networks are convolution blocks, con-

sisting of a convolution layer followed by a normalization layer and a

nonlinearity. We chose the leaky ReLU as the activation function with

a negative slope of 10−2 for all feature map convolutions.

The residual blocks separate the input data into two paths, the

first applies weights and nonlinearities, and the second applies an

identity mapping (the input data is unchanged). The two paths are

finally merged with the element-wise sum, resulting in the following

formulation:

y xð Þ= σ W2σ W1xð Þ+ xð Þ ð1Þ

where W1 and W2 are the weights of the convolutional layers and σ is

the activation function. The residual block consisted of two convolu-

tion blocks, separated by a dropout layer. We chose a dropout rate of

0.3 and a small convolution kernel of 3 × 3 × 3, which enables a

higher nonlinearity capacity for the same receptive field with a lower

number of parameters needed. The residual blocks are preceded by a

strided convolution layer with a kernel of 3 × 3 × 3 and a stride of

two, effectively reducing the number of feature dimensions by a fac-

tor of two while adding more features as the network depth

increases.

In the expanding pathway, we relied on upsampling blocks that

repeat the feature voxels twice in each spatial dimension, followed by

concatenation to combine the upsampled features with those from

the corresponding contracting pathway. After concatenation, a fea-

ture block recombines these features together and halves the number

of feature maps at each step to reduce memory consumption.

Upsampling blocks consisted of deconvolution layers, followed by a

convolution block with kernel 3 × 3 × 3. As for the feature blocks,

they consisted of two consecutive convolution blocks with the first

having a convolution layer with a kernel size of 3 × 3 × 3 and the sec-

ond having a kernel of 1 × 1 × 1. As discussed before, we added

F IGURE 1 Proposed base network architecture with insets for the convolution, residual, feature and upsample blocks. (a) The 3D layers are
color-coded to distinguish their different functionality and presented as 2D representations for simplification. For each layer, the number of
features is shown at the bottom. “Conv” represents a convolution, “k” represents the kernel, “s” denotes the number of strides. (b) Overall scheme
demonstrating the use of an ensemble of two consecutive networks to produce the final segmentation
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earlier feature maps at different levels (n = 3) of the network and com-

bined them via element-wise summation to form the final output. Fea-

ture maps from the last layer were passed to a softmax function that

generates pseudo-class probability maps as:

ρc HLð Þ= exp HLð ÞPC
c=1exp HLð Þ

8c, ð2Þ

where c denotes class and C the total number of classes, that is, either

a hippocampus voxel or not, in-turn producing a class-likelihood prob-

ability for each voxel in the image.

2.3 | Loss function

To mitigate the class imbalance issue (the majority of image voxels do

not represent the structure of interest), previous work (Çiçek et al.,

2016; Ronneberger et al., 2015) applied a weight map to the categori-

cal cross-entropy loss (objective) function. We sought to maximize the

Dice similarity coefficient (Dice, 1945) as suggested by (Milletari et al.,

2016). We employed a formulation of Dice similarity as an equally

weighted dice loss function. An advantage of this approach is that it

does not rely on hyperparameters. The Dice similarity (Dice, 1945) is

an overlap metric commonly used to quantify segmentation accuracy.

It is defined as follows between two binary volumes:

D=
2
PN

i pigiPN
i p

2
i +

PN
i g

2
i

ð3Þ

where pi are voxels of the predicted binary segmentation volume pi ?

P and gi are voxels of the ground truth volume gi ? G. This formulation

is differentiable and can be incorporated in the network, yielding the

following gradient:

∂D
∂p j

= 2
g j

PN
i p

2
i +

PN
i g

2
i

h i
−2p j

PN
i pigi

h i

PN
i p

2
i +

PN
i g

2
i

h i2

2
64

3
75 ð4Þ

2.4 | Data preprocessing, augmentation and model
training

Prior to training, all images were bias field corrected for B1 inhomoge-

neities using N4 (Tustison et al., 2010). They were then standardized

to have a zero mean and unit variance within a local neighborhood of

50 voxels using c3d (Yushkevich et al., 2006). We opted for neighbor-

hood normalization instead of global image normalization to better

preserve local features. We performed a total of three augmentations

per scan including flipping images along Left–Right and ± 15� rota-

tions in the L–R axis. SDS datasets were not L–R flipped as the data

comes from 50 unique subjects segmented twice each (after L–R flip-

ping), generating 100 ground truth segmentations. No deformable

augmentation was employed, relatively preserving the anatomy of

input images. Models were trained for 300 epochs and early stopping

was set to 50 epochs where validation loss did not improve. We used

the Adam optimizer (Kingma & Ba, 2014) with an initial learning rate

of 5 × 10−3, a patience of 10 epochs for the validation loss and a

learning rate drop (decay factor) of 0.5.

Both networks trained on single contrast T1-weighted image

inputs. The initial 3D U-net trained on downsampled T1 images (to a

size of 128 × 128 × 128), and the second network trained on a limited

FOV of 112 × 112 × 64 voxels centered around the initial segmenta-

tion. The initial network was trained on a mixture of skull-stripped

and intact-skull images. Each network was trained with five-fold cross

validation. Out of the 259 datasets with manual hippocampal segmen-

tations used in this study, 184 (~70%) were used for training,

50 (~20%) for testing and 25 (~10%) for validation during training.

With data augmentation, this split generated a total of 502 training

samples. The networks were implemented using Keras (using Ten-

sorflow backend) and trained on a GeForce GTX1080 Ti graphics card

with 11Gb of memory and a Pascal architecture (NVIDIA, Santa Clara,

CA). The algorithm and trained model are available at: https://

hippmapp3r.readthedocs.io.

2.5 | Evaluation of clinical datasets

The model was tested on two datasets (Table 1). Fifty subjects with

manually traced ground truth from the aforementioned studies were

used for the first dataset. Images from 200 additional subjects partici-

pating in the SDS were used in the second dataset from two separate

disease cohorts: FTD who have severe atrophy particularly in the tem-

poral regions, and VCI who typically have strokes and severe WMH

burden. The disease cohorts in this test set are characterized by atro-

phy, vascular lesions and features not present in our training set. The

second set was employed to investigate outliers and failure rates.

Manual ground truth segmentation was not available for this set.

The model was compared against established state-of-the-art

techniques for the two test sets: FreeSurfer's whole hippocampus

segmentation (version 6.0) (Fischl et al., 2002), FSL's subcortical seg-

mentation (FIRST) (v. 5.0.10) (Patenaude, Smith, Kennedy, &

Jenkinson, 2011), an in-house developed segmentation tool (SBHV)

(v. 1.0) (Nestor et al., 2013), a multi-atlas patch-based model (volBrain)

(v. 1.0) (Manjón & Coupé, 2016), and a newly developed CNN-based

model (Hippodeep) (v. 0.1) (Thyreau et al., 2018). FreeSurfer's hippo-

campus algorithm combines in-vivo and ex-vivo tracings into a com-

putational atlas that employs Bayesian inference to segment the

hippocampal subfields. FIRST is a Bayesian model-based tool with

deformable surfaces that rely on shape and appearance for segmenta-

tion. SBHV employs a multi-atlas-based segmentation approach.

Hippodeep uses a relatively shallow CNN trained on both FreeSurfer's

hippocampal segmentation from multiple large cohorts and aug-

mented iterations of a much smaller manually ground-truth dataset.

volBrain is an open-source, automatic online tool that provides a

series of image segmentation tasks. It employs a modified edition of

nonlocal label fusion for subcortical structure segmentation.
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While there were slight differences in protocols between the

tested segmentation methods and the ground truth used for our

models, all protocols used very similar border definitions for the hip-

pocampus. ADNI, volBrain, and SBHV used the EADC-ADNI Harmo-

nized Protocol (HarP) (Boccardi et al., 2015), consisting of the

hippocampal head, body, the alveus/fimbria up to the separation from

the fornix, the medial border of the hippocampal body and subiculum,

and the whole hippocampal tail. The UPenn atlas used data that was

segmented using a semiautomated pipeline (Pluta et al., 2009) and

included the hippocampus proper, the dentate gyrus, the alveus, the

fimbria, and the subiculum (Anon, 2005; Hasboun et al., 1996). Like

the previous methods, the tracings included all rostrocaudal parts of

the hippocampus. FIRST, Hippodeep, and Freesurfer share the same

protocol for segmenting the hippocampus, which included the dentate

gyrus, the hippocampus proper, the prosubiculum, and the subiculum

(http://freesurfer.net/fswiki/CMA). Careful distinction is paid

between the hippocampus, the amygdala, the thalamus and the tem-

poral horn of the lateral ventricle (Schoemaker et al., 2016).

2.6 | Clinical adversarial attacks

To further validate our model, we tested it on challenging images

(n = 50) that did not pass our quality control (QC) protocol and were

deemed corrupt due to motion, low SNR and ringing artifacts; herein

referred to as “adversarial attacks,” a commonly used term in the deep

learning field referring to engineered inputs with perturbations pres-

ented to neural networks in order to drive them to produce errors and

study their robustness toward different inputs.

Furthermore, we performed additional validation experiments

whereby we simulated low-quality clinical grade or challenging scans

acquired with different acquisitions and scanners. These simulated

adversarial attacks included: (a) decreases in resolution, (b) addition of

noise, and (c) cropping the FOV. Input images were downsampled by

a factor of two in all dimensions, and 2× in-plane with 4× out-of-plane

(in the z-dimension), to simulate clinical imaging protocols which tend

to acquire images with lower resolutions and thicker slices. Speckle

noise with a σ = {0.1, 0.3} was applied to input images to simulate

scans with lower SNR and/or low-field strength acquisitions. Salt and

pepper noise with a σ = 0.1 were also applied to simulate signal drop-

out in random voxels. Finally, we also cropped the input sequences in

the Superior–Inferior plane 15% from each side to simulate scans with

a limited FOV.

2.7 | Validation metrics

Four metrics were used to evaluate model performance against man-

ual segmentation: the Pearson R correlation coefficient of the vol-

umes, the Dice similarity coefficient, the Jaccard coefficient, and the

Hausdorff distance. We used the Pearson R correlation coefficient

(Pearson, 1895) between manually segmented volumes and volumes

generated through model predictions to assess the clinical utility of

the predictions. The Dice coefficient has been described in

Section 2.3 and the Jaccard coefficient (Jaccard, 1912) is another

metric to assess the degree of similarity between two sets (sometimes

referred to as the intersection over the union or IoU) as defined by:

Jacc =
P\Gj j
P[Gj j ð5Þ

where P and G are the predicted and ground truth masks. The

Hausdorff distance was used to evaluate the similarity in shape

between the ground truth and each segmentation method. The

Hausdorff distance of two objects in the same space is defined as the

largest distance in a set of all closest distances between both sets of

points:

H A,Bð Þ=max maxx2A min y2B kx, ykf gf g,max y2B minx2A kx, ykf gf gf g

Volumes and segmentations for both hemispheres were used for

the quantitative analyses across all models. In the second test set,

since no manual ground truth labels were available, we relied on com-

puting Z-scores of the hippocampal surface areas of the subjects to

highlight outliers and failed segmentations. For every subject, a mean

surface area was computed from the different tested methods while

excluding any values lower than the lower quartile (25th percentile) or

greater than the upper quartile (75th percentile) by more than 1.5×

the interquartile range (iqr = upper quartile − lower quartile). The

results were visually checked to further exclude any segmentations

that did not pass quality control for quantification of subject means.

Surface area z-scores were then computed for every method based

on the filtered subject mean per participant, for each hemisphere sep-

arately. Very high or low z-score values then highlight potential out-

liers or failure cases (substantial deviation from the filtered mean

computed across all methods).

3 | RESULTS

3.1 | Evaluation of clinical datasets

While all tested techniques provided significant correlations between

predicted and manual volumes, our model generated the highest

agreement with ground truth labels (r = 0.95) and the lowest number

of outliers (Figure 2a). The distributions of Dice and Jaccard coeffi-

cients between ground truth manual labels of the hippocampus and

predicted segmentations are presented in Figure 2b. The shape of the

distributions was computed using kernel density estimation with

Gaussian (normal) kernels. Our network had a tight Dice coefficient

distribution (similarly with Jaccard) centered around 0.869 ± 0.033

(0.870 ± 0.030 left, 0.868 ± 0.036 right) followed by SBHV, volBrain,

FIRST, Hippodeep, and FreeSurfer. The SBHV pipeline had a better

dice and standard deviation than volBrain, FIRST, Hippodeep, and

FreeSurfer but with a trade-off of the longest computational time,

taking at least 8 hrs per subject. While volBrain had a better Dice,

Jaccard and Hausdorff distance than FIRST, Hippodeep and

Freesurfer, the Dice accuracy for this patch-based algorithm may be

lower than those reported in the literature due to the higher atrophy
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level in our test set (Manjón & Coupé, 2016). While Hippodeep and

FreeSurfer's distributions were centered around 0.76 and 0.74,

respectively, they had multiple cases with a Dice lower than 0.65.

FIRST failed to run on eight subjects, producing errors without com-

pletion (mainly SDS cases) and generated misregistrations for another

four, producing outputs with incorrect orientations. Hippodeep's stan-

dard deviation was more than 3× higher than the average standard

deviation of the other tested algorithms, possibly highlighting the

instability of deep networks when presented with different inputs

than the training set. Dice, Jaccard similarity coefficients, and

Hausdorff distance between ground truth manual labels of the hippo-

campus and predicted segmentations for the six tested techniques are

summarized in Table 2. Our model outperformed the other state-of-

the-art techniques by 5% or more.

F IGURE 2 Validation of hippocampal segmentation through volume correlations, Hausdorff distances and Dice, Jaccard similarity coefficients
on our proposed model, HippMapp3r (blue) and five established techniques: Hippodeep (yellow), FreeSurfer (green), SBHV (red), FIRST (purple),
and volBrain (brown). The proposed model produced the best agreement to manual labels among the six tested techniques in all four metrics.
Results for all four metrics displayed for both left and right hippocampi. (a) Correlations between the manually segmented volumes and volumes
generated through model predictions. Pearson R correlation coefficients and P-values are shown for each test. Our method produced the highest
volume correlation for both hippocampi (r = .95, p < .000001). (b) Distribution of Dice coefficients, Hausdorff distances, and Jaccard coefficients
(in said order) between ground truth manual labels of the hippocampus and predicted segmentations. Ticks on the x-axis represent individual
segmentation cases (colored by tested technique). Distributions are generated using Gaussian kernel density estimation
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To test whether an ensemble of networks would lead to a signifi-

cant improvement in segmentation accuracy we ran the top three per-

forming networks from our cross-validation experiment (only for the

small FOV networks with the same initial whole-brain prediction) on

our test data and averaged the resulting probability maps. The com-

bined prediction of the top-three ensemble did not produce a signifi-

cant improvement in accuracy and only resulted in an average of 0.3%

dice improvement. Hippodeep appeared to substantially under-

segment a few cases, while FIRST and FreeSurfer over-segmented

multiple patients. Examples of the segmentation results for all tested

methods on three participants are shown in Figure 3. The border of

the hippocampus proper is depicted to highlight that the mis-

segmentations by other techniques are not mainly due to differences

in border definitions but to under- or over-segmentation errors of the

gray matter structures. Figure 4 depicts more examples of mis-

segmentations by the tested automated algorithms, specifically mis-

segmentation of the hippocampus proper and segmentation of neigh-

boring white matter structures and CS. It should be noted that our

algorithm was trained on data from the same multisite studies as the

first test set and that SBHV uses subjects from the SDS study as tem-

plate atlases.

The cases with the highest and lowest Dice coefficients from

the test dataset between manual hippocampal segmentations and

our prediction (0.92 and 0.80) are presented in Figure 5. These

cases highlight the quality of our output segmentations even for

the case with lowest dice. The worst case demonstrates some of

the challenging features for segmentation including hippocampal

shrinkage, malrotation, increased ventricular volume and

increased CSF surrounding the hippocampus. Additional examples

of six test cases are shown in Figure S1, to demonstrate the qual-

ity of our model predictions and mismatch to manual labels. Our

algorithm was two orders of magnitude faster than some of the

tested techniques, segmenting the hippocampi in an average of

14 s on a GPU. While our model was on-par with the other CNN-

based technique in terms of efficiency, it had a notably higher

accuracy on the first test set.

Figure 6 demonstrates cases in individuals with severe atrophy

where our model produced accurate segmentation. Specifically, we

depict cases with large cysts, significant ventricular enlargement and

small vessel disease. We present additional difficult cases in

Figure S2, including a subject with developmental malformation and

input images where the neck is occupying a large portion of the FOV.

These cases are particularly problematic to atlas-based algorithms

relying on registrations to a template, or those employing a

registration-based initialization. While our network is able to segment

both skull-stripped as well as original T1 images including the skull

with comparable accuracy, for cases where the brain does not occupy

a large portion of the FOV it may be optimal to skull-strip the input

T1 for improved segmentations.

3.2 | Outlier rates

The models were also evaluated for performance, specifically out-

liers and failure rates, on two additional populations that are difficult

to segment. Due to the lack of ground truth, the z-scores of the sur-

face areas for each method relative to the computed subject-specific

mean were used as a metric for comparison. High or low surface

area z-scores (for each method) suggested that there had either

been significant over or under-segmentation of the hippocampus,

respectively. We considered outliers to be values above or below

2 standard deviations from the mean. Table 3 summarizes the outlier

rates (average of both hemispheres) on the two populations across

all the methods. volBrain had the greatest number of outliers for the

FTD cohort, followed by Hippodeep (Figure 6). This population is

characterized by marked hippocampal atrophy and shrinkage partic-

ularly in the left temporal lobe (where language lateralizes in most

participants), which leads to common segmentation errors due to

either substantial underestimation of the volume (e.g., Hippodeep's

CNN-based segmentation) or overestimation with atlas-based

methods (FIRST and FreeSurfer) as shown in Figure 7b. In the VCI

cohort, characterized by an increased burden of WMH, vascular

lesions and the presence of strokes, FreeSurfer had the greatest

number of outliers and SBHV under-segmented around 10% of the

cases (Figure S3). HippMapp3r had the fewest number of outliers in

the two populations with a 1% outlier rate (Table 3). Example cases

where our model did not produce optimal segmentations are

TABLE 2 Dice, Jaccard coefficients, Hausdorff distances, and computational time for hippocampal segmentation methods

Hemisphere
HippMapp3r
(mean ± std)

Hippodeep
(mean ± std)

FreeSurfer
(mean ± std)

SBHV
(mean ± std)

FIRSTa

(mean ± std)
VolBrain
(mean ± std)

Left Dice coefficient 0.870 ± 0.030 0.781 ± 0.165 0.761 ± 0.031 0.832 ± 0.045 0.794 ± 0.028 0.825 ± 0.036

Jaccard coefficient 0.771 ± 0.047 0. 689 ± 0.073 0.615 ± 0.040 0.827 ± 0.051 0.645 ± 0.111 0.704 ± 0.050

Hausdorff distance (mm) 1.487 ± 0.485 3.454 ± 6.296 2.172 ± 0.314 1.676 ± 0.584 2.798 ± 3.689 1.794 ± 0.463

Right Dice coefficient 0.868 ± 0.036 0.775 ± 0.192 0.769 ± 0.037 0.827 ± 0.051 0.788 ± 0.036 0.828 ± 0.035

Jaccard coefficient 0.768 ± 0.056 0. 700 ± 0.057 0.625 ± 0.047 0.708 ± 0.074 0.657 ± 0.043 0.708 ± 0.050

Hausdorff distance (mm) 1.440 ± 0.047 2.915 ± 5.281 1.988 ± 0.364 1.793 ± 0.594 2.291 ± 0.489 1.740 ± 0.407

Approx. compute time 14 s 30 s Whole brain: 6 hrs,

Hipp.: 7 min (12 cores)

7 hrs 6 min 10 min

aFIRST failed to run (producing errors) on eight subjects and generated outputs with wrong orientation on another four.
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presented in Figure S4 and included instances with very low SNR or

when a lesion localized within the hippocampus. volBrain failed on

20 VCI subjects and 11 FTD subjects. Of all completed cases on

both cohorts, volBrain had an outlier rate of 21% in the VCI cohort

but failed to produce accurate results on the FTD cohort with an

outlier rate close to 50%.

F IGURE 3 Visual comparison of the five tested segmentation methods on three example subjects. Rows a and b display sagittal slices of the left and
right hippocampi, respectively, while rows c through e display segmentations in coronal slices. Manually traced ground truth is displayed in red on the far-
left column. An outline of the ground truth is overlaid on each segmentation output. Regions where over segmentation occurred are indicated by blue
arrows. Regions where under segmentation occurred are indicated by yellow arrows
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3.3 | Clinical adversarial attacks

Accuracy of neural networks suffers when unseen features and char-

acteristics from a new dataset are provided as a new test set, such as

differences in image resolution, contrast, noise-level, and FOV. Clinical

data are commonly obtained at lower field strengths and during

shorter acquisitions than research scans, producing lower resolution

and SNR data. We performed further validation experiments on both

real corrupt “adversarial” cases (due to poor quality, artifacts or

patient movement) and simulated adversarial data. The surface area z-

scores as well as some example segmentation results for three sub-

jects from the real adversarial cases are shown in Figure 8. None of

the methods exceeded an outlier rate of 10% on these real adversarial

cases (Table 3). FreeSurfer and SBHV generated the most outliers,

while HippMapp3r had the lowest outlier rate (2%). We also present

two corrupt scans, not included in the test datasets, where our model

produced surprisingly good segmentations given that a substantial

portion of the brain was not imaged at scan time (Figure S5).

The simulation experiments demonstrated that our model is

robust in general to such attacks mirroring our results on the real

adversarial cases, as shown in Figure 9. Our model was particularly

robust to downsampling of images to 2× and cropping FOV in the

Superior–Inferior plane by 30%. Downsampling to 2× in-plane and 4×

out-of-plane resulted in a drop of 5% in Dice coefficient (Figure 9a).

While our model was robust to the addition of a small amount of

speckle or salt-and-pepper noise (with a low standard deviation), it

proved more sensitive to the addition of a large amount (sigma) of

speckle noise producing a Dice coefficient drop of around 14%

(Figure 9b).

4 | DISCUSSION

This work presents a hippocampal segmentation algorithm

(HippMapp3r) based on an ensemble of 3D deep artificial neural net-

works. We compared our segmentation results to five state-of-the-art

methods and demonstrated that the proposed algorithm is capable of

producing accurate and fast hippocampal segmentations across a

diverse range of neurodegenerative diseases. On a test set with man-

ual ground truth, our algorithm achieved the highest volume correla-

tion, Dice and Jaccard scores relative to other tested algorithms and

had the highest computational speed, segmenting the hippocampus in

an average of 14 s per subject. We further highlighted its robustness

to atrophies and lesion types not present in the training set by dem-

onstrating its low outlier rate on two additional test populations. We

finally validated its robustness against corrupt and challenging scans

on both real (with motion artifacts and low SNR) and simulated adver-

sarial cases (through the systematic degradation of input image quality

F IGURE 4 Visual comparison of the six tested segmentation methods on one example subject. Rows a through d display segmentations in
coronal slices, while rows e and f display sagittal slices of the left and right hippocampi, respectively. Regions where over segmentation into
neighboring white matter occurred are indicated by yellow arrows. Regions where under and over segmentation of hippocampal proper occurred
are indicated by blue and red arrows, respectively. Blue arrow “1” highlights missing subiculum (row c.). Blue arrow “2” indicates missing
hippocampal head (row d.). Blue arrow “3” indicates under segmented hippocampal body (row d.). Red arrow “4” indicates an over segmented
hippocampal head (row d.). Yellow arrows “5” and “6” show examples of over segmented white matter beyond the subiculum (row c.)
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with simulation akin to low-quality clinical grade MRI). The high accu-

racy and efficiency of our model highlight its utility as a tool for the

analysis of large multisite studies while providing the opportunity for

personalized assessments.

HippMapp3r produced an average Dice value of 0.869 ± 0.033

across both hippocampi (0.869 ± 0.030 left, 0.868 ± 0.036 right), and

Pearson's correlation coefficients of 0.95 and 0.93 for the left and

right hippocampi, respectively. The high overlap and similarity

between the ground truth and the segmentation results indicate

HippMapp3r's ability to segment hippocampi that are variant in shape

and position across cohorts. Of note, our hippocampal model was

trained on multiple segmentation protocols (in an effort to increase

our training set) which have slightly different border definitions for

manual segmentation than those reported within a single study. We

deliberately chose to test our algorithm on images from elderly

patients with brain injury, WMH, and stroke, in order to perform a

F IGURE 5 Hippocampal segmentation cases with the highest (a) and lowest (b) dice coefficients from the test set in coronal and axial views.
Blue labels represent predicted segmentations and red represent manual delineations. Yellow arrowheads highlight areas of mis-segmentations.
(b) Outlines of the segmentations are presented to show the underlying image intensities and features, and demonstrate the agreement in
segmentation borders. (c) Mis-segmented voxels highlight the discrepancies between the segmentations. Red voxels are manually labeled voxels
not predicted by the model, and light blue voxels are predicted voxels that were not present in the manual labels
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more clinically relevant validation (unlike many other tools reported in

the literature that only use healthy young adults for validation). The

presence of these cases with large atrophy, smaller volumes, hippo-

campal rotation and brain lesions in the test dataset may be why we

obtained a lower accuracy with the state-of-the-art methods than

reported elsewhere. The high variability of image quality, resolutions,

acquisition parameters, and scanners in the dataset is another chal-

lenging aspect for many segmentation algorithms that were accounted

for in this model by using multisite and multi-scanner studies in the

training and testing datasets. Study overlap in the training and testing

set may have set our model at an advantage compared to the other

methods but was unavoidable due to lack of available datasets with

expert ground truth segmentations. Although training for the hippo-

campus model was performed using data from three different studies,

it would be optimal to test it on data with manual ground truth seg-

mentations from other studies not part of the training set.

For the second test set, HippMapp3r had the fewest number of

outliers, indicating it performed most consistently compared to the

other methods for these populations. FreeSurfer and First tended to

over segment, while SBHV tended to under segment. When observing

F IGURE 6 Examples of difficult cases to segment where our model produced accurate segmentations. (a) Presence of a large cyst (top left
corner) in the temporal lobe causing hippocampal rotation. (b, c) Two individuals with enlarged ventricles and hippocampal shrinkage. (d) An
individual with small vessel disease and visible lacunes within the right hippocampus and surrounding white matter

TABLE 3 Outlier rates based on surface area z-scores for all tested methods across three cohorts

Method

Cohort HippMapp3r (%) HippoDeep (%) FIRST (%) FreeSurfer (%) SBHV (%) volBraina (%)

FTD 1 11 8 9 7 46

VCI 1 4 6 22 9 21

Real adversarial cases 2 3 4 10 10 4

Note: Rates were combined over both hemispheres.

Abbreviations: FTD, frontotemporal dementia; VCI, vascular cognitive impairment.
avolBrain failed on 20 VCI subjects and 11 FTD subjects.
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performance for the different conditions, FreeSurfer performed sub-

stantially worse with the VCI cohort. This is possibly because

FreeSurfer using an atlas-based method that cannot incorporate stro-

kes or high WMH burden. Our outlier rates analyses suggest that

atlas-based methods may be susceptible to segmentation errors

when tested on populations with substantial hippocampal atrophy

and large hemispheric asymmetry in geometric properties, while

CNN-based methods may not generalize well to test data with

F IGURE 7 Outlier rates in the frontotemporal dementia population. (a) Mean surface area z-scores for the right hippocampus segmented by
HippMapp3r (blue), Hippodeep (red), FIRST (orange), FreeSurfer (green), SBHV (purple), and volBrain (brown) relative to average of segmentation
volumes. (b) Visual comparison of segmentation results for two subjects in the clinical case dataset. Each row represents a distinct subject. Areas
of over, under and miss-segmentation indicated by yellow arrows
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drastically different intensity statistics or distributions than those

of the training data (for example very noisy data). While we used a

filtered mean across methods to compute an estimated subject-

specific mean for our outlier rates analyses, this estimate may have

been biased in the cases where most of the methods did not pro-

duce accurate segmentations.

Deep CNNs are susceptible to sharp decreases in accuracy when

presented with data from different distributions than the training

F IGURE 8 Outlier rates on images with poor quality (real adversarial cases). (a) Mean surface area z-scores for the right hippocampus
segmented by HippMapp3r (blue), Hippodeep (red), FIRST (orange), FreeSurfer (green), SBHV (purple), and volBrain (brown) relative to average of
segmentation volumes. (b) Visual comparison of segmentation results for two subjects in the clinical case dataset. Each row represents a distinct
subject. Areas of over, under and miss-segmentation indicated by yellow arrows
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F IGURE 9 Adversarial attacks on the hippocampal model to simulate clinical data with low resolution, SNR and limited FOV, demonstrating
the robustness of our model to such attacks. (a) Downsampling of resolution by 2× in all dimensions (first row), and 2× in-plane and 4× out-of-

plane (second row). Downsampling by 2× did not affect segmentation accuracy, while 2× in-plane and 4× out-of-plane resulted in a drop of 5% in
Dice coefficient. (b) Varying degrees (sigmas) of speckle and salt-and-pepper noise to simulate lower SNR. The addition of speckle noise with a
large sigma produced a Dice coefficient drop of ~14%. (c) Cropping of FOV in the Superior–Inferior plane by 15% in each side did not significantly
affect segmentation accuracy

GOUBRAN ET AL. 305



datasets, or with adversarial attacks. We attempted to characterize

this through testing on corrupt data that failed quality control (real

adversarial cases with motion and other artifacts) and simulation

experiments. The low z-scores standard deviation (divergence from

zero) on the real adversarial cases indicates HippMapp3r's consistency

in comparison to other methods. Both the large positive deviations

from the mean seen in FreeSurfer and FIRST on these cases, and the

negative deviations on the part of Hippodeep, reflect the previously

discussed findings when the methods were compared to ground truth

labels. In the simulation experiments, we found HippMapp3r was par-

ticularly robust to the addition of speckle noise and reduced spatial

resolutions. However, it was more sensitive to decreasing the FOV

and exhibited a large drop in accuracy with very-noisy inputs. We did

not observe any failure cases with the segmentation model on our

test set or during the validation experiments.

It is worth noting that even when accurate, automated methods

are used, a certain degree of neuroanatomical expertise is commonly

needed to evaluate whether a segmentation is adequate or should be

excluded or edited on a subject level. To enable efficient and accurate

assessment of the quality of segmentations, our algorithm generates

automated quality check outputs similar to those shown in Figure S6;

as well as automated volumetric reports for further analyses. For

group segmentations, we have added an additional function to per-

form outlier detection based on volumetric and shape metrics (surface

area, eccentricity, and elongation), whereby subjects with metrics

higher or lower than 2 standard deviations from the mean are consid-

ered outliers.

The two deep neural network algorithms (Hippodeep and

HippMapp3r) were by far the more efficient with processing times on

the order of seconds on a GPU as compared to several minutes or

hours for the three other tools. While the FreeSurfer pipeline has a

typically long computational time compared to other software, it

should be noted that it also provides segmentations of numerous

brain structures, as well as the hippocampal subfields. Similarly, FIRST

and volBrain provided segmentations of other subcortical structures

in addition to the whole hippocampus. We opted to rely on a two-

network approach, with the first for initialization, as opposed to a

registration-based method for initialization, to avoid incorporating

registration errors and for faster predictions (even using a CPU,

Video S1).

Hippodeep mainly employed hippocampus segmentations gener-

ated by FreeSurfer on a large dataset as ground truth data because

manual tracings are tedious and labor-intensive (Fischl et al., 2002).

Although trained using FreeSurfer segmentations, this model out-

performed FreeSurfer's atlas-based algorithm by a small margin on

our test dataset. Hippodeep had roughly similar computational time as

HippMapp3r, but lower accuracy on the test data. This could be possi-

bly due to the architectural differences between the two networks

(including the expanding pathway, residual elements, higher number

of feature maps and deep supervision in our model). It could also be

due to the difference in the training data and the reliance on a bigger

number of manually traced ground-truth datasets instead of a very

large number of FreeSurfer segmentations.

We chose a U-net architecture as it has been shown as a success-

ful scheme for several biomedical applications (Ronneberger et al.,

2015), while also implementing a 3D design as this is advisable for vol-

umetric medical data (Kayalibay et al., 2017; Milletari et al., 2016). In

addition, we used residual units to provide smoother gradient flow

through the network and skip connections to forward feature maps

computed in the contracting pathway to the expanding pathway. One

of the main practical limitations of applying 3D CNNs to medical data

is that they are expensive to train due to their increased memory

demand and thus usually require down-sampling the raw data. Our

two-network “ensemble” approach avoided downsampling the hippo-

campal (medial temporal) region in the second pass. We opted for

training our model using manually delineated ground truth segmenta-

tions by experts as they should produce more accurate results than

relying on outputs from other software. Other algorithms may not

fully encode the expert anatomical knowledge and may lead to biases

in the predictions. We relied on augmentation through flipping and

rotation but observed that augmentation through nonlinear warping

did not show improvements for the training loss. We adopted the

chosen parameters as they have been shown to produce optimal

results in previous literature and based on prior experiments; how-

ever, further improvements in accuracy might be made if a more

extensive exploration of the parameter space is performed. We ran an

exploratory experiment for testing whether one could segment hippo-

campi and other structures straight from acquired scans, without any

processing (like bias-field correction) or intensity standardization.

Intensity standardization (converting image intensities to a zero-mean,

1 standard deviation) is a common preprocessing procedure in

machine/deep learning known to help optimizer convergence and gra-

dient flow. We believe that the lack of intensity standardization and

the drastically different intensities across the multisite training set is

the main factor for this failure in training. The results of this experi-

ment might, however, be dependent on the training data (the histo-

grams and intensity ranges in the set) and its size.

While the presented model is accurate and efficient, it is not flexi-

ble in terms of inputs as it requires a specific sequence (i.e., image

contrasts) and thus would not produce accurate segmentations in its

absence (e.g., using T2-weighted images). This is in contrast to more

flexible approaches that can predict given a subset of inputs (Havaei,

Guizard, Chapados, & Bengio, 2016) and thus the subject of future

work. HippMapp3r also relied on the input being in a standard orien-

tation and was unable to accurately segment when dealing with

other orientations. Our segmentation algorithm does not separate

the hippocampus into its different subfields, this is due to the scar-

city of high-resolution sub-millimeter T1 and T2-weighted scans and

manual subfield delineations in a large dataset for training, as well as

lack of histological validation.

In summary, this work we present an automated whole hippocam-

pal segmentation algorithm based on 3D CNNs that is robust to brain

atrophy and lesions associated with aging and neurodegeneration of

the human brain. The algorithm was trained on 209 datasets (before

augmentation) from different cognitive neurology cohorts (NC, MCI,

AD, or TLE), as a means of reflecting a subset of the wide range of
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elderly adults that undergo brain MRI. These datasets were acquired

from multiple studies to obtain good generalizability across resolu-

tions, acquisition parameters, and scanners. Our deep networks

improve upon state-of-the-art techniques in terms of both accuracy

and efficiency. We observed a large margin in Dice and Jaccard simi-

larity coefficients, and volume correlations between manual and auto-

mated segmentations for our model compared to other well-

established methods. Our model was also one or two orders of magni-

tude faster than some of the tested methods, segmenting the hippo-

campi in seconds. This combination of efficiency and accuracy against

other methods suggests broad utility for large multisite studies, as well

as personalized assessments. We have further validated our networks

by demonstrating its robustness to realistic clinic adversarial cases

including sharp decreases in resolution, SNR, and cropping of FOV,

indicating the potential for clinical adoption. The model is made public

and accessible for use in the research setting.
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