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Abstract
Alzheimer’s disease (AD) is the most frequent type of dementia that has no effective cure, except early discovery and

treatment that may help patients to include successful years in patient’s lives. Currently, mini-mental state examination

(MMSE) score and manual examination of magnetic resource imaging (MRI) scan along with machine learning techniques

are used to diagnose the disease; however, they possess certain accuracy limits. Therefore, this paper proposes a deep

learning-based multilayered framework for AD classification using transfer learned Alexnet and LSTM for multiclass and

binary classification of MR images. However, the deep learning models used in the current study necessitate a large

training dataset to produce better outcomes. As a result, this work also utilizes generative adversarial network (GAN) as a

data augmentation tool to improve the classification results and further to solve the problem of overfitting. The study uses

Alzheimer’s disease neuroimaging initiative (ADNI) dataset of 60 AD, 73 mild cognitive impairment (MCI) and 67

cognitively normal (CN) patients from which 2 D MR image scans are extracted. Furthermore, the proposed method

achieved the classification accuracy on AD–CN at 98.13%, AD–MCI at 99.38% and CN–MCI at 99.37%, respectively.

Also, the multiclass classification shows the promising accuracy of 96.83% for the proposed framework. Finally, the

proposed model’s performance is compared to other state-of-the-art techniques and the experimental results show that the

proposed model outperforms in terms of accuracy, sensitivity and hypothesis testing.

Keywords Alzheimer’s disease � Alexnet � Generative adversarial network (GAN) � Long short-term memory (LSTM) �
Deep learning � Image classification

1 Introduction

Dementia is a term that has been coined to describe the

problems, diseases, and situations that result from the death

or abnormal functioning of numerous brain cells. Alzhei-

mer’s disease (AD) is the most frequent type of dementia

that affects a huge section of the world’s population,

accounting for 60–80 percent of dementia cases [1–3]. It is

a multifaceted neurological brain disease that disrupts brain

cells because of the accumulation of various amounts of

proteins (Ab and Tau) in plaques of amyloids and neu-

rofibrillary tangles, which causes memory loss and impairs

thinking skills [4, 5]. Moreover, MCI patients are more

prone than others to acquire AD [6, 7]. Also, the influence

of AD on a patient’s brain is both extensive and complex,

making it difficult to prevent or diagnose this disease [8].

Alzheimer’s disease affects more than 47 million people

globally, according to research by Alzheimer’s Disease

International (ADI) [9]. Furthermore, by 2050, this number

will have risen to 152 million individuals, implying that

one person will develop dementia every three seconds

[9, 10]. Figure 1 shows the analysis for the year 2020 of 5.8

million Americans aged 65 and older in the USA with AD.

It is predicted to reach 13.8 million by 2050 [6].

As the disease is spreading on a large scale and further,

no definite diagnosis is possible [11, 12]; as a result, a solid
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agreement for the rapid and precise diagnosis of AD is

critical since early therapies can slow the progression of the

illness, allowing individuals who are affected to live longer

[13, 14]. For this, a computer-aided system (CAD) is used

to identify Alzheimer’s disease in order to reduce expen-

sive care costs, which are projected to skyrocket [15].

Additionally, classic machine learning algorithms for early

Alzheimer’s disease diagnosis typically use two types of

data: ROI-based and voxel-based features [16]. Funda-

mental assumptions concerning anatomical anomalies in

the brain, such as regional cortical thickness and hip-

pocampal volume, are heavily relied upon by these tech-

niques [17, 18].

Also, conventional approaches rely mainly on manual

feature extraction, which seems to be a lethargy and sub-

jective process which depends primarily on technical skill

and repeated tries. Therefore, deep learning, particularly

convolutional neural networks (CNNs) and their variants,

offers a viable solution to these issues [19]. CNN can

improve efficiency even further and demonstrate excellent

performance in AD diagnosis without implementing

handmade feature extraction because it does so automati-

cally [20, 21].

This paper proposes a multilayered framework based on

deep learning methods and convolution neural networks for

AD’s early diagnosis and classification. AD is divided into

three stages: (i) cognitive normal (CN), (ii) mild cognitive

impairment (MCI), and (iii) Alzheimer’s disease (AD);

thus, there is a need for multiclass classifier [22, 23]. In

addition, pairwise image classifications are also imple-

mented between all possible pairs of AD stages. The pro-

posed multilayered framework for AD diagnosis and

classification using transfer learned Alexnet and LSTM in

this research use convolution layers of pre-trained Alexnet

to excerpt the features from 2 D magnetic resource imaging

(MRI) brain scans and feed these extracted features into the

LSTM layers whose output is used as the input to the

transfer learned dense layers of Alexnet.

1.1 Our contribution

The following are the primary contributions of this study:

• A multilayered framework is proposed for the timely

identification of AD and multiclass classification of MR

images.

• Multiclass AD Classification uses a transfer learned

model on pre-trained Alexnet and LSTM. Here, image

features are extracted from convolution layers of pre-

trained Alexnet, which are then fed into the LSTM

layers and further to transfer learned dense and output

layers to do the classification.

• The limited size of the dataset is one of the most

significant issues for medical images leading to inac-

curate results. As a result, a data augmentation

technique named GAN is used to increase the dataset’s

size and avoid the problem of overfitting.

• Three AD stages named AD, MCI, and CN are tested

for multiclass as well as binary medical image classi-

fication systems.

• The performance evaluation of the proposed model

shows promising results in terms of various evaluation

metrics such as accuracy, precision, and recall.

The remainder of the paper is organized as follows:

Sect. 2 discusses the related research works in this field.

Section 3 outlines the background and preliminaries used

in this research. Section 4 illustrates how the proposed

model works. Section 5 presents the performance evalua-

tion of the model. Finally, Sect. 6 concludes with a con-

clusion and recommendations for future work.

2 Related work

The identification of AD has been extensively researched,

and it entails a number of concerns and challenges, based

on which a brief review has been done, from which some of

the studies are discussed. Yan et al. [24] developed a deep

learning-based method using squeeze and excitation

mechanism and pyramid squeeze attention mechanism on

the fully convolution network model along with MLP

model to classify and diagnose AD. In another study, Zhu

et al. [25] developed an advanced deep learning architec-

ture based on self-attention mechanism. This model has the

advantage that it integrates representation learning, dis-

tilling and classification into the one framework, thus

reducing the complexity. Further, Li et al. [26] developed a

Fig. 1 Age-wise Percentage of people affected with AD in the USA
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method that used 3-D CNN along with multichannel con-

trastive strategy for AD diagnosis and improving general-

ization ability due to integration of supervised and

unsupervised loss. Divya et al. [27] compared the different

feature selection techniques along with different classifiers

for selecting the set that produced the best classification

results and proved that SVM with radial function kernel

along with mini-mental state examination (MMSE) score

gave the highest performance. Then, in another study,

Kang et al. [28] developed an ensemble approach with 2-D

CNNs such as VGG16, ResNet 50 using multimodel and

multislice ensemble to classify AD with a limited dataset.

Further, Feng et al. [29] proposed a method that used

nonsubsampled contourlet sub-band-based networks for

feature extraction and the concatenation of node and edge

features are used for classification using SVM with radial

function. Jain et al. [30] proposed the PFSECTL mathe-

matical model, which is built using transfer learned CNN

and VGG-16 inbuilt models. For the classification task,

VGG-16 served as a feature extractor. In addition to that,

Basheera et al. [31] utilized the segmented gray matter

from MR images using enhanced independent component

analysis (ICA) and CNN to extract the features and do

classification on the extracted features. Choi et al. [32] used

deep CNN to identify 139 AD and 182 HC using 3-di-

mensional PET volumes, with an accuracy of 84 percent.

To extract features and incorporate nonlinear features for

task-specific classification, Liu et al. [33] used a T1-MRI

and FDG-PET to classify with CNN. A 3D CNN was used

to extract features, while a 2D CNN was utilized to com-

bine various features. Further, Shi et al. [34] used deep

polynomial networks (SDPNs) for classification. Two

SDPNs features are learned from MRI and PET data, which

are then combined and given to a final stage SDPN,

achieving an accuracy of 97%.

Further, Korolev et al. [35] demonstrated that an

equivalent result might be achieved, but when the residual

network and regular 3D CNN designs were applied to 3D

structural images, the results revealed that the diversity of

the two networks was very similar but not up to the mark.

In addition, Liu et al. [36] retrieved many types of features

from the individuals’ MRI dataset using multiple selected

templates and grouped into tissue density maps. Finally,

the subject was classified using an ensemble of support

vector machines (SVM). In another study, Zu et al. [37]

used regional GM volume and FDG-PET intensity, as well

as MKSVM, for the classification of various stages of AD

and MCI. Ortiz et al. [38] presented a multiview DBN-

RBM to acquire MRI and PET data at the same time. The

learned representations were given to a number of rudi-

mentary SVM classifiers, which were then voted together

to construct a more powerful, high-level classifier. To

improvise the presentation of ROI features, Li et al. [39]

developed a dropout method based on a robust deep

learning framework for AD/MCI diagnosis. A multimodal

technique for extracting neuro-imaging features for AD

diagnosis was presented by Liu et al. [40]. The collected

characteristics using autoencoders and zero masking

method were classified using the SVM classifier, which had

an accuracy of 86.86%. Further, a dense encoder and 3D

CNNs were employed in the work of Payan et al. [41]. The

3-D auto-encoders had been used to train the convolutional

layer, but it was not fine-tuned, due to which the perfor-

mance may be degraded. To train latent feature represen-

tation using ROI characteristics of heterogeneous brain

images and cerebrospinal fluid (CSF) features for AD

classification, Suk and Shen [42] used SAE in conjunction

with the multitask feature selection and multikernel

learning (MKL) algorithms. In their another study, they

introduced a deep architecture for Alzheimer’s disease

diagnosis that use sparse multitask learning to choose

characteristics in a hierarchical manner [43]. DL has also

been used to identify Alzheimer’s disease and other brain

disorders since it can effectively find implicit or latent

representation in neuroimaging data. Suk et al. [44]

employed a heterogeneous deep restricted Boltzmann

machine (RBM) to train features from 3D data to diagnose

AD/MCI. By incorporating CSF biomarkers, regional GM

volume, and pixel intensity as features for the binary

classification of distinct phases of the disease termed AD,

MCI, and CN, Zhu et al. [45] developed a function using

SVM. The summary of the research work for AD classi-

fication is shown in Table 1.

These are some of the recent studies in the AD field in

which several models that can handle AD detection and

categorization have recently been proposed in the litera-

ture. Most of them used deep learning models such as

sparse autoencoders (SPAE) and deep belief networks

(DBN), to train the classifier as surveyed in [46]. These

classifiers need to be trained from scratch, which increases

the complexity of the model. Further, the data size used in

most of the studies was limited, introducing the problem of

overfitting in the model. Also, most of them do not use

transfer learning algorithms, multiclass medical image

classification, or a deep learning approach to diagnose AD

stages and provide effective treatment to patients. To

handle the above issues, the researchers propose various

solutions, yet the requirement is not satisfied. Hence, a

model based on pre-trained Alexnet and LSTM is proposed

in this study to do the early identification and classification

of AD and its various stages. The comparison of the pro-

posed work and existing AD classification models is shown

in Table 2.
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Table 1 Summary of the research work related to AD classification

Author(s) Modality Sample size Region(s) selected Method(s) used Strength(s) Limitation(s)

Yan et al.

[24]

MRI AD: 309

CN: 241

Whole brain Anisotropic

Diffusion

Filtering ? PSA

Able to distinguish AD

patients efficiently and

stably

Only AD and NC

classes were

considered

Zhu et al.

[25]

MRI AD: 319

MCI: 316

CN: 324

Whole brain Self-attention

mechanism

Proposed mechanism able to

reduce computational

complexity

Performed binary

classifications

only

Li et al.

[26]

MRI AD: 299

MCI: 299

CN: 330

Whole brain 3-D CNN Enhanced the generalization

ability of the network

Performed binary

classifications

only

Divya

et al.

[27]

MRI AD: 171

MCI: 558

CN: 347

Whole brain Genetic Algorithm

with SVM

Achieved the good accuracy

with lesser number of

features

More imaging

measures may

be reviewed

Kang

et al.

[28]

MRI AD: 187

MCI: 382

CN: 229

Coronal slices of

gray density

maps

Ensemble learning

framework based

on 2-D CNN

Cost-effective and used with

the limited dataset

Performed binary

classifications

only

Feng

et al.

[29]

MRI AD: 200

MCI: 280

CN: 200

Regions of

Interest

Nonsubsampled

Contourlet ? SVM

Features extracted had low

dimension which reduces

the complexity

Sub-band

individual

networks may

be used

Li et al.

[28]

MRI,

PET

AD: 51

MCI: 99

CN: 52

Regions of

Interest

PCA, MDLD, RBM,

SVM

Handled the problem of

overfitting using the

dropout technique

Used limited

sized data

Liu et al.

[29]

MRI,

PET

AD: 80

MCI: 374

CN: 204

Regions of

Interest

SAE, SVM,

Zeromask

Performed multiclass and

multimodal AD diagnosis

using deep learning

Used limited

sized data

Jain et al.

[30]

MRI AD: 50

CN: 50

MCI: 50

Whole brain Transfer learned

VGG 16

Used Transfer learning to

train the classifier

Fine-tuned

convolution

layers not used

Basheera

et al.

[31]

MRI AD = 120 CN = 117

MCI = 112

Segmented Gray

Matter using

enhanced ICA

CNN GM tissues segmented and

combined with clinical

information to train the

classifier

Choi and

Jin [32]

MRI,

PET

AD: 139

CN: 182

MCI: 171

Whole Brain MM 3 D CNN Used Deep CNN to predict

future MCI patient outcome

Used limited

sized data

Liu et al.

[33]

MRI,

PET

AD: 93

CN: 100

MCI: 204

Whole brain 2D CNN, 3D CNN Used deep convolutional

learning and data-driven

approaches for

classification

Hyperparameters

not tuned

Shi et al.

[34]

MRI,

PET

AD: 51

CN: 52

MCI: 99

Whole brain MM-SDPN, SVM Performed multimodal

neuroimaging-based

diagnosis to train the

classifiers

CSF features not

considered in

neuroimaging

data

Korolev

et al.

[35]

MRI AD = 50

LCI = 43

EMCI = 77NC = 61

Whole brain 3 D CNN based on

ResNet and

VGGNet

Simplified the MRI

classification pipeline using

3D convolution

architectures

Preprocessed

images

increased

complexity of

convolution

layers

Liu et al.

[36]

MRI AD: 97

MCI: 234

CN: 128

Selected

Templates, GM

ISML, MVFE,

SCFE, SVM

Subclass clustering algorithm

and ensemble classification

done for feature learning

Multiple

templated not

registered in a

standard space
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3 Preliminaries and background

3.1 Convolution neural networks

Extraction of features, feature selection, and classification

are the three levels of classical machine learning algo-

rithms. In a conventional CNN, all of these phases are

integrated. There is no need to do the hand-operated feature

extraction method while utilizing CNN. Its initial layer

weights are used to extract the features, and iterative

learning further improves their values. The basic CNN [47]

can be made up of many components depending upon the

requirements of a particular problem. Some of the main

components used in this research, along with their mathe-

matical operations, are summarized in Table 3. A convo-

lution operation extracts features from an input image of

size m� n and output the activation map after applying the

kernel filter of size fm � fn, padding ‘p’ and stride ‘s’ The

output activation map is of the size am � an where:

am ¼ 1 þ m� fm þ 2p

s

� �
ð1Þ

an ¼ 1 þ n� fn þ 2p

s

� �
ð2Þ

If t kernel filters are used for the convolution operation,

then the final activation map will be of size am � an � t:

Table 1 (continued)

Author(s) Modality Sample size Region(s) selected Method(s) used Strength(s) Limitation(s)

Zu et al.

[37]

MRI,

PET

AD: 51

CN: 52

MCI: 99

GM, WM, CSF LAMTFS, SVM Relationship between

modalities and subjects

considered through

discriminative features

Multiclass

classification

not performed

Ortiz

et al.

[38]

MRI,

PET

AD: 70

CN: 68

MCI: 111

Regions of

Interest

DBN, SVM Ensembled different deep

belief networks trained on

various brain regions to

extract complete

information

Payan

et al.

[41]

MRI AD: 755

MCI: 755

CN: 755

Whole brain SPAE, 3-D CNN Used 3-D convolutions on the

whole brain with deep

neural networks

Convolution

layers not fine-

tuned

Table 2 Feature-based comparison of the proposed and existing AD classification models

Author(s) Parameters Image classification pairs

Pre-processing

done

Data

augmentation

Transfer

learning

Early stopping

mechanism

AD-CN-

MCI

AD-

CN

AD-

MCI

CN-

MCI

Yan et al. [24] 4 7 7 7 7 4 7 7

Zhu et al. [25] 7 7 7 7 7 4 7 4

Jain et al. [30] 4 7 4 7 4 4 4 4

Basheera et al.

[31]

4 7 7 7 4 4 4 4

Shi et al. [34] 4 7 7 7 7 4 7 4

Korolev et al.

[35]

7 7 4 7 4 7 7 7

Ortiz et al. [38] 4 7 7 7 7 4 4 4

Li et al. [39] 4 7 7 7 7 4 4 4

Liu et al. [40] 4 7 7 7 4 4 7 4

Payan et al. [41] 4 7 7 7 4 4 4 4

Proposed model 4 4 4 4 4 4 4 4
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3.2 GAN: data augmentation technique

The augmentation step [48] is a censorious technique for

addressing the overfitting problem. Due to the unavail-

ability of a significant number of annotated images, image

augmentation [49] plays a crucial role in classification

problems. GANs (generative adversarial networks) are

generative systems used to generate new artificial images

based on two neural networks: a generator and a

discriminator.

Here, the two neural networks as shown in Fig. 2

named: (i) generator creates new images from some

random noise. The goal is to produce fake data from the

input images, (ii) the discriminator uses the input images

from the generator and distinguishes between actual and

counterfeit data [50]. The following equations represent the

mathematical formulas used in GAN in two neural

networks:

At generator G:

Gloss ¼ log 1 � D G yð Þð Þð Þ ð3Þ

Total Cost ¼ 1

n

Xn
k¼1

log 1 � D G yk
� �� �� �

ð4Þ

At discriminator D:

Table 3 CNN components

Component Description Mathematical operations Definition of operation symbols

Input layer Extract the pixel values from the input image

This layer acts as the interface between external data

and internal computations

It doesn’t have any learnable parameters, i.e., it just

feeds the network with correctly shaped input image

Resizing and normalization –

Convolution

layer

Building blocks of CNN

They perform kernel convolution actions on the input

and enumerate the output of neurons

Extracts features using convolution operations

oct m; nð Þ ¼
P
r

P
u;v

ir u; vð Þ:kct x; yð Þ ir u; vð Þ ¼ Input array

kct x; yð Þ = Convolution kernel of

tth layer

r = channel index

oct m; nð Þ ¼ Output feature map

Pooling layer Gathers similar data near the receptive field and

produces the dominant response in this area

This layer is used to reduce space dimensions keeping

important information

It also helps in reducing overfitting by lessen the number

of parameters and computations in the network

Pc
t ¼ sp Ok

t

� �
Pc
t = Pooled feature map of tth

layer

sp = Pooling operation

Ok
t ¼ Output of convolution

Activation

function

Acts as a decision-maker

Aids in the recognition of complex patterns

It helps to introduce nonlinearity in the network

Ac
t ¼ sa Ok

t

� �
Ac
t = Transformed output of tth

layer

sp = Activation function

Ok
t ¼ Output of convolution

Batch

normalization

Optimization Method that handles the issues related to

covariance shift

Unifies the feature maps to zero mean and unit variance

Helps to normalize activations in the layers by

introducing regularization

Bc
t ¼

Ok
t �lmbffiffiffiffiffiffiffiffiffi
r2
mb
þe

p Bc
t = Normalized feature map

lmb, r2
mb = Mean and variance

of feature map for mini-batch

Ok
t ¼ Output of convolution

Dropout Introduces regularization to the network to enhance

generalization

Bypass some units or connections with a specific

probability at random

It helps to prevent overfitting in the network

Dc
t ¼ ir u; vð ÞMr u; vð Þ Dc

t = Output of dropout layer

Mr u; vð Þ = Binary mask

Dense/fully

connected

layer

Build a nonlinear collection of feature maps to classify

the data from the feature extraction stages

Analyze the output of all the layers before it

Fc
t ¼ W � ir u; vð Þ þ b Fc

t = Output of fully connected

layer

W = Weight matrix

b = Bias

Output layer Predict final class names according to scores

Uses activation function or neuron count to perform

predictions based on the task

Affine Transformation or

Softmax (for Classification)

–
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Dloss fake ¼ log 1 � D G yð Þð Þð Þ ð5Þ
Dloss real ¼ log D rð Þð Þ ð6Þ

Total Cost ¼ 1

n

Xn
k¼1

log D rk
� �� �

þ log 1 � D G yk
� �� �� �

ð7Þ

Here, y is the random noise image, r is the training

image, i.e., real image, G yð Þ is the generator’s output, i.e.,

fake image, D rð Þ is the discriminator’s output for real

image and D G yð Þð Þ is the discriminator’s output for a fake

image. In GAN, our goal is to minimize discriminator’s

cost and maximize the generator’s cost, which is done by

updating the cost function at every iteration and, in the end,

output the new images for which the optimal values of cost

functions are reached.

3.3 Alexnet: CNN model

AlexNet, a deep neural network developed by Alex Kriz-

hevsky and colleagues in 2012, was created to identify

images for the ImageNet LSVRC-2010 competition con-

taining 1000 classes to classify [51]. It was also compatible

with multiple GPUs. It is an eleven-layered network that

can accept an image of size 227 9 227 9 3 [52]. This

architecture has 650,000 nodes, 60 million parameters, and

630 million links. The 11 layers of Alexnet as shown in

Fig. 3 are: Convolution Layer (96, 11 9 11), Max Pooling

Layer (3 9 3), Convolution Layer (256, 5 9 5), Max

Pooling Layer (3 9 3), Convolution Layer (384, 3 9 3),

Convolution Layer (384, 3 9 3), Convolution Layer (256,

3 9 3), Max Pooling Layer (3 9 3), Fully Connected

Layer (4096), Fully Connected Layer (4096), Fully Con-

nected Layer (1000). As the pre-trained Alexnet Model is

problem-specific, there is a need to change some of the

layers of a pre-trained model to make it convenient

according to the problem at hand [23]. Furthermore, CNN

requires many MR images to generate and upgrade

weights. As a result, changing the weights in the pre-

trained model will produce favorable results and speed up

convergence [53–55]. The pre-trained Alexnet [56] model

built for the ImageNet dataset was used in this model. The

five convolution layers and pooling layers, i.e., all the

layers before the Flatten layer of pre-trained Alexnet, were

used to obtain MR images’ features. After the features are

extracted, these vectors are flattened and fed into the

modified (transferred) dense layers of Alexnet and, finally,

to the output layers, which are constructed as per the

number of classes to do classification. Furthermore, if there

is multiclass classification, the output layer has three neu-

rons with a softmax activation function, whereas, for bin-

ary classification, it has two neurons with a sigmoid

activation function.

3.4 LSTM: deep learning-based classification
model

LSTM networks [64] are a sort of recurrent neural network

that may learn order dependency in sequence prediction

tasks. Recurrent neural networks are neural networks that

repeat themselves. But, RNNs have difficulty with long-

term dependencies, which LSTM networks were designed

to address. LSTMs are distinguished from more traditional

feedforward neural networks by the presence of feedback

connections. At any one time, the output of an LSTM is

determined by three factors: The network’s present long-

term memory, often known as the cell state, the previous

concealed state is the output at a previous point in time, and

at the current time step, the supplied data. The one cell of

LSTM containing all the gates is shown in Fig. 4, and its

various mathematical operations are given in Eqs. 8–15:

ft ¼ sigm ðwfh � ht�1Þ þ ðwfh � xtÞ þ bf
� �� �

ð8Þ

Fig. 2 GAN architecture
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Cf
t ¼ Ct�1 � ft ð9Þ

it ¼ sigm wih � ht�1ð Þ þ wix � xtð Þ þ bi½ �ð Þ ð10Þ

gt ¼ tanh wgh � ht�1

� �
þ wgx � xt
� �

þ bg
� �� �

ð11Þ

Ci
t ¼ it � gt ð12Þ

Ct ¼ Ci
t þ Cf

t ð13Þ

ot ¼ sigm woh � ht�1ð Þ þ wox � xtð Þ þ bo½ �ð Þ ð14Þ
ht ¼ tanh Ctð Þ � ot ð15Þ

Here, ft; it; gt; ot; ht are the output of forget gate, input

gate, input node, output gate, and activation state and

Cf
T ;C

i
t;Ct is the cell state of these gates, respectively. Also,

w represents the corresponding weights of different gates,

and b represents their biases. The final output of the LSTM

layer having many LSTM cells is given in Eq. 16.

yk ¼
X
j

wk�1
ji relu hk�1

i

� �
þ bk�1

i

� �
ð16Þ

Here, w is the importance of ith node of layer n� 1 to jth

node of layer n and b depicts bias, y is the final outcome of

the LSTM layer.

4 The proposed framework

AD can be prevented and controlled more effectively if

diagnosed as early as possible. Therefore, this research

aims to develop a model for the timely identification and

classification of AD stages. The proposed framework,

along with its workflow and phases, is discussed in detail in

the following sub-sections. The architecture of the pro-

posed classification framework is shown in Fig. 5. Its five

phases are as follows:

Phase 1—Data Collection: The data used in this

research are downloaded from the Alzheimer’s disease

neuroimaging initiative (ADNI) website (http://adni.loni.

usc.edu/about/). It contains data of 200 patients, which is

separated into three classes, namely AD, MCI, and CN

where AD class contains 60 patients, MCI class has 73

patients, and CN class comprises 67 patients. The down-

loaded data were in T1-weighted MRI mode and used the

NIFTI standard to store medical images, from which var-

ious types of scans such as Coronal, Sagittal, and Axial are

extracted. The considered 200 patients lead to a total of

5980 2-D images of size (256 9 256) for all the three

Fig. 3 The Transfer Learned Alexnet Model Architecture

Fig. 4 The single LSTM cell
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classes. Furthermore, there are 1980 images in the AD

class, 1990 in the CN class, and 2010 in the MCI class.

Table 4 shows a basic description of the data, including the

number of individuals in different classes, the number of

males and females, their mean age with standard deviation,

etc.

Phase 2—Data Preprocessing: As mentioned in the

first step, the obtained data have a problem of unbalanced

classes. To handle this problem, we use two resampling

methods, i.e., oversampling and undersampling. Under-

sampling entails eliminating instances from the majority

class, whereas oversampling means coping instances for

the minority classes. Therefore, using these concepts,

oversampling is applied to AD and CN classes, and on the

other hand, undersampling in MCI class. As a conse-

quence, the data are evenly distributed, with 1400 images

in each group, for a total of 4200 images. Then, as a pre-

processing approach, data normalization is used to change

the span of pixel values or voxel intensity values. It

eliminates significant data variances or brings the data into

a particular range so that the value of one or more pixels

doesn’t get overpowered. There are many types of nor-

malization methods, such as zero mean and unit standard

deviation method, [0,1] rescaling, and [- 1,1] rescaling. In

this, two methods, namely zero mean and unit standard

deviation, are applied. A normalized image has pixel val-

ues with zero average, and their standard deviation is one.

After this, the data are finally converted to a.png format.

Fig. 5 The proposed Framework
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Phase 3—Data Augmentation: This is one of the

necessary steps in the classification framework due to the

scarcity of medical datasets and curse of dimensionality

problem, i.e., a vast count of features and less amount of

data, leading to overfitting of the classification model. A

data augmentation technique named GAN is used to enrich

the dataset to handle the above problems. Firstly, the

original dataset is jumbled and split into three sets named

training, validation and testing set according to 70:10:20

split using a random selection method. As a result, the

training set has 4200 images, the validation dataset con-

tains 600 images and the testing dataset has 1200 images.

Then, the training dataset, after applying data augmentation

techniques (GAN), grows to a total of 7500 images in all

the three classes. Table 5 summarizes the statistics for

training, validation, and testing data for multiclass and

binary classifications before and after applying GAN.

Furthermore, Fig. 6 shows the sample of a 2-dimensional

scan for each class.

Phase 4—Feature Extraction and Classification: This

step entails multiclass classification of various stages of

AD, namely AD, MCI, and CN. In addition, binary clas-

sification between each pair of the classes, i.e., AD vs MCI,

AD vs CN, CN vs MCI, is also performed. For this, a

comparative analysis was done for selection of best model

for feature extraction and in the next step, for training the

MRI dataset as follows:

4.1 Model selection for feature extraction

Based on the ImageNet Dataset [57], various deep learning

methods such as Alexnet, ResNet, and Inception relied on

the transfer learning methodology can be used for image

classification. The networks used in the current study are

selected based on their respective size/precision ratio and

previous applications in the field of AD research [58, 59].

These models are used for feature extraction by taking the

inbuilt convolution layers of the models. Then, these layers

can further be feed into the transfer learned output layers

for classification. The appropriate framework out of five

frequently used pre-trained deep learning models named

Alexnet [51], VGG 16 [30], VGG 19 [60], Resnet-50 [35]

and Inception V3 [61] has been decided by conducting the

experimental analysis of the dataset.

4.2 Model selection for training using MRI
dataset

After applying and selecting the appropriate model, i.e.,

Alexnet out of all the pre-trained models analyzed in the

aforementioned step, further comparative analysis was

done to extract the most suitable model for training our

image dataset. Based on the existing literature in the

diverse fields and applications of image classification such

as crop classifications [62], tissue images classification

[63], coronavirus chest image classification [64], CO2

welding image classification [65] various models such as

LSTM, MLP, and transfer learned Alexnet and their hybrid

method as used in various studies [65–69] was proposed

Table 4 Description of the

dataset
AD MCI CN

Total number of patients 60 73 67

Male/Female 32/28 38/35 36/31

Age (Mean ± SD) 76.20 ± 7.35 75.25 ± 6.98 75.38 ± 5.01

MMSE (Mean ± SD) 24.83 ± 3.37 27.10 ± 2.2 28.93 ± 1.2

CDR (Mean ± SD) 0.7 ± 0.21 0.5 ± 0.17 0 ± 0

MMSE Mini-mental state examination, CDR clinical dementia rating

Table 5 Description of training,

validation, and testing data
Category Class Training data size Validation data size Testing data size Total

Without GAN AD–CN–MCI 4200 600 1200 6000

AD–CN 2800 400 800 4000

AD–MCI 2800 400 800 4000

CN–MCI 2800 400 800 4000

With GAN AD–CN–MCI 7500 600 1200 9300

AD–CN 5000 400 800 6200

AD–MCI 5000 400 800 6200

CN–MCI 5000 400 800 6200
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and analyzed to select the best model among all based on

the experimental results.

After all the comparative analysis in above two steps,

the current research presents a model relied on transfer

learned deep learning model, which combines transfer

learned Alexnet and LSTM in a single model. It has

already been demonstrated that providing relevant features

improves the performance of LSTM [64]. Moreover, CNN

architecture named Alexnet is well known for its capability

to get valuable features from the dataset if the model is

reformed corresponding to the necessities of the classifi-

cation model. As a result, an algorithm that combines CNN

and LSTM was suggested in the literature [65–69], and it

has produced promising results in a number of disciplines,

including text analysis, voice recognition, rainfall predic-

tion, gesture identification, and machine health status pre-

diction. The transfer learned CNN (Alexnet)-LSTM

technique is used in this work to predict AD class, either in

binary or multiclass classification. Firstly, the relevant

features from the MR images are extracted using the

Alexnet model’s convolution layers. The output of the pre-

trained Alexnet’s convolution, pooling, and flattening layer

is then used as the input layer to the LSTM layer, which

models the temporal information to forecast the stage of

AD. Let XT ¼ X1;X2; . . .. . .Xn½ � be the input number of

images for Alexnet. Then the model’s output is passed to

LSTM cells, where each cell consists of various gate units

such as forget gate, input gate, input node, and output gate.

After the LSTM layer, the last but one layer is a fully

connected layer that receives feature vector

hT ¼ h1; h2; . . .::; hn½ �. In the end, the output layer is con-

structed as per the number of classes, i.e., two neurons with

sigmoid activation function for binary classification and

three neurons with softmax activation function for multi-

class classification. Figure 7 depicts the proposed algo-

rithm’s complete architecture along with the parameter

settings and model tuning hyperparameters.

Phase 5—Testing and Performance Evaluation: The

trained model is assessed using test data in this step, and

several performance evaluation measures, including accu-

racy, precision, recall, and others, are calculated. The

proposed and existing models are compared based on these

performance evaluation parameters.

4.3 Methodology of proposed framework

The model construction in this work was done in Python

(3.7.4) with several deep learning packages such as Keras

(2.3.0-tf), TensorFlow (2.2.0), and Scikit Learn (0.22.2).

The entire implementation was completed online using

Google Colab’s GPU. Further, Fig. 8 shows a flowchart of

the training process for both classification models. As seen

in the figure, the MRI data are taken from the ADNI

website, in which the brain images are in NIFTI format.

According to the requirement, these images can’t be

directly used as input images, so these are converted into

the.png format. To handle the class imbalance problem,

resampling methods were applied. Then, the preprocessed

data are grouped into training, validation, and testing

dataset on the basis of 70:10:20 split. Further, to address

the overfitting problem, a data augmentation technique

(GAN) was used on the training subset so that there is an

appropriate count of images to learn the classifier. Finally,

the resizing was done to make the image dataset of the

same dimension as needed by the Alexnet model. In the

next step, the training data were fed into the convolution

layers of the pre-trained Alexnet model for feature

extraction. Then these extracted features are flattened and

fed into the LSTM layer, from which the final output of

LSTM is passed to the transfer learned dense layers opti-

mized on the basis of grid search algorithm so that the best

hyperparameters such as learning rate, activation function,

and number of neurons can be found. Finally, the opti-

mized features were passed to the output layer which was

having 3 neurons for multiclass classification and 2 neurons

Fig. 6 Sample Images: AD Stage, CN Stage, and MCI Stage (from left to right)
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for binary classifications. The validation data are given to

the trained model at the end of the whole process. The four

parameters are calculated: validation accuracy, validation

loss, training accuracy, and training loss. If the validation

loss computed for nth iteration is smaller than the subse-

quent five iterations, then the model is stopped, and the

weights of nth iteration is restored for testing. This step

further solves the problem of overfitting in the classifica-

tion model. Finally, testing data are used to validate the

optimum model with restored weights.

5 Results and discussion

This research aims to predict and classify the AD stages

from medical images of the brain and observe the feasi-

bility of the proposed framework in predicting the AD

stage. This section discusses the obtained results

thoroughly.

5.1 Performance evaluation parameters
for classification model

In order to put the model for the actual implementation, it

is required to evaluate its performance. It comprises uti-

lizing performance values to compare estimated model

values to actual values to assess how well the proposed

model can mimic the actual output. The proposed frame-

work is trained to do binary class and multiclass classifi-

cation of three stages of AD. The observed/actual result

(AD stage) are compared to the predicted outcome using

various performance metrics named confusion matrix,

accuracy, loss, sensitivity/recall, precision, F1-score,

receiver operating characteristics (ROC) curve, area under

curve (AUC), true negative rate (specificity), negative

predicted value (NPV). Further, Two-Proportions Test is

also used to test the classification ability of the proposed

framework. The summary of the performance metrics used

in the current study is discussed here.

Confusion Matrix: In this matrix, the summary of the

classification model’s prediction outcomes is represented.

The number of right and wrong predictions are gathered

and broken down by class using count values. It gives us

the TP, TN, FN, and FP values where:

TP (True Positive): both the actual and expected

outcomes are correct.

TN (True Negative): both the actual and expected

outcomes are false.

FN (False Negative): actual result is true while the

predicted is false.

FP (False Positive): actual result is false while the

predicted is correct.

Accuracy: It is expounded as the number of accurate

labels to the total number of labels represented by the

formula as:

Acc ¼ TP + TN

TP + TN + FN + FP
ð17Þ

Loss: This is elucidated as the prediction error of the

model calculated as Eqs. (18) and (19). For binary classi-

fication, it is called binary_crossentropy, whereas, for

multiclass classification, it is called

categorical_crossentropy.

lossbinary a; pð Þ ¼ �ða log pþ 1 � að Þ log 1 � pð ÞÞ ð18Þ

lossmulticlass a; pð Þ ¼ �
XN
n¼1

ak;n log pk;n ð19Þ

Sensitivity/recall/true positive rate: It is calculated using

Eq. (20) by dividing the number of TPs by the total of TPs

and FNs.

Fig. 7 The multiclass classification model used in the study
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Recall ¼ TP

TP + FN
ð20Þ

Precision: It is defined as the percentage of relevant

results among the list of all returned search results repre-

sented as:

Precision ¼ TP

TP þ FP
ð21Þ

F1-score: Equation (22) represents the harmonic mean

of precision and recall, called F1-Score. The better the

model, the higher the metric’s value.

F1-Score ¼ 2 � Precision � Recall

Precision þ Recall
ð22Þ

ROC curve and AUC: A graph that shows how well a

classification model performs across all categorization

levels, which is favorable with high value.

Specificity/true negative rate: It is interpreted as the

count of correct negative predictions to the total number of

negative predictions represented as:

Specificty ¼ TN

TN þ FP
ð23Þ

Negative predicted value: It can be defined as the per-

centage of anticipated negatives that turn out to be true

negatives, represented by the following formula:

NPV ¼ TN

TN þ FN
ð24Þ

Fig. 8 Flowchart of the

Proposed Methodology
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5.1.1 Two proportions test

The performance of two models can be compared using the

common evaluation measures like accuracy, precision,

recall, F1-score, etc. These criteria, however, are unable to

distinguish between two predictive models’ predictions

that differ significantly. A statistical inference method

known as hypothesis testing uses confidence intervals to

assess the significant difference between the two predicted

models. In the current study, two proportions test [70] is

used to evaluate the effectiveness of the proposed deep

learning-based model.

Let p1 and p2 denote the accuracies for classifiers 1 and

2, respectively, and N be the number of samples. Further,

x1 and x2 denote the correctly classified number of samples

in classifiers 1 and 2, respectively. Then,

p1 ¼ x1

N
; p2 ¼ x2

N
ð25Þ

In this study, to check the performance comparison of

two models, equal accuracy hypothesis is tested. Here, the

null hypothesis H0ð Þ states that the prediction accuracy of

the two models is equal, whereas the alternate hypothesis

H1ð Þ states that the prediction accuracy of the models

varies; which are given as:

H0 : p1 ¼ p2

H1 : p1 6¼ p2

ð26Þ

Hence, the test statistic is formulated as:

Z ¼ p1 � p2ffiffiffiffiffiffiffiffiffiffiffiffi
2p 1�pð Þ

N

q ð27Þ

where

p ¼ ðx1 þ x2Þ
2N

ð28Þ

The null hypothesis for the current study will be rejected

if the test score is not in the range of [- 1.645,1.645] at

95% confidence level.

5.2 Comparative analysis of pre-trained deep
learning models for feature extraction

The performance of five frequently used pre-trained deep

learning models named Alexnet, VGG 16, VGG 19,

ResNet-50 and Inception V3 for multiclass classification,

i.e., AD–CN–MCI as well as for binary classification, i.e.,

AD vs CN, AD vs MCI and CN vs MCI, respectively, on

the original dataset without GAN implementation is ana-

lyzed and compared in this section. Moreover, the corre-

sponding line plots of the models for different performance

metrices such as training loss, training accuracy, validation

loss, and validation accuracy are depicted in Fig. 9 for

multiclass and binary class classifications. From the plots,

it can be seen that the best performance was given by

Alexnet Model and the worst performance for the current

scenario was given by ResNet-50. Also, the results are in

accordance with other studies [59] which justifies the

superior performance of Alexnet as compared to other

models. In addition, it can be seen that the models get

overfitted due to large difference in training, validation and

testing accuracy which is solved further by doing data

augmentation, i.e., applying GAN technique on the dataset.

5.3 Comparative analysis of deep learning
models for classification using training set

The performance of deep learning models named Transfer

Learned Alexnet, MLP, LSTM, and their hybrid methods

named Alexnet_MLP and Alexnet_LSTM (proposed

model) for training using MRI dataset for multiclass clas-

sification, i.e., AD–CN–MCI and for binary classification,

i.e., AD vs CN, AD vs MCI and CN vs MCI, respectively,

are further analyzed on the augmented dataset. Moreover,

the corresponding line plots of the models for different

performance metrices such as training loss, training accu-

racy, validation loss, validation accuracy are depicted in

Fig. 10 for multiclass and binary class classifications. From

the plots, it can be seen that the best performance was

given by Alexnet_LSTM and the worst performance for the

current scenario was given by LSTM. Also, the results are

in accordance with other studies [64, 65] which justifies the

poor performance of LSTM when used alone for image

classification without feature extraction as compared to

other models. In addition, it can be seen that the models do

not get overfitted as there is small difference in training,

validation and testing accuracy after data augmentation on

the dataset.

5.4 Performance evaluation of the proposed
model for training set

The proposed model’s performance was compared on the

basis of four parameters, i.e., training loss, training accu-

racy, validation loss and validation accuracy. Figure 11

represents the corresponding graphs of the above parame-

ters for the proposed model in multiclass classification,

Fig. 12 for binary class classification (AD vs CN), Fig. 13

for AD vs MCI, and Fig. 14 for MCI vs CN. The graphs

show that the appropriate epochs to train are 17 for mul-

ticlass classification, 12 for AD vs CN, 10 for AD vs MCI,

and 12 for CN vs MCI for the proposed model. Further,

Table 6 demonstrates the proposed model’s performance

for multiclass and binary class classification in terms of

accuracy and loss parameters for the training and validation
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dataset. As evident from the table, it can be said that the

proposed model performs superior without getting over-

learned as the difference in the training and validation

parameters are comparable in some cases and similar in

others, so the models don’t have an overfitting problem.

Fig. 9 Line plots for comparison of deep learning pre-trained models on the basis of a Training loss, b training accuracy, c validation loss,

d validation accuracy, e testing accuracy, f F1-score
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Fig. 10 Line plots for comparison of deep learning classification models on the basis of a Training loss, b training accuracy, c validation loss,

d validation accuracy, e testing accuracy, f F1-score
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5.5 Performance evaluation of the proposed
model for testing set

After the proposed model is trained for the required epochs

for different categories, the model is evaluated and tested

to get the final performance parameters. Based on these

parameters, the performance of the models is compared

with existing studies and within themselves, i.e., without

applying data augmentation technique and after applying

data augmentation technique named GAN. Firstly, the

foremost parameter of the classification problem, i.e., the

confusion matrix, is constructed for the proposed model for

Fig. 11 Plots of training and validation losses and accuracy for proposed model: AD–CN–MCI

Fig. 12 Plots of training and validation losses and accuracy for proposed model: AD–CN

Fig. 13 Plots of training and validation losses and accuracy for proposed model: AD–MCI
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both multiclass and binary classification for the augmented

dataset, as shown in Fig. 15. This matrix provides

approximate values for true positives, true negatives, false

positives, and false negatives, from which various addi-

tional metrics like precision and recall can be calculated.

Based on the confusion matrices constructed for the

models, the performance metrics like precision and recall,

their macroaverage, microaverage, etc., after the appro-

priate number of epochs for all the combinations are shown

in Table 15 for both non-augmented as well as augmented

Fig. 14 Plots of training and validation losses and accuracy for proposed model: CN–MCI

Table 6 Training and validation

dataset accuracy and loss values

(best) for proposed model

Model Training loss Training accuracy Validation loss Validation accuracy

AD–CN–MCI 0.10685 0.96064 0.16875 0.94583

AD–CN 0.06846 0.96910 0.06686 0.97188

AD–MCI 0.10021 0.95243 0.07270 0.93750

CN–MCI 0.09360 0.95277 0.11344 0.94687

Fig. 15 Confusion matrix for

proposed model: a AD–CN–

MCI, b AD–CN, c AD–MCI,

d CN–MCI
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dataset to get the better insight to the results. Further,

Fig. 16 demonstrates the bar plots of the proposed model

for both the datasets to provide the comparison of the

results. Also, it can be seen from Table 7 and Fig. 16 that

the classification results get improvised by approximately

3–4% after applying the data augmentation on the original

dataset.

After the above comparison of the results, another

parameter, i.e., the ROC curve, made between true positive

rate (TPR) and false positive rate (FPR), is also plotted to

evaluate the classification model’s performance. The curve

tells us the idea of our model performance in terms of

training and testing. The higher the AUC score, the more

excellent our model is. Figure 17 shows the ROC curves in

Fig. 16 Bar plots for performance comparison of proposed model for without GAN and With GAN dataset showing: a Accuracy, b sensitivity,

c specificity, d precision, e F1-score, f NPV
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multiclass and binary image classification for the proposed

model on the augmented dataset. As seen from the curves,

it can be said that the proposed model is good enough to

classify as AUC values are greater than 0.95.

Table 7 Performance

evaluation of proposed model

for augmented and non-

augmented dataset

Performance metric Category AD–CN– MCI AD–CN AD–MCI CN–MCI

Accuracy Without GAN 0.9427 0.9717 0.9408 0.9683

With GAN 0.9683 0.9813 0.9938 0.9937

Sensitivity Without GAN 0.9426 0.9708 0.9408 0.9684

With GAN 0.9685 0.9812 0.9938 0.9937

Specificity Without GAN 0.9713 0.9708 0.9408 0.9684

With GAN 0.9842 0.9812 0.9938 0.9937

Precision Without GAN 0.9429 0.9725 0.9413 0.9684

With GAN 0.9687 0.9815 0.9939 0.9937

F1-Score Without GAN 0.9428 0.9716 0.9411 0.9684

With GAN 0.9686 0.9813 0.9938 0.9937

NPV Without GAN 0.9714 0.9724 0.9413 0.9684

With GAN 0.9842 0.9815 0.9939 0.9937

Fig. 17 ROC curves for proposed model: a AD–CN–MCI, b AD–CN, c AD–MCI, d CN–MCI
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5.6 Performance comparison of the proposed
model using two-proportions test

The performance of different deep learning models is

compared using the common evaluation measures like

accuracy, precision, recall, F1-score, etc. Further, to ana-

lyze the significant difference between the accuracies of the

proposed model with the other deep learning classification

models, a statistical test named two proportions test had

been used in the current study. The heat maps of test

statistic value for each pair of models used in the study had

been shown in Fig. 18a–d for multiclass (AD–CN–MCI)

and binary classifications (AD–CN, AD–MCI, CN–MCI),

respectively. It is observed from the heat maps that the

pairs Alexnet MLP;MLPf g and Alexnet MLP; LSTMf g
for classification AD–MCI have test statistic value in the

range of [- 1.645, 1.645]. Thus, for these pairs, the null

hypothesis cannot be rejected, i.e., no model is superior to

each other. Similarly, the test statistic value for the pair

Alexnet MLP;Alexnetf g for CN–MCI classification and

self-pairs for all the models for all classifications have the

value in the range of [- 1.645, 1.645] and the null

hypothesis for these pairs cannot be rejected. However, all

the other pairs involved in the study have test statistic value

not in the above range that shows the significant difference

in their prediction accuracies. Further, the overall results of

two proportions test demonstrate that the prediction results

obtained from the proposed framework differ significantly

from other deep learning classification models and also,

with the positive values which adds on their higher per-

formance as compared to other models.

Fig. 18 Two-proportions test: test statistic value for a AD–CN–MCI, b AD–CN, c AD–MCI, d CN–MCI
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5.7 Comparison of the proposed and existing
models in terms of performance

The transfer leaned deep learning model for multiclass and

binary classification is proposed in the current study.

Table 8 compares the suggested model’s performance in

terms of accuracy to that of existing state-of-the-art mod-

els. The table demonstrates that the proposed framework

has achieved the remarkable accuracy of 96.83% for

multiclass image classification of AD stages (AD, MCI,

CN) in comparison with other existing models. Moreover,

the outcomes of the proposed model are comparable with

that of Jain et al. [30], but the dataset used in the latter

study is minimal, which may lead to an overlearned model.

As shown, the suggested model achieves promising accu-

racy with data augmentation for binary and multiclass

classification, which further solves the problem of overfit-

ting compared to previous models. Moreover, Fig. 19

compares the proposed and existing models for multiclass

medical image classification as well as for binary classifi-

cation: AD vs. CN, AD vs. MCI, and CN vs. MCI. Com-

pared to other models, it is clear from Table 8 and Fig. 19

that the suggested model outperforms the existing models.

5.8 Discussion

This study uses the MR Images dataset from the ADNI

website to assess the capacity of a deep neural network to

perform multiclass and binary class classification. The

framework used in the study is built using CNN models

which integrates these models for feature extraction and

classification in a single architecture. Further, to solve the

problem of overfitting, data augmentation technique named

GAN has applied on the limited dataset. The proposed

model uses the various deep learning algorithms such as

Alexnet, VGG 16, and VGG 19 and perform the analysis

on them to select the best model according to our dataset

for feature extraction and Alexnet had outperformed all the

other deep learning algorithms. Further, Alexnet with other

frequent deep leaning algorithms such as MLP, LSTM and

their fusion with Alexnet are considered and compared to

finally select the best model for our study that provide the

highest results for multiclass and binary class classifica-

tions. Out of all the comparisons, Alexnet with LSTM

performed best and this algorithm had used for our pro-

posed study. In addition, results using GAN and without

using GAN are compared to see the effect of data aug-

mentation technique which leads to solve the problem of

overfitting. In the nutshell, this study can be able to

demonstrate that using fusion of deep learning models

along with data augmentation techniques can be suit-

able for achieving the high performance when compared

with conventional techniques for multiclass and binary

class classifications while handling the problem of over-

fitting; which is the main drawback of deep learning

algorithms. Another significant strength is the accuracy,

robustness, and validity of the proposed study in predicting

the various stages of AD compared to conventional algo-

rithms, as mentioned in the results section. However, one

of the study’s weaknesses is that it only takes the MR

images for multiclass and binary image classifications. As a

result, the investigation of PET, DTI, and clinical features

can be conducted to notice the generalized conclusion of

the performance of the presented algorithms. Further, other

data augmentation techniques such as DCGAN and stacked

GAN can be implemented to supplement the dataset which

may improve classification results.

Table 8 Accuracy comparison

of proposed and existing similar

models on ADNI (MRI) dataset

Research paper Classification accuracy (%)

AD–CN AD–MCI CN–MCI AD–CN–MCI

Yan et al. [24] 98.85 – – –

Zhu et al. [25] 98 – 91.9 –

Li et al. [26] 93.2 – 80.4 –

Divya et al. [27] 96.82 90.40 89.39 –

Kang et al. [28] 90.36 77.19 72.36 –

Feng et al. [29] 94.21 90.03 84.64 –

Jain et al. [30] 99.14 99.30 99.22 95.73

Basheera et al. [31] 100 96.2 98 86.7

Liu et al. [33] 93.26 – 74.34 –

Shi et al. [34] 97.13 – 87.24 –

Korolev et al. [35] – – – 88

Payan et al. [41] 95.39 86.8 92.1 89.47

Proposed model 98.13 99.38 99.37 96.83
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6 Conclusion

The ability of a deep neural network to do multiclass and

binary class classification is evaluated in this study utiliz-

ing MR images dataset from the ADNI website. The pro-

posed framework in this research is used for AD

classification and detection. The suggested framework is

built using CNN models that use deep learning to classify

three different stages of AD. The proposed model uses the

classification algorithm based on a transfer learned deep

learning model on pre-trained Alexnet to extract MR image

features from convolution layers of pre-trained Alexnet.

These features are then fed into the LSTM layers, transfer

learned fully connected layers, and finally, to the output

layer to do classification. Furthermore, the data augmen-

tation technique (GAN) and early stopping method can get

the appropriate number of epochs to prevent the model

from getting overtrained and achieve reasonable accuracy.

Moreover, the proposed model, with an accuracy of

96.83%, surpasses the other algorithms proposed in the

literature. Experiments demonstrate that the proposed

design is a suitable, simple structure that reduces

overfitting.

In the future, it is intended to test the achievement of

other pre-trained models, such as MobileNet and Shuf-

fleNet, for multiclass AD stage classifications. Further,

additional data augmentation techniques such as DCGAN

Fig. 19 Comparison of top 5 models in terms of accuracy for: a AD–CN–MCI, b AD–CN, c AD–MCI, d CN–MCI
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and stacked GAN can also be used to supplement the

dataset, which may improve the results. In addition, MRI

segmentation will be used to highlight Alzheimer’s char-

acteristics before AD classification.
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Mekyska J, Smékal Z (2020) Alzheimer’s disease and automatic

speech analysis: a review. Expert Syst Appl 150:113213

12. Irankhah E (2020) Evaluation of early detection methods for

Alzheimer’s disease. Bioprocess Eng 4(1):17–22

13. He Y et al (2007) Regional coherence changes in the early stages

of Alzheimer’s disease: a combined structural and resting-state

functional MRI study. Neuroimage 35(2):488–500

14. Vemuri P, Jones DT, Jack CR (2012) Resting-state functional

MRI in Alzheimer’s disease. Alzheimer’s Res Therapy 4(1):1–9

15. Bron EE, Smits M, Van Der Flier WM, Vrenken H, Barkhof F,

Scheltens P, Initiative ADN (2015) Standardized evaluation of

algorithms for computer-aided diagnosis of Dementia based on

structural MRI: the CAD Dementia challenge. Neuroimage

111:562–579

16. Allioui H, Sadgal M, Elfazziki A (2020) Utilization of a con-

volutional method for Alzheimer disease diagnosis. Mach Vis

Appl 31:25

17. Segato A, Marzullo A, Calimeri F, De Momi E (2020) Artificial

intelligence for brain diseases: a systematic review. APL Bioeng

4(4):041503

18. Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation

and classification of the human brain using deep learning for

diagnosis of Alzheimer’s disease: a survey. Sensors (Switzerland)

20(11):1–31

19. Noor MBT, Zenia NZ, Kaiser MS, Al Mamun S, Mahmud M

(2020) Application of deep learning in detecting neurological

disorders from magnetic resonance images: a survey on the

detection of Alzheimer’s disease. Parkinson’s disease, and

schizophrenia. Brain Informatics 7(1):11

20. Li F, Tran L, Thung K-H, Ji S, Shen D, Li J (2015) A robust deep

model for improved classification of AD/MCI patients. IEEE J

Biomed Heal informatics 19(5):1610–1616

21. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E.

(2018) Deep learning for computer vision: a brief review. Com-

putational Intell Neurosci, pp 1–13.

22. Goyal P., Rani R., & Singh K. (2021) State-of-the-art machine

learning techniques for diagnosis of Alzheimer’s disease from

MR-images: a systematic review. Arch Comput Methods Eng,

1–44.

23. Maqsood M, Nazir F, Khan U, Aadil F, Jamal H, Mehmood I,

Song OY (2019) Transfer learning assisted classification and

detection of Alzheimer’s disease stages using 3D MRI scans.

Sensors 19(11):2645

24. Yan B, Li Y, Li L, Yang X, Li TQ, Yang G, Jiang M (2022)

Quantifying the impact of pyramid squeeze attention mechanism

and filtering approaches on Alzheimer’s disease classification.

Comput Biol Med 148:105944

25. Zhu J, Tan Y, Lin R et al (2022) Efficient self-attention mecha-

nism and structural distilling model for Alzheimer’s disease

diagnosis. Comput Biol Med 147:105737

26. Li J, Wei Y, Wang C, Hu Q, Liu Y, Xu L (2022) 3-D CNN-based

multichannel contrastive learning for Alzheimer’s disease auto-

matic diagnosis. IEEE Trans Instrum Meas 71:1–11

27. Divya R, Shantha Selva Kumari R, Alzheimer’s Disease Neu-

roimaging Initiative (2021) Genetic algorithm with logistic

regression feature selection for Alzheimer’s disease classification.

Neural Comput Appl 33(14):8435–8444

28. Kang W, Lin L, Zhang B, Shen X, Wu S, Initiative ADN (2021)

Multi-model and multi-slice ensemble learning architecture based

on 2D convolutional neural networks for Alzheimer’s disease

diagnosis. Comput Biol Med 136:104678

29. Feng J, Zhang SW, Chen L, Xia J, Alzheimer’s Disease Neu-

roimaging Initiative (2021) Alzheimer’s disease classification

using features extracted from nonsubsampled contourlet subband-

based individual networks. Neurocomputing 421:260–272

30. Jain R, Jain N, Aggarwal A, Hemanth DJ (2019) Convolutional

neural network-based Alzheimer’s disease classification from

magnetic resonance brain images. Cogn Syst Res 57:147–159

31. Basheera S, Ram MS (2019) Convolution neural network-based

Alzheimer’s disease classification using hybrid enhanced inde-

pendent component analysis based segmented gray matter of T2

weighted magnetic resonance imaging with clinical valuation.

Alzheimer’s Dementia: Transl Res Clin Intervent 5(1):974–986

32. Choi H, Jin KH (2018) Predicting cognitive decline with deep

learning of brain metabolism and Amyloid imaging. Behav Brain

Res 344:103–109

3800 Neural Computing and Applications (2024) 36:3777–3801

123

http://adni.loni.usc.edu/about/


33. Liu M, Cheng D, Wang K, Wang Y (2018) Multi-modality cas-

caded convolutional neural networks for Alzheimer’s disease

diagnosis. Neuroinformatics, pp 1–14.

34. Shi J, Zheng X, Li Y, Zhang Q, Ying S (2018) Multimodal

neuroimaging feature learning with multimodal stacked deep

polynomial networks for diagnosis of Alzheimer’s disease. IEEE

J Biomed Health Inform 22(1):173–183

35. Korolev S, Safiullin A, Belyaev M, Dodonova Y (2017) Residual

and plain convolutional neural networks for 3d brain MRI clas-

sification. In: IEEE 14th International Symposium Biomedical

Imaging, pp 835–838.

36. Liu M, Zhang D, Adeli E, Shen D (2016) Inherent structure-based

Multiview learning with multi-template feature representation for

Alzheimer’s disease diagnosis. IEEE Trans Biomed Eng

63(7):1473–1482

37. Zu C, Jie B, Liu M, Chen S, Shen D, Zhang D, the ADNI (2016)

Label-aligned multitask feature learning for multimodal classifi-

cation of Alzheimer’s disease and mild cognitive impairment.

Brain Imaging Behavior 10(4):1148–1159

38. Ortiz A, Munilla J, Gorriz JM, Ramirez J (2016) Ensembles of

deep learning architectures for the early diagnosis of the Alz-

heimer’s disease. Int J Neural Syst 26(07):1650025

39. Li F, Tran L, Thung K-H, Ji S, Shen D, Li J (2015) A robust deep

model for improved classification of AD/MCI patients. IEEE J

Biomed Health Inform 19(5):1610–1616

40. Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, Feng D, Fulham

MJ (2015) Multimodal neuroimaging feature learning for multi-

class diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng

62(4):1132–1140

41. Payan A., Montana G (2015) Predicting Alzheimer’s disease: a

neuroimaging study with 3D convolutional neural networks,

arXiv Prepr. arxiv.org/abs/1502.02506.

42. Suk H-I, Shen D (2013) Deep learning-based feature represen-

tation for AD/MCI classification. In: International conference on

medical image computing and computer-assisted intervention,

pp 583–590.

43. Suk HI, Lee SW, Shen D, ADNI (2015) Deep sparse multitask

learning for feature selection in Alzheimer’s disease diagnosis.

Brain Struct Funct 221:1–19

44. Zhu X, Suk H-I, Shen D (2014) A novel matrix-similarity based

loss function for joint regression and classification in AD diag-

nosis. Neuroimage 100:91–105

45. Suk H-I, Lee S-W, Shen D, ADNI (2014) Hierarchical feature

representation and multimodal fusion with deep learning for AD/

MCI diagnosis. Neuroimage 101:569–582

46. Ebrahimighahnavieh MA, Luo S, Chiong R (2020) Deep learning

to detect Alzheimer’s disease from neuroimaging: a systematic

literature review. Comput Methods Programs Biomed

187:105242

47. Yamashita R, Nishio M (2018) Convolutional neural networks:

an overview and application in radiology. Insights Imaging

9:611–629

48. Shams S, Platania R et al (2018) Deep generative breast cancer

screening and diagnosis. Springer Nature, Berlin

49. Wang D, Lu Z et al (2019) Cellular structure image classification

with small targeted training samples. IEEE Access

7:148967–148974

50. Weng Y, Zhou H (2019) Data augmentation computing model

based on generative adversarial network. IEEE Access.

51. Kokil P, Sudharson S (2019) Automatic detection of renal

abnormalities by Off-the-shelf CNN features. IETE J Educ

60:14–23

52. Saranyaraj D, Manikandan M, Maheswari S (2018) A deep

convolutional neural network for the early detection of breast

carcinoma concerning hyperparameter tuning. Multimedia Tools

Appl 79(15):11013–11038

53. Talo M, Baloglu UV, Yıldırım O, Acharya UR (2018) Applica-

tion of deep transfer learning for automated brain abnormality

classification using MR Images. Cogn Syst Res 54:176–188

54. Kaur T, Gandhi TK (2020) Deep convolutional neural networks

with transfer learning for automated brain image classification.

Mach Vis Appl 31(3):1–16

55. Wang SH, Xie S et al (2019) Alcoholism identification based on

an AlexNet transfer learning model. Front Psych 10:205

56. Sakr GE, Mokbel M et al (2016) Comparing deep learning and

support vector machines for autonomous waste sorting. In: IEEE

international multidisciplinary conference on engineering tech-

nology, pp 207–212.

57. Deng J, Dong W et al (2009) Imagenet: A large-scale hierarchical

image database. In 2009 IEEE conference on computer vision

and pattern recognition, pp 248–255.

58. Shin HC, Roth HR et al (2016) Deep convolutional neural net-

works for computer-aided detection: CNN architectures, dataset

characteristics and transfer learning. IEEE Trans Med Imaging

35(5):1285–1298

59. Loddo A, Buttau S, Ruberto CD (2022) Deep learning based

pipelines for Alzheimer’s disease diagnosis: a comparative study

and a novel deep-ensemble method. Comput Biol Med 141:105032

60. Mateen M, Wen J, Song S, Huang Z (2018) Fundus image

classification using VGG-19 architecture with PCA and SVD.

Symmetry 11(1):1

61. Ghaffari H, Tavakoli H, Pirzad Jahromi G (2022) Deep transfer

learning–based fully automated detection and classification of

Alzheimer’s disease on brain MRI. Brit J Radiol, 20211253.

62. Foody GM (2004) Supervised image classification by MLP and

RBF neural networks with and without an exhaustively defined

set of classes. Int J Remote Sens 25(15):3091–3104

63. Lai Z, Deng H (2018) Medical image classification based on deep

features extracted by deep model and statistic feature fusion with

multilayer perceptron. Comput Intell Neurosci 2018:2061516

64. Naeem H, Bin-Salem AA (2021) A CNN-LSTM network with

multi-level feature extraction-based approach for automated

detection of coronavirus from CT scan and X-ray images. Appl

Soft Comput 113:107918

65. Liu T, Bao J, Wang J, Zhang Y (2018) A hybrid CNN–LSTM

algorithm for online defect recognition of CO2 welding. Sensors

18(12):4369

66. Tsironi E, Barros P, Weber C, Wermter S (2017) An analysis of

convolutional long short-term memory recurrent neural networks

for gesture recognition. Neurocomputing 268:76–86

67. Oehmcke S, Zielinski O, Kramer O (2018) Input quality aware

convolutional LSTM networks for virtual marine sensors. Neu-

rocomputing 275:2603–2615

68. Zhao R, Yan R, Wang J, Mao K (2017) Learning to monitor

machine health with convolutional bi-directional LSTM net-

works. Sensors 17(2):273

69. Nunez JC, Cabido R, Pantrigo JJ, Montemayor AS, Velez JF

(2018) Convolutional neural networks and long short-term

memory for skeleton-based human activity and hand gesture

recognition. Pattern Recogn 76:80–94

70. Isaac ER (2015) Test of hypothesis-concise formula summary.

Anna University, Tamil Nadu, pp 1–5

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Neural Computing and Applications (2024) 36:3777–3801 3801

123

https://arxiv.org/abs/1502.02506

	A multilayered framework for diagnosis and classification of Alzheimer’s disease using transfer learned Alexnet and LSTM
	Abstract
	Introduction
	Our contribution

	Related work
	Preliminaries and background
	Convolution neural networks
	GAN: data augmentation technique
	Alexnet: CNN model
	LSTM: deep learning-based classification model

	The proposed framework
	Model selection for feature extraction
	Model selection for training using MRI dataset
	Methodology of proposed framework

	Results and discussion
	Performance evaluation parameters for classification model
	Two proportions test

	Comparative analysis of pre-trained deep learning models for feature extraction
	Comparative analysis of deep learning models for classification using training set
	Performance evaluation of the proposed model for training set
	Performance evaluation of the proposed model for testing set
	Performance comparison of the proposed model using two-proportions test
	Comparison of the proposed and existing models in terms of performance
	Discussion

	Conclusion
	Data availability statement
	References




