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Abstract

The aim of this paper is to develop a supervised dimension reduction framework, called Spatially

Weighted Principal Component Analysis (SWPCA), for high dimensional imaging classification.

Two main challenges in imaging classification are the high dimensionality of the feature space

and the complex spatial structure of imaging data. In SWPCA, we introduce two sets of
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novel weights including global and local spatial weights, which enable a selective treatment of

individual features and incorporation of the spatial structure of imaging data and class label

information. We develop an efficient two-stage iterative SWPCA algorithm and its penalized

version along with the associated weight determination. We use both simulation studies and real

data analysis to evaluate the finite-sample performance of our SWPCA. The results show that

SWPCA outperforms several competing principal component analysis (PCA) methods, such as

supervised PCA (SPCA), and other competing methods, such as sparse discriminant analysis

(SDA).

Keywords: Classification; Imaging; Principal Component Analysis; Spatial Weight.
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1 Introduction

In various neuroimaging studies, imaging classification is to predict a set of response variables

(class labels) Y by using a set of imaging data x = {xd : d ∈ D} ∈ Rp measured on each of N

subjects, where D is a 3-dimensional (3D) volume (or 2D surface) and d is a voxel (or pixel) of

D. For instance, Y may include cognitive outcome, disease status, and the early onset of disease,

among others, whereas x may include magnetic resonance imaging (MRI) and positron emission

tomography (PET), among many others. Moreover, imaging data usually can be represented as

data on a graph such that D is a graph with {d1, . . . , dp} as the set of vertexes and an edge set,

denoted by DE .

Two major challenges associated with imaging classification include (i) ultra-high dimension,

but low sample size and (ii) correlated features with complex spatial structure including spatial

smoothness and spatial correlation. For instance, the size of a typical T1 MRI is 256×256×256,

and thus MRI contains 2563 = 16, 777, 216 voxels. In contrast, the number of observations in most

neuroimaging studies varies from several dozens to several hundreds. Thus, it is imperative to

perform dimension reduction before classification. Moreover, imaging data has an inherent and

strong spatial dimension due to the inherent biological structure of objects (Friston, 2007; Lazar,

2008; Ye et al., 2009; Wang et al., 2007; Meyer and Chinrungrueng, 2005). The aim of this paper

is to develop a Spatially Weighted Principal Component Analysis (SWPCA) to address the two

challenges for high dimensional imaging classification.

Despite of its efficacy and popularity in image applications, principal component analysis (PCA;

Jolliffe, 2002) as a general non-supervised dimension reduction technique is known to suffer from

major limitations. Firstly, each principal component (PC) is a linear combination of the original

p features with nonzero loadings, which not only incorporates unnecessary noises but also makes

it very difficult to interpret the derived PCs, especially when p >> N . Secondly, PCA treats all

the features equally, and thus it may be not well-suited for some problems, in which some regions

of interest are more important than others. Thirdly, PCA ignores the inherent spatial smoothness

and spatial correlation of imaging data.

Many PCA variants have been proposed to address some of these limitations discussed above

(Jolliffe, 2002; Zou et al., 2006; Bair et al., 2006; Skočaj et al., 2007; Shen and Huang, 2008; Leng

and Wang, 2009; Pinto da Costa et al., 2011; Allen et al., 2011, etc.). For instance, Bair et al. (2006)
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proposed a Supervised PCA (SPCA) by conducting standard PCA on marginally selected features.

However, SPCA suffers from ignoring the inherent spatial structure of imaging data. Skočaj et al.

(2007) proposed a weighted PCA (WPCA) by introducing temporal and spatial weights in order to

downweight individual images and individual components of x. However, they only focused on the

temporal weights but failed to discuss how to choose the spatial weights which is more interesting

in image analysis. Thomaz et al. (2010) introduced a supervised spatially weighted version of PCA

(SSWPCA) by using a linear discriminant analysis (LDA) to determine spatial discriminant weights

for x in a two-class classification setting and then applying PCA to the sample correlation matrix

weighted by those spatial weights. SSWPCA is limited to binary responses and suffers from the

“p >> N” problem, which requires further regularization. Recently, Pinto da Costa et al. (2011)

proposed another weighted version of PCA based on a weighted rank correlation coefficient using

rankings of original data, which is not appropriate for imaging data. Allen et al. (2011) proposed a

generalized least squares matrix decomposition framework for two-way regularization PCA, while

explicitly accounting for their structural relationship.

The aim of this paper is to develop a supervised dimension reduction method, called Spatially

Weighted Principal Component Analysis (SWPCA), for imaging classification. In SWPCA, we

introduce two sets of weights including global and local spatial weights, which enables the selection

of individual features and the incorporation of both the spatial pattern of imaging data and class

label information. We develop an efficient two-stage iterative SWPCA algorithm and its penalized

version along with the associated weight determination. We evaluate the finite-sample performance

of SWPCA by using two simulation studies and real data analysis, whose results strongly indicate

that SWPCA outperforms several competing PCA variants and other competing methods, such as

sparse discriminant analysis (SDA; Clemmensen et al., 2011).

The rest of this paper is outlined as follows. In Section 2, we develop the general SWPCA

framework and its two-stage algorithm. Section 3 discusses several strategies of determining global

and local weights. In Section 4, two simulation studies and real data analysis are conducted to

demonstrate the improvement of our SWPCA over other commonly used PCA methods. Concluding

remarks and discussions are given in Section 5.
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2 Spatially Weighted Principal Component Analysis

2.1 Principal Component Analysis

Principal Component Analysis (PCA) as a basic dimension reduction tool is to project high-

dimensional data to a lower dimensional space with a few uncorrelated features, called principal

components (PC). Let X = (x1, ...,xN )T denote an N × p data matrix of rank q ≤ min(N, p),

where N is the number of observations, p is the number of features, and xi = (xij) is a p× 1 vector

of features from the i-th object. Denote X̃ = X − 1Nµ
T as the centered data matrix, where 1N is

an N × 1 vector of ones and µ = (µ1, · · · , µp)T is a p× 1 mean vector. Let Iq be a q × q identity

matrix. PCA finds a lower-dimensional representation that maximizes the variance of projections.

Numerically, PCA can be easily derived by Singular Value Decomposition (SVD) method as follows:

X̃N×p = UN×qDq×qV
T
p×q, (1)

where the columns of A = UD = X̃V are PCs, the columns of V = (v1, ...,vp)
T are principal

component directions (principal axes), D is a q × q diagonal matrix with singular values, and the

columns of U and V are orthonormal such that UTU = V TV = Iq. In image analysis, the data

matrix X consists of N images as rows, and each row (i.e., xi) represents a vectorized image of

dimension p, where p is the number of pixels/voxels of the image and generally p >> N . When

applying PCA to image data, the mean vector µ is the mean image and the columns of V are

called eigenimages.

Alternatively, PCA can be interpreted as approximating the original data in the high-dimensional

space by using a low-rank factor model. Specifically, the rank-q factor model can be written as

xi = µ+ V ai + εi. (2)

The PCA is then taken to minimize the reconstruction error (RE) defined as the squared distance

between the original data and its rank-q approximation as follows:

Epca =
N∑
i=1

||xi − µ− V ai||22 =
N∑
i=1

p∑
j=1

(x̃ij − vTj ai)2, (3)
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where || · ||2 is the L2 norm of a vector and x̃ij = xij−µj . As seen from (3), Epca can be represented

as a summation of individual squared distance for each image at each location (feature), where

all the features are treated equally and “independently”. In this sense, standard PCA ignores the

underlying spatial pattern of image data, since Epca remains the same no matter where each feature

is located. Although the standard PCA loses the spatial information, this is not the case for SWPCA

developed below, since we can explicitly incorporate such spatial information by introducing locally

spatial weights, which depend on both the edge set DE and the spatial smoothness of imaging data.

2.2 Spatially Weighted PCA (SWPCA)

In this subsection, we develop a SWPCA to find a lower dimensional representation of imaging

data by explicitly accounting for their spatial feature. Since each image xi consists of p correlated

features with clustered spatial structure, PCA may not be well suitable for correlated imaging

data. However, SWPCA explicitly incorporates spatial information by introducing two sets of

spatial weights to the reconstruction error. Such spatial weights include (i) global weights for the

selective treatment of individual features and (ii) local spatial weights for the incorporation of the

spatial smoothness and correlation of imaging data.

Let wj be the global spatial weight for the j-th feature of xi with
∑p

j=1wj = p. Let B(j;h)

be a neighborhood of the j-th feature at scale h and ω(j, d;h) be the local spatial weight for each

neighboring feature d within B(j;h) of feature j such that
∑

d∈B(j;h) ω(j, d;h) = 1. The SWPCA

is taken to minimize a weighted reconstruction error (WRE) given by

Eswpca(A,V ;h) =

N∑
i=1

p∑
j=1

wj

∑
d∈B(j;h)

ω(j, d;h)
{
x̃id(h)− vTj ai

}2
, (4)

where A = (a1, ...,aN )T and V = (v1, ...,vp)
T are the N × q and p × q matrices, respectively.

Moreover, x̃id(h) = xid −
∑

d′∈B(d;h) ω(d, d′;h)x̄d′ is the d-th feature of the centered data x̃i(h) =

xi − µ̂w(h), in which µ̂w(h) = {
∑

d′∈B(d;h) ω(d, d′;h)x̄d′}p and x̄ = {x̄d′}p = (
∑N

i=1 xi)/N are the

weighted and simple mean images, respectively. The lower-dimensional representation of SWPCA

is obtained by minimizing Eswpca(A,V ;h) as follows:

(Ah,Vh) = arg min
A,V

Eswpca(A,V ;h). (5)
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Without making any confusion, we omit the script h in most notations.

The global and local weights play a critical role in SWPCA. Specifically, the global weights

WG = {wj} play a feature selection role and enable a selective treatment of different features by

upweighting more important features and downweighting noninformative features. Moreover, since

imaging data are spatially correlated and contain spatially contiguous regions with sharp edges,

the local spatial weights WL = {ω(j, d;h)} allow us to capture the spatial smoothness of imaging

data and accommodate the spatial dependence among imaging features. The scale parameter h

can vary in a multiscale manner, while the shape of the neighborhood sets can vary across h and

different applications. Furthermore, SWPCA provides a supervised dimension reduction solution

by incorporating outcome information via the introduced global and spatial weights. In image

classification, the global weights can be assigned according to the discriminative ability of each

pixel/voxel, i.e., the association between each pixel/voxel in X and the class information in Y ;

the local spatial weights can be determined based on the discriminative similarity of neighboring

pixel/voxel. More discussions about how class information can be incorporated in SWPCA are

given in Section 3.

SWPCA can be regarded as a generalization of PCA, SPCA, and WPCA. For instance, when

ω(j, d;h) = 1(j = d), where 1(·) is the indicator function of an event, SWPCA reduces to WPCA

with spatial weights. If ω(j, d;h) = 1(j = d) and wj = 1 for all j and d, (4) reduces to (3) which is

the standard PCA problem. If we set ω(j, d;h) = 1(j = d) for all j, d and wj = 1 only for selected

“top” features and 0 for other features, SWPCA reduces to SPCA. More discussions on various

choices of these weights and neighborhood scale h are given in Section 3.

We reformat Eswpca(A,V ;h) as follows. Let Xh = {x̃ij(h)} =
{∑

d∈B(j,h) ω(j, d;h)x̃id

}
denote

an N × p locally weighted data matrix and XW,h = XhW
1/2
p , where Wp =diag(w1, ..., wp) and

W
1/2
p =diag(

√
w1, ...,

√
wp). Without loss of generality, we assume that all global spatial weights

are non-zero for the sake of notation. Even for WG with zero weights, all results below are valid

since only features with non-zero wj are actually included for computation. We obtain the following

lemma, whose proof can be found in the Appendix.

Lemma 1 Minimizing (4) is equivalent to

min
A,V

{
||XW,h −AV TW 1/2

p ||2F
}

= min
A,V

{
Tr{(Xh −AV T )Wp(Xh −AV T )T }

}
, (6)
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where ||M ||F =
√

Tr(MMT ) is the Frobenius norm.

Equation (6) is invariant to arbitrary rotations of A and V such that AV T = ÃṼ T . Such

invariant issue is usually solved by imposing orthonormal constraint, i.e., V TV = Iq. However, such

constraint is no longer appropriate for SWPCA, when the global spatial weights are incorporated

for individual treatment and selection of features that regulate V . Instead of restricting V , we

impose ATA = Iq, which greatly facilitates the computation of SWPCA.

For ultra-high dimensional data, that is p >> N , PCA suffers from several major limitations.

For instance, it is well-known that sample eigenvalues and eigenvectors can be inconsistent as p goes

to infinity. Moreover, naive approaches to PC score prediction can be substantially biased towards 0

in the analysis of high-dimensional data. To avoid such limitations, various penalized PCA methods

have been developed (Journée et al., 2010; Shen and Huang, 2008; Huang et al., 2008a; Zou et al.,

2006; Johnstone and Lu, 2009; Huang et al., 2008b; Witten et al., 2009). Specifically, we consider

a regularized SWPCA by including an additional penalty term on V to (6). The minimization

problem becomes

min
A,V

{
||XW,h −AV TW 1/2

p ||2F +

q∑
k=1

λk||vck||1

}
, (7)

where vck is the k-th column vector of V = (vc1, ...,vcq) and ||vck||1 =
∑p

j=1 |vjk| is the L1-norm

of the p× 1 vector vck.

2.3 Two-stage Iterative Algorithms

We develop efficient two-stage iterative SWPCA algorithms to solve the minimization problems (6)

and (7). We obtain the following two lemmas pertinent to the algorithm for solving (6).

Lemma 2 Given V , A that minimizes (4) subject to ATA = Iq is A = PUT , where P and U

are orthogonal matrices obtained from the SVD of XhWpV = PDUT .

Lemma 3 Given A, V that minimizes (4) is V = XT
hA(ATA)−1.

The above lemmas lead to our two-stage iterative SWPCA Algorithm 1 as follows.

Algorithm 1 SWPCA Algorithm

6



(a) Use V derived by standard PCA as an initial value;

(b) Given V , conduct SVD on XhWpV = PDUT and then update A = PUT ;

(c) Given A obtained from (b), update V = XT
hA;

(d) Repeat the steps (b) and (c) until convergence;

(e) Standardize the final V to obtain Ṽ and Ã.

Our SWPCA algorithm provides a simple and efficient way for the minimization problem (4)

with the constraint on A. As a special case of SWPCA, the WPCA with spatial weights can be

realized by our SWPCA Algorithm 1, which overcomes the rotational ambiguity problem of the

Algorithm in Skočaj et al. (2007). According to our experience, our Algorithm 1 converges much

faster compared with that for WPCA. Moreover, keeping V free of scale constraint allows direct

extension of our SWPCA algorithm to a sparse version for ultra-high dimensional data. We obtain

the following lemma for the sparse case.

Lemma 4 Given fixed A and ATA = Iq, we have the following results:

(i) the minimization problem (7) is equivalent to that of the weighted Lasso given by

v̂ck = arg min
vck

||vck −XT
h ack||2 + λk

p∑
j=1

|vjk|/wj

 for k = 1, ..., q, (8)

where vck is the k-th column vector of V and ack is the k-th column of A;

(ii) the soft thresholding solution of (8) is v̂ck = {v̂jk}p×1 with

v̂jk = sign
{

(XT
h ack)j

}{∣∣(XT
h ack)j

∣∣− λk/(2wj)
}
+

for j = 1, ..., p, (9)

where sign(·) is the sign function, (·)j denotes the j-th element of the argument, and {·}+ is

the truncation function that returns the argument if it is nonnegative or 0 otherwise.

Lemma 4 has several important implications. Lemma 4 (i) reformats (7) as a weighted lasso

problem of Zou et al. (2006). This result yields an explicit solution v̂ck in Lemma 4 (ii). Moreover,

for the features with small spatial weights, the regularized SWPCA automatically increases their
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penalties and thus their associated v̂jk’s have a higher chance to be shrunk to zero. Thus, SWPCA

is very useful for eliminating many uninformative features in imaging data. Based on Lemma 4,

Algorithm 1 can be extended to the penalized SWPCA algorithm as follows.

Algorithm 2 Penalized SWPCA Algorithm

(a) Use V derived by the standard PCA as an initial value;

(b) Given V , apply SVD on XhWpV = PDUT and then set A = PUT ;

(c’) Given A obtained from (b), update V = {vjk}p×q, where vjk is calculated according to (9);

(d’) Repeat the steps (b) and (c’) until convergence;

(e) Standardize the final V to obtain Ṽ and Ã.

The penalized SWPCA algorithm proposed above provides an efficient way to obtain a low-

dimensional representation of X even for ultra-high dimensional data. Besides, our penalized

SWPCA algorithm can be used to realize the sparse PCA method proposed by Shen and Huang

(2008) since SWPCA is considered as a generalization of standard PCA. The sparse PCA algorithm

in Shen and Huang (2008) computes PCs in a sequential way, whereas our Algorithm 2 computes

all PCs simultaneously at once. Thus, Algorithm 2 may be more appealing and efficient.

One important application of SWPCA is to do prediction. We consider the data matrix with new

observations and its locally weighted data matrix, which are denoted by X∗ and X∗h, respectively.

Let Ã∗ be the low-dimensional projection of X∗ onto the principal axes Ṽ derived from SWPCA.

We obtain the following lemma.

Lemma 5 Given V , the A that minimizes (4) is A = (XhWpV )(V TWpV )−1.

Based on Lemma 5, Ã∗ can be estimated by using (X∗hWpṼ )(Ṽ TWpṼ )−1. With Ã∗, class

prediction can be efficiently performed using this low-dimensional representation.

3 Spatial Weights for Imaging Classification

In this section, we discuss how to choose various spatial weights and how the class information can

be incorporated for imaging classification.
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3.1 Global Spatial Weights

The global weights WG = {wj} play a feature selection role in SWPCA. For instance, for classifi-

cation problem, we may use each feature’s discriminative importance to assign each component of

WG. Specifically, let θj denote a measure of the association between the j-th feature and the class

information, i.e., θj is a function of the j-th pixel/voxel of image data X and class information Y .

Each wj can be defined as a function of θj as

wj = f(θj) for j = 1, . . . , p. (10)

Examples of θj include the Pearson correlation and test statistics, among many others. A simple

example is to use the Pearson correlation between each feature and class label information. More

informative features for classification (or high correlation) are assigned more weights, whereas

noninformative features (e.g., correlation less than a given threshold) can be discarded by setting

wj = 0. In this case, θj is the Pearson correlation and wj = p|θj |/
∑

j |θj |. Additionally, the

importance scores used in SPCA can also be considered for WG. Another example is to fit a

voxel-wise regression model with imaging data at each location as responses and the class label as

covariates. Specifically, we consider an L-class classification problem and define yil = 1 if i is in

class l for i = 1, . . . , N and l = 1, . . . , L and 0 otherwise. Consider a voxel-wise linear regression

model by fitting xij = yTi θj + εij for i = 1, . . . , N and j = 1, . . . , p, where yi = (1, yi1, . . . , yi,L−1)
T

and θj contains the discriminative information of features at location j. Then, f(θj) can be a test

statistic and/or its associated p-value for testing H0 : θj = 0 at location j.

3.2 Local Spatial Weights

The local spatial weights WL = {ω(j, d;h)} play a critical role in incorporating spatial smoothness

and correlation of imaging data in SWPCA. This is extremely important for imaging data, since

imaging data are spatially dependent and contain contiguous regions with sharp edges in nature.

Let B(j, h) be a set of neighboring locations of the j-th feature at scale h. The local weight

ω(j, d;h) usually characterizes the “similarity” between feature j and features d ∈ B(j, h) and/or
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the “similarity” between locations d and j. Specifically, we define ω(j, d;h) at scale h as

ω(j, d;h) =
K1{D1(d, j)/h} ·K2{D2(θd,θj)/CN}1(d ∈ B(j, h))∑

d′∈B(j,h)K1{D1(d′, j)/h} ·K2{D2(θd′ ,θj)/CN}
, (11)

where D1(d, j) denotes the spatial distance between locations d and j, D2(θd,θj) represents the

discriminative similarity between θd and θj , K1(·) and K2(·) are two decreasing kernel functions,

and h and CN are bandwidth parameters that may depend on N . The decreasing kernel function

K1(·) gives less weight to the voxel d ∈ B(j, h), whose location is far from the voxel j. The kernel

K2(·) downweights the voxels d with large D2(θd,θj), which indicates a large difference between

θd and θj . By following Polzehl and Spokoiny (2006) and Li et al. (2011), we set K1(x) = (1−x)+

and K2(x) = exp(−x), which demonstrated excellent performance in many imaging applications.

Moreover, the shape and size of B(j, h) can vary across applications and with h.

3.3 Scale Size h

The scale size h plays a critical role in the amount of features incorporated from neighboring voxels

in B(j, h) for each j. A simple approach is to fix h according to some prior or empirical information.

However, a small h may miss important spatial information, whereas a large h may smooth out some

local details and dramatically increase the computational burden. Alternatively, we may consider

a sequence of nested neighborhoods corresponding to multiple scales at each location. Specifically,

let h = {h0 < h1 < ... < hS} be a sequence of scales with h0 = 0 and hS being the maximum scale.

The scales can be chosen based on previous studies or empirical experiences. For example, scales

can be defined as the radius of spherical neighborhood in a form of {hs = cs} with constant c > 1.

In our numerical examples, we used c = 1.2 which balanced the computation intensity without

losing important spatial information. One may choose an optimal h based on a specific criterion,

such as WRE, and then use the PCs extracted based on the optimal h for imaging classification.

Alternatively, one may integrate the PCs extracted from all scales h for imaging classification.

For imaging classification, we propose a multi-scale procedure to determine WG and WL across

multiple scales. Without loss of generality, we consider the cross-sectional studies so that (xi,yi)

are independent across subjects. Specifically, at a given scale h, we consider a weighted likelihood
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function given by

p(X|Y ,θ) =

N∏
i=1

p∏
j=1

 ∏
d∈B(j,h)

p(xid|yi,θj)ω(j,d;h)
 , (12)

where X and Y , respectively, denote the imaging and class information and p(xid|yi,θj) is the

likelihood function of xid given yi. Moreover, as discussed in the voxel-wise linear regression model

in Section 3.1, θj may contain the discriminative information of features at j. Based on the weighted

likelihood function (12), Li et al. (2011) developed a multiscale adaptive regression model (MARM)

to spatially and adaptively calculate the estimate of θj , denoted by θ̂j(h), as the scale size h ranges

from h0 to hS . Instead, we borrow the spatial information learned in (12) and the estimated θ̂j(h)

to spatially and adaptively construct WG and WL across h. We introduce a multi-scale algorithm

as follows.

Algorithm 3 Multi-scale Algorithm

Given a series of scales h0 = 0 < h1 < . . . < hS, for each feature j,

(a) Begin with h0 = 0 with ω(j, d;h0) = 1 when d = j and 0 otherwise, calculate the initial

association estimate at scale h0 denoted as θ̂j(h0), and set s = 1.

(b) At scale hs, update the association estimate θ̂j(hs) by maximizing (12) based on ω(j, d;hs−1).

(c) Calculate ω(j, d;hs) in (11) using updated θj = θ̂j(hs) and θd = θ̂d(hs) and update wj

according to (10) by using θj = θ̂j(hs). If s < S, let s=s+1.

(d) Repeat steps (b) and (c) until the stopping criterion is met or s = S.

The stopping criterion in Algorithm 3 can be either global or local criteria. For instance, for

the global criteria, we may stop the algorithm if WRE cannot be further decreased. For the local

criteria at each location j, we may check the improvement of θj .

4 Numerical Examples

In this section, we conducted two simulation studies and real data analysis to examine the per-

formance of SWPCA in L-class classification problems, where L is a positive integer. In each
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simulation study, we compared our SWPCA with PCA, SPCA, and WPCA. For SPCA, we used

the importance scores used in Bair et al. (2006) to select “top” important features. For WPCA, we

considered two WPCAs by using two different spatial weights which are based on the importance

scores of SPCA and WG of SWPCA, respectively. For PCA, SPCA, and WPCA, imaging data

were smoothed using an isotropic Gaussian kernel with different degrees of smoothness including

no smoothing, moderate smoothing, and over-smoothing. For the sake of space, we only reported

the best results under the moderate degree of smoothness. For SWPCA, we used Algorithm 3

with spherical neighborhoods and {hs = 1.2s : s = 1, . . . , S = 5} to determine optimal scales

locally and its associated WG and WL. Specifically, we used -log10 of the FDR (False Discovery

Rate) corrected p-values for testing the null hypothesis of no group differences as our global spatial

weights WG. For the local spatial weights, we chose the Euclidean norm for D1(·), the Mahalanobis

norm for D2(·), and CN = log(N)χ2
L−1(0.95), where χ2

L−1(b) is the upper 1− b percentile of the χ2

distribution with L− 1 degrees of freedom. For the penalized SWPCA, denoted as PSWPCA, we

used the same spatial weights as those of SWPCA and varied λk across 0.5, 1.0, 2.0, 5.0, and 10.0.

Extracted PCs were then used for class prediction. Since the proposed method is more efficient

requiring less components, we chose number of PCs retained based on the amount of total sample

variance explained by the standard PCA to assure that at least a certain amount of total variance

can be accounted for. Since comparison of different classification methods is not the interest of this

paper, we just used three standard classification methods including (i) linear regression (REG), (ii)

k-nearest neighbor (k-NN) classification, and (iii) support vector machine (SVM) to evaluate the

performance of different PCA methods.

4.1 Simulation Studies

For each simulation study, a total of 100 3D-images were simulated and randomly split into a

training set with N = 60 images and a test set of 40 images. We repeated each simulation

100 times, and evaluated the classification performance of different methods by using the average

misclassification rate. For simulation studies, the results with K = 2 PCs retained were presented

for graphical illustration purpose to display the low-dimensional representation of the simulated

data constructed by the PCs extracted by different dimension reduction methods. With 2 PCs, the

standard PCA can already account for on average around 60% of the total variance in Simulation
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I and around 50% in Simulation II.

4.1.1 Simulation Study I

In this study, we simulated 20×20×10 3D-images from a linear regression model: xij = θj0+θj1yi+

εij , where εij ∼ N(0, 4) for i = 1, . . . , 100 and j = 1, . . . , 4000. The feature dimension p = 4000 is

much larger relative to the training sample size N=60. This is a two-class classification problem

with L = 2. The class label yi is coded as 0 and 1. Thus, µ0 = {θj0 : j = 1, . . . , 4000} is the true

mean image of Class 0, whereas µ1 = {θj0 + θj1 : j = 1, . . . , 4000} is the true mean image of Class

1. See Figure 1 for a graphical illustration. For µ0, we divided the 3D image into two different

regions of interest (ROIs) with different shapes and then varied θj0 as 0 and 1, respectively, across

these two ROIs. For µ1, we divided the 3D image into three different ROIs with different shapes

and then varied θj0 + θj1 as 0, 1, and 2, respectively, across these three ROIs. Figure 1 reveals that

the difference between the two classes only lies in the yellow triangular prism region.

Table 1: Average Misclassification Percentage for Simulation I

PCA SPCA WPCA-1 WPCA-2 SWPCA PSWPCA
ALL 50 100 200 400 1000 ALL ALL ALL ALL

REG .302 .126 .132 .142 .162 .205 .199 .130 .026 .025
(.078) (.052) (.052) (.055) (.057) (.064) (.064) (.056) (.025) (.024)

k-NN .338 .135 .141 .152 .182 .225 .186 .156 .030 .027
(.071) (.049) (.049) (.050) (.053) (.071) (.055) (.059) (.029) (.025)

SVM .327 .140 .147 .159 .183 .226 .215 .152 .033 .028
(.078) (.054) (.055) (.055) (.059) (.072) (.067) (.055) (.029) (.026)

Standard deviations are in parenthesis. For SPCA, the number of “top” selected voxels used in the algorithm are
considered to be 50, 100, 200, 400, and 1000.

We presented the classification results in Table 1 based on the results obtained from the 100

simulated datasets. We only presented the average misclassification rates and the standard devia-

tions (SD) of misclassification errors. Table 1 reveals that the classification results from the three

classification methods show similar pattern across different PCA methods. For SPCA, we varied

the number of “top” voxels as 50, 100, 200, 400, and 1000, and the algorithm based on the top

50 voxels outperforms the rest. Overall, SPCAs greatly improve the class prediction over PCA by

screening out many uninformative voxels. We denote two WPCAs using the importance scores of

SPCA and using WG of SWPCA as their spatial weights by WPCA-1 and WPCA-2, respectively.
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The WPCA-1 performs better than PCA, as good as SPCA with relatively large number of top

selected voxels, but worse than SPCA with less selected voxels. The WPCA-2 improves the class

prediction over WPCA-1 and performs as good as SPCA based on top 50 voxels. Furthermore,

SWPCA using Algorithm 1 significantly reduces the misclassification rate to only 2.6% for REG,

3.0% for 5-NN, and 3.3% for SVM with much smaller standard deviations. Finally, PSWPCA based

on Algorithm 2 further reduces the misclassification rate.

The two different sets of spatial weights used in WPCA-1 and WPCA-2 are illustrated in Figure

2. Figure 2 shows thatWG of SWPCA clearly identifies those “true” voxels which are located in the

triangular prism. In contrast, the importance scores of SPCA can only roughly locate the region but

not the shape, along with many false positive voxels. Let nt denote the number of true informative

voxels. In Simulation I, nt = 75 voxels forms the triangular prism. To further evaluate the “feature

selection” ability of the weights, we calculate the true positive rate (TP) as the ratio of the true

informative voxels to the top ranked nt voxels. We have TPSPCA=.63, and TPSWPCA=.90. These

two numbers also explain why WPCA-2 works better than WPCA-1. Moreover, the performance

of SPCA is sensitive to the threshold used to determine significant features in SPCA, whereas

WPCAs and SWPCAs can include all the voxels by weighing differently without concerning the

thresholding issue. To visualize the performance of dimension reduction, we plotted the first two

extracted PCs obtained from different PCA methods for one simulated dataset in Figure 3. We

observed that the two PCs of SWPCA and PSWPCA can easily separate the two classes, whereas

those of other PCA methods cannot.

For additional comparisons, we also applied two non-PCA-type of supervised dimension re-

duction methods including sparse partial least squares (SPLS; Chung and Keles, 2010) and sparse

discriminant analysis (SDA; Clemmensen et al., 2011) to the simulated datasets. See Table 2 for de-

tailed results. For SPLS, since different classifiers can be used, we also applied REG (SPLS-REG),

k-NN (SPLS-kNN), and SVM (SPLS-SVM) besides the default one in order to have additional

comparisons with various PCA-type of methods presented in Table 1. Table 2 shows that SPLS

and SDA yield similar classification performance as SPCA, but they significantly underperform our

proposed SWPCA and PSWPCA.
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4.1.2 Simulation Study II

In this simulation study, we simulated 20 × 20 × 20 3D-images from L = 3 classes (coded as 0, 1,

2) according to a linear regression model: xij = θj0 + θj1yi1 + θj2yi2 + εij , where εij ∼ N(0, 9) for

i = 1, . . . , 100 and j = 1, . . . , 8000 and yi1 and yi2 are dummy variables for Class 1 and Class 2,

respectively. Thus, µ0 = {θj0} is the true mean image of Class 0, µ1 = {θj0 +θj1} is the true mean

image of Class 1, and µ2 = {θj0 + θj2} is the true mean image of Class 2. Figure 4 shows the true

mean images for each class in 3D. For µ0, we divided the 3D image into two different ROIs with

different shapes and then varied θj0 as 0 and 1, respectively, across these two ROIs. For µ1, we

divided the 3D image into two different ROIs with different shapes and then varied θj0 + θj1 as 0

and 1, respectively, across these two ROIs. For µ2, we divided the 3D image into three different

ROIs with different shapes and then varied θj0 + θj2 as 0, 1, and 2, respectively, across these three

ROIs. Figure 4 reveals that the differences between the three classes lie in the yellow and red

regions.

We presented the classification results in Table 3 based on the results obtained from the 100

simulated datasets. In Table 3, three classification methods, REG, k-NN, and SVM, show similar

classification results across different PCA methods. For SPCA, the algorithm based on the 400 or

Table 2: Average Misclassification Percentage for Simulation I (Non-PCA Methods)

SPLS-REG SPLS-kNN SPLS-SVM SPLS SDA
.130 .139 .156 .128 .120

(.052) (.056) (.066) (.050) (.050)
Standard deviations are in parenthesis.

Table 3: Average Misclassification Percentage for Simulation II

PCA SPCA WPCA-1 WPCA-2 SWPCA PSWPCA
ALL (50) (100) (200) (400) (1000) ALL ALL ALL ALL

REG .461 .372 .343 .302 .275 .274 .305 .246 .096 .092
(.078) (.126) (.118) (.102) (.084) (.069) (.075) (.069) (.076) (.080)

k-NN .514 .381 .364 .315 .295 .299 .332 .268 .099 .085
(.093) (.118) (.112) (.105) (.086) (.075) (.077) (.069) (.079) (.078)

SVM .477 .372 .346 .306 .278 .288 .317 .258 .099 .083
(.097) (.117) (.112) (.105) (.078) (.067) (.074) (.073) (.076) (.078)

Standard deviations are in parenthesis. For SPCA, the number of “top” selected voxels used in the algorithm are
considered to be 50, 100, 200, 400, and 1000.
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1,000 top voxels outperforms the rest. Overall, SPCA moderately improves the class prediction

over the standard PCA. The WPCA-1 algorithm outperforms PCA and is comparable to SPCAs

in cases of 200 or more top voxels. The WPCA-2 algorithm shows better performance than SPCA

and WPCA-1. Furthermore, SWPCA and PSWPCA outperform other competing methods and

greatly reduce the misclassification rate. The results for the non-PCA methods are given in Table

4. Similarly as Simulation I, SPLS and SDA yield similar but significantly poorer classification

performance comparing with the best SWPCA results.

Figure 5 illustrates two different sets of spatial weights used in WPCA-1 and WPCA-2. It

shows that WG of SWPCA identifies the “true” voxels located in the triangular and cubic shapes.

However, the importance scores of SPCA roughly identifies the location of true voxels, but not the

shapes. In this simulation study, there are 409 truly informative voxels, and we have TPSPCA=.59

and TPSWPCA=.81. In Figure 6, we draw the plots of the first two extracted PCs obtained from all

PCA methods for one simulated dataset. From Figure 6, we observe that SWPCA and PSWPCA

perform well in separating three classes, but other PCA method do not.

Table 4: Average Misclassification Percentage for Simulation II (Non-PCA Methods)

SPLS-REG SPLS-kNN SPLS-SVM SPLS SDA
.341 .356 .337 .339 .277

(.119) (.125) (.120) (.112) (.076)
Standard deviations are in parenthesis.

4.2 Real Data Analysis

We applied SWPCA to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data. Alzheimer’s

Disease (AD) is the most common form of dementia, which progressively causes problems in mem-

ory, thinking, behavior, and eventually leads to death. The ADNI study is a large scale multi-site

study collecting clinical, imaging, and laboratory data at multiple time points from cognitively nor-

mal controls (CN), individuals with amnestic mild cognitive impairment (MCI), and subjects with

AD. One of the goals of ADNI is to develop improved methods to track the longitudinal course of

AD based on imaging and biomarker data. More information about data acquisition can be found

at the ADNI website (www.loni.usc.edu/ADNI).

“Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
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roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineer-

ing (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and

non-profit organizations, as a $60 million, 5-year publicprivate partnership. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission to-

mography (PET), other biological markers, and clinical and neuropsychological assessment can be

combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s

disease (AD). Determination of sensitive and specific markers of very early AD progression is in-

tended to aid researchers and clinicians to develop new treatments and monitor their effectiveness,

as well as lessen the time and cost of clinical trials. The Principal Investigator of this initiative is

Michael W. Weiner, MD, VA Medical Center and University of California, San Francisco. ADNI is

the result of efforts of many coinvestigators from a broad range of academic institutions and private

corporations, and subjects have been recruited from over 50 sites across the U.S. and Canada. The

initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO and

ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to participate

in the research, consisting of cognitively normal older individuals, people with early or late MCI,

and people with early AD. The follow up duration of each group is specified in the protocols for

ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the

option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org. ”

A subset of the ADNI data including AD patients and CN controls was used here to illustrate

the empirical utility of our proposed methods in imaging classification. After removing subjects

with missing or low quality imaging data, the data set consists of 390 subjects (218 CN controls and

172 AD patients). Among them, there are 206 males whose mean age is 75.46 years with standard

deviation 6.34 years and 184 females whose mean age is 75.50 years with standard deviation 6.40

years. T1-weighted images at the baseline were used for all subjects. The T1-weighted images were

preprocessed by standard steps including AC (anterior commissure) and PC (posterior commissure)

correction, N2 bias field correction, skull-stripping, intensity inhomogeneity correction, cerebellum

removal, segmentation, and registration. After segmentation, the brain were segmented into four

different tissues: grey matter (GM), white matter (WM), ventricle (VN), and cerebrospinal fluid

(CSF). The imaging pipeline was described in detail in Wang et al. (2011).
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We quantified the local volumetric group differences by generating RAVENS-maps (Davatzikos

et al., 2001) for the whole brain and four different types of segmented tissue (GM, WM, VN, and

CSF), respectively, using the deformation field obtained during registration. RAVENS methodology

is based on a volume-preserving spatial transformation, which ensures that no volumetric informa-

tion is lost during processing spatial normalization, since this process changes an individual’s brain

morphology to conform it to the morphology of a template. We obtained the 256 × 256 × 256

RAVENS-maps and then down-sampled them to 128× 128× 128 for analysis. A sample RAVENS-

map is displayed in the left panel of Figure 7.

Our goal is to study the empirical performance of SWPCA in classifying subjects from ADNI

to AD or CN group based on the whole RAVENS images. We randomly split the imaging data

into a training set of 195 images and a test set with the remaining 195 images and repeated this

100 times to calculate the average misclassification rate. For this real data analysis, five PCs were

included for classification, which can account for around 90% of the total variance on average in

the standard PCA. For PCA, WPCA, and SPCA, the RAVEN images were smoothed by using

an isotropic Gaussian kernel with different degrees of smoothness as in the simulation studies.

For ultra-high dimensional data like our example, we may pre-filter and assign zero weight to the

less “important” voxels instead of assigning non-zero weights to all the voxels in order to improve

computational efficiency. For example, for WPCA-2 and SWPCA based on the p-value map, we

thresholded all FDR-corrected − log10 p-values at the significance level of 0.01 for WG. For SPCA,

we selected the same number of voxels as the number of non-zero WG used in SWPCA according to

the importance scores. Figure 7 shows some selected views of the importance score image of SPCA

and the FDR-corrected − log10 p-value map used in WPCA-2 and SWPCA. Figure 8 presents more

slice views of the global spatial weights used in SWPCA and illustrates that some regions of interest

in AD studies, such as hippocampus and amygdala, were highly weighted.

In Table 5, we present the classification results that show the similar performance of PCA meth-

ods as in the simulation studies. SPCA slightly improves the classification rate over the standard

PCA. Both SPCA and WPCA-1 based on the same importance scores show quite similar perfor-

mance. WPCA-2 performs slightly better than WPCA-1. In addition, SWPCA and PSWPCA

outperform all other PCA methods with much lower misclassification rates. Notice that even us-

ing simple classification procedures, SWPCA/PSWPCA directly applied to the whole image can
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already lead to a misclassification percentage around 20% for ADNI data. To illustrate our pro-

posed dimension reduction tool, we applied simple classification procedures. It suggests that the

classification performance can be more improved by incorporating more sophisticated procedures.

Numerical examples illustrated that SWPCA and its penalized version PSWPCA provided

substantial improvement over other commonly used dimension reduction methods in image clas-

sification by incorporating spatial and class information via introduced global and local spatial

weights. Computationally, SWPCA algorithm provides an efficient implementation, which pro-

duces all PCs simultaneously unlike other methods like Shen and Huang (2008) that compute PC

one-by-one in a sequential way and converges much faster than the WPCA algorithm by Skočaj

et al. (2007) since it does not have arbitrary rotation problem. In practice, the computing time of

SWPCA varies depending on the analysis and method used for weight determination.

5 Discussion

This article is to develop a general SWPCA framework to generate low-dimensional representations

for high-dimensional imaging classification. By incorporating the global and local spatial weights,

SWPCA enables a selective treatment and selection of individual features, accommodates the com-

plex dependence among features of imaging data, and has the ability of utilizing the underlying

spatial pattern possessed by imaging data and class label information. SWPCA integrates feature

selection, smoothing, and feature extraction in a single framework. In the simulation studies and

real data analysis, SWPCA shows substantial improvement over PCA, SPCA, and WPCA.

The contributions of this article are two-fold. Firstly, from an image analysis point of view, our

Table 5: Average Misclassification Percentage for ADNI Data

PCA SPCA WPCA-1 WPCA-2 SWPCA PSWPCA

REG .329 .312 .307 .274 .213 .198
(.029) (.043) (.052) (.029) (.034) (.033)

k-NN .382 .343 .344 .313 .254 .227
(.028) (.045) (.052) (.030) (.035) (.041)

SVM .329 .313 .310 .274 .216 .215
(.029) (.042) (.042) (.030) (.033) (.032)

Standard deviations are in parenthesis.
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proposal timely responds to a number of growing needs of neuroimaging classification. It may also

provide a systematic solution to the integrative analysis of multi-modality imaging data and imaging

genetics data (Friston, 2009; Casey et al., 2010). Secondly, from a statistical methodology point

of view, our proposal provides a novel and broad framework for the use of covariates with graphic

structure to predict clinical outcomes. A large number of models and extensions are potential

outcomes within this framework. Although there has been imaging studies utilizing tensor/matrix

structure (Li et al., 2005; Park and Savvides, 2007; Li et al., 2010; Zhou et al., 2013), our proposal,

to the best of our knowledge, is the first work that integrates the spatial and graphic structure of

imaging data into a statistical supervised learning paradigm. Our work can be viewed as a logic

extension from the classical classification methods to a functional classification model.

Several important issues need to be addressed in future research. First, we will systematically

investigate the theoretical properties of SWPCA and its variations by extending the existing results

in the literature (Johnstone, 2001; Baik and Silverstein, 2006; Paul and Johnstone, 2007; Jung and

Marron, 2009; Benaych-Georges and Nadakuditi, 2011). Second, we will extend our SWPCA from

a classification framework to a regression framework in order to predict more complex univariate

and multivariate clinical outcomes. Third, we will develop new global weighting methods based on

some joint important feature selection methods and more complex screening methods, such as a

robust rank correlation screening in (Li et al., 2012). Many more complexities and new statistical

tools will definitely come out these new developments.
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A Appendix: Proofs

A.1 Proof of Lemma 1

The WRE Eswpca can be rewritten as follows:

Eswpca =
N∑
i=1

p∑
j=1

wj

∑
d∈B(j;h)

ω(j, d;h)
(
x̃id(h)− vTj ai

)2
=

N∑
i=1

p∑
j=1

wj

 ∑
d∈B(j;h)

ω(j, d;h)x̃id(h)2 − 2vTj ai
∑

d∈B(j;h)

ω(j, d;h)x̃id(h) + (vTj ai)
2


=

N∑
i=1

p∑
j=1

(xwij(h)−√wjv
T
j ai)

2 + C, with xwij(h) =
√
wj

∑
d∈B(j,h)

ω(j, d;h)x̃id(h),

= ||XW,h −AV TW 1/2
p ||2F + C,

= ||(Xh −AV T )W 1/2
p ||2F + C,

= Tr{(Xh −AV T )Wp(Xh −AV T )T }+ C,

where C is a scalar independent of A and V . Thus, minimizing Eswpca is equivalent to minimizing

(6) as stated in Lemma 1.

�

A.2 Proof of Lemma 2

Lemma 2 can be proved by using Theorem 4 of Zou et al. (2006) as follows. We kept their original

notations here.

Theorem 4 (Reduced Rank Procrustes Rotation; Zou et al., 2006): Let Mn×p and Nn×k be two

matrices. Consider the constrained minimization problem:

Â = arg min
A

||M −NAT ||2F , subject to ATA = Ik.

Suppose the SVD of MTN is UDV T , then Â = UV T .

Based on Lemma 1 and the discussion in Section 2.2, we have a similar minimization problem
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of A given V :

Â = arg min
A

||XW,h −AV TW 1/2
p ||2F ,

= arg min
A

||XT
W,h −W 1/2

p V AT ||2F , subject to ATA = Iq. (13)

If we set M = XT
W,h and N = W

1/2
p V in Theorem 4, then Â that minimizes (13) given V

subject to ATA = Iq is Â = PUT , where P and U are orthogonal matrices from SVD of

MTN = XW,hW
1/2
p V = XhWpV = PDUT .

�

A.3 Proof of Lemma 3

Assuming A is given, we take the derivative of Eswpca in (6) with respect to V . By setting it to

zero, we obtain the solution

V = bfXT
hA(ATA)−1.

In Algorithm 1, since A derived from Step (b) is subject to ATA = Iq, V becomes XT
hA in Step

(c).

�

A.4 Proof of Lemma 4

Since we can write:

||XW,h −AV TW 1/2
p ||2F = Tr

{
(XW,h −AV TW 1/2

p )(XW,h −AV TW 1/2
p )T

}
= Tr(XW,hX

T
W,h)− 2Tr(XW,hW

1/2
p V AT ) + Tr(AV TWpV A

T )

= Tr(XW,hX
T
W,h)− 2Tr(ATXW,hW

1/2
p V ) + Tr(V TWpV )

=

q∑
k=1

{
vTckWpvck − 2aTckXW,hW

1/2
p vck

}
+ Tr(XW,hX

T
W,h)

=

q∑
k=1

||W 1/2
p vck −XT

W,hack||2 + Tr(XW,hX
T
W,h)−

q∑
k=1

aTckXW,hX
T
W,hack,
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minimizing
{
||XW,h −AV TW

1/2
p ||2F +

∑q
k=1 λk||vck||1

}
is equivalent to the following minimization

problem. For each k = 1, ..., q, we have

v̂ck = arg min
vck

{
||W 1/2

p vck −XT
W,hack||2 + λk||vck||1

}
= arg min

vck


p∑

j=1

wj(vjk − xT
hjack)2 + λk

p∑
j=1

|vjk|


= arg min

vck


p∑

j=1

(vjk − xT
hjack)2 + λk

p∑
j=1

|vjk|/wj


= arg min

vck

||vck −XT
h ack||2 + λk

p∑
j=1

|vjk|/wj

 ,

where xhj is the j-th column of Xh and vjk is the j-th element of vck. This completes the proof of

part (i).

Part (ii) can be easily obtained by applying the lemma below to each element of vck.

Lemma The minimizer of (β − y)2 + λ|β| is β̂ = sign(y)(|y| − λ/2)+.

The proof of this lemma is straightforward, so we omitted here.

�

A.5 Proof of Lemma 5

Assuming V is given, we can obtain the solution of A by taking the derivative of (6) with respect

to A.

�
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Figure 1: True mean images for Simulation I. The left panel is the true mean image of Class 0:
µ0, in which purple and red colors represent θj0 = 0, 1, respectively; the right panel is the true
mean image of Class 1: µ1, in which purple, red, and yellow colors represent θj0 + θj1 = 0, 1, 2,
respectively.
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Figure 2: Weight illustration for Simulation I: a three-view slice illustration at coordinate (13, 7,
3) of the spatial weights used for WPCA-1 (left panel) and WPCA-2 and SWPCA (right panel).
The left panel contains the importance scores of SPCA, while the right panel contains the WG of
SWPCA, i.e., the FDR-corrected -log 10 p-value map.

Figure 3: Two-dimensional representation for Simulation I. The first two PCs from PCA, SPCA-50
(SPCA based on top 50 voxels), WPCA-1, WPCA-2, SWPCA, and PSWPCA are plotted. The
training set (top panels) and test set (bottom panels) are used to extract the PCs. Points with
blue and red colors represent true Class 0 and Class 1, respectively.
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Figure 4: True mean images for Simulation II. The left panel is the true mean image of Class 0:
µ0, in which two ROIs with purple and red colors represent θj0 = 0 and 1, respectively; the middle
panel is the true mean image of Class 1: µ1, in which two ROIs with purple and red colors represent
θj0 + θj1 = 0 and 1, respectively; the right panel is the true mean image of Class 2: µ2, in which
three ROIs with purple, red, and yellow colors represent θj0 + θj2 = 0, 1, and 2, respectively.

Figure 5: Weight illustration for Simulation II: a three-view slice illustration at coordinate (7, 6,
16) of the spatial weights used for WPCA-1 (left panel) and WPCA-2 and SWPCA (right panel).
The left panel contains the importance scores of SPCA, while the right panel contains the WG of
SWPCA, i.e., the FDR-corrected -log 10 p-value map.
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Figure 6: Two-dimensional representation for Simulation I. The first two PCs for PCA, SPCA-400
(SPCA based on top 400 voxels), WPCA-1, WPCA-2, SWPCA and PSWPCA are plotted. The
training set (top panels) and test set (bottom panels) are used to extract the PCs. Points with
blue, red, and green colors represent Class 0, Class 1, and Class 2, respectively.

Figure 7: Data and weight illustration for ADNI study. The left panel is a three-view slice illus-
tration at coordinate (49, 57, 32) of a sample RAVENS-map; the middle panel shows the important
scores of SPCA; the right panel illustrates the FDR-corrected − log 10 p-value map used as WG for
WPCA-2, SWPCA and PSWPCA.
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Figure 8: Weight illustration for ADNI study. Selected axial slices show the FDR-corrected -log 10
p-value map used in SWPCA which correctly identifies some important regions reported in the
literature for AD, such as hippocampus and amygdala.

32


