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a b s t r a c t 

We introduce deep neural networks for the analysis of anatomical shapes that learn a low-dimensional 

shape representation from the given task, instead of relying on hand-engineered representations. Our 

framework is modular and consists of several computing blocks that perform fundamental shape process- 

ing tasks. The networks operate on unordered point clouds and provide invariance to similarity transfor- 

mations, avoiding the need to identify point correspondences between shapes. Based on the framework, 

we assemble a discriminative model for disease classification and age regression, as well as a generative 

model for the accruate reconstruction of shapes. 

In particular, we propose a conditional generative model, where the condition vector provides a mech- 

anism to control the generative process. For instance, it enables to assess shape variations specific to a 

particular diagnosis, when passing it as side information. 

Next to working on single shapes, we introduce an extension for the joint analysis of multiple anatomical 

structures, where the simultaneous modeling of multiple structures can lead to a more compact encoding 

and a better understanding of disorders. 

We demonstrate the advantages of our framework in comprehensive experiments on real and synthetic 

data. The key insights are that (i) learning a shape representation specific to the given task yields higher 

performance than alternative shape descriptors, (ii) multi-structure analysis is both more efficient and 

more accurate than single-structure analysis, and (iii) point clouds generated by our model capture mor- 

phological differences associated to Alzheimer’s disease, to the point that they can be used to train a 

discriminative model for disease classification. Our framework naturally scales to the analysis of large 

datasets, giving it the potential to learn characteristic variations in large populations. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the last decades, a variety of shape analysis techniques 

ave been developed for modeling the human anatomy from med- 

cal images ( Ng et al., 2014 ). These methods have become a main-

tay in medical image analysis, not only because of their utility 

n providing priors for segmentation, but also because of their 
∗ Corresponding author. 

E-mail address: christian.wachinger@med.uni-muenchen.de (C. Wachinger). 
1 Joint first authors. 

Data used in preparation of this article were obtained from the Alzheimer’s Dis- 

ase Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the in- 

estigators within the ADNI contributed to the design and implementation of ADNI 

nd/or provided data but did not participate in analysis or writing of this report. 

 complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/ 

p-content/uploads/how _ to _ apply/ADNI _ Acknowledgement _ List.pdf . 
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alue in quantifying shape changes between subjects and popula- 

ions ( Shen et al., 2012 ). Shape analysis helps in localizing anatom- 

cal changes, which can yield a better understanding of morpho- 

ogical changes due to aging and disease ( Gerardin et al., 2009; 

achinger et al., 2017 ). 

Given that the morphology of organs across a population is 

ighly heterogeneous, modeling and quantifying these shape vari- 

tions is a challenging task. Thanks to the growing availability of 

arge-scale medical imaging datasets, we have now the possibility 

o model these underlying shape variations in the population more 

ccurately. Unfortunately, working on large sample sizes comes 

ith computational challenges, which can limit the practical appli- 

ation of traditional methods for shape analysis ( Ng et al., 2014 ). 

n addition, imaging datasets usually come with valuable pheno- 

ypic information of the patient. This large amount of available 

ata, paired with recent advances in machine learning, calls for 

https://doi.org/10.1016/j.media.2020.101852
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2020.101852&domain=pdf
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he development of a data-driven and learning-based shape anal- 

sis framework that can benefit from the large amount of image 

ata and provides a mechanism to include prior information in the 

nalysis. 

Many fields in medical image analysis have recently 

een revolutionized by the introduction of deep neural net- 

orks ( Litjens et al., 2017 ). These approaches have the ability 

o learn complex, hierarchical feature representations that have 

roven to outperform hand-crafted features in a variety of medical 

maging applications. Also in shape analysis, learning a shape 

epresentation may offer advantages in contrast to working with 

re-defined parameterizations like point distribution models 

 Cootes et al., 1995 ), spectral signatures ( Wachinger et al., 2015; 

euter et al., 2006 ), spherical harmonics ( Gerardin et al., 2009 ), 

edial representations ( Gorczowski et al., 2007 ), and diffeomor- 

hisms ( Miller et al., 2014; Pennec et al., 2019 ). One of the main

easons for the success of neural networks in image analysis is 

he use of convolutional layers, which take advantage of the shift- 

nvariance properties of images ( Bronstein et al., 2017 ). However, 

he use of deep networks in medical shape analysis is still largely 

nexplored; mainly because typical shape representations such as 

oint clouds and meshes do not possess an underlying Euclidean 

r grid-like structure. 

In this work, we introduce a modular and versatile framework 

or shape analysis with deep neural networks. The framework con- 

ists of computing blocks for processing shapes that can be assem- 

led to perform a variety of tasks in shape analysis. First, we con- 

truct a discriminative model for the prediction of Alzheimer’s dis- 

ase and age, where the network learns a shape descriptor that is 

ptimal for the given task. Second, we propose a generative model 

or the unsupervised learning of shape variations within a popula- 

ion. In particular, we introduce a conditional generative model to 

ave the ability to also include non-image data. Our results show 

hat the neural network learns modes of variation that capture 

omplex shape changes, yielding a compact representation and the 

eneration of realistic samples. 

Our framework is based on a deep neural network architecture, 

hich operates directly on a point cloud representation of organs. 

oint clouds present a raw, lightweight and simple parameteriza- 

ion that avoid complexities involved with meshes and that is triv- 

al to obtain given a segmented surface. While point clouds do not 

over mesh connectivity, they offer high flexibility as there is no 

eed of pre-defining a topology or aligning all shapes to a tem- 

late, e.g., Ranjan et al. (2018) . Our framework offers the following 

dvantages: 1) it is invariant to similarity transformations, avoiding 

he need to pre-align the shapes to be analyzed; 2) it is invariant 

o the ordering of the elements in the point cloud, meaning that 

omputing correspondences between points across shapes is not 

ecessary; 3) it does not impose any constraints on the topology 

f the shapes, providing high flexibility; 4) it scales to analyzing 

arge shape datasets and therefore has the potential to learn char- 

cteristic variations in large populations. 

Finally, our framework cannot only process a single shape but 

imultaneously multiple shapes. In many applications, we do not 

nly want to study one organ in isolation, as several anatomical 

tructures can be segmented from an image. To provide a more 

olistic picture of the anatomy, we therefore want to jointly pro- 

ess multiple shapes. For discriminative tasks, this can increase the 

lassification accuracy. For generative tasks, this will give us access 

o a joint low-dimensional representation that captures anatomical 

ariations of multiple structures. 

.1. Related work 

Previous work in medical shape analysis can be roughly di- 

ided in either discriminative or generative approaches. Discrim- 
2 
native approaches aim at finding shape descriptors, which al- 

ow to quantify and characterize the shape of anatomical struc- 

ures. These shape descriptors are then used to perform either 

lassification or regression tasks. Thickness and volume measure- 

ents of brain structures have been used to perform age regres- 

ion ( Becker et al., 2018 ) and to classify between healthy controls 

HC) and patients ( Costafreda et al., 2011 ). Medial descriptors were 

sed to perform discriminative analysis between HCs and autis- 

ic subjects ( Gorczowski et al., 2007 ). Approaches based on spec- 

ral signatures have been previously used to perform disease pre- 

iction and age regression ( Wachinger et al., 2015 ). Different to 

hese approaches, our proposed model is not based on the compu- 

ation of pre-defined shape features, but rather aims at find low- 

imensional representations optimized for a particular task. 

Different to discriminative approaches, generative shape mod- 

ls are able not only to quantify shape variations, but also allow 

o generate new valid shapes similar to those the model observed 

uring training. The most common approach to produce genera- 

ive models for medical shape analysis is based on Point Distri- 

ution Models (PDMs) ( Cootes and Taylor, 1992 ). PDMs represent 

hapes using point cloud representations, which consist of points 

istributed across the surface. A generative model based on PDM’s 

s usually built by finding a mean shape and the principal modes 

f shape variation through the use of Principal Component Analy- 

is (PCA). A challenge of PDM’s is however that point correspon- 

ences have to be found between all shapes in the dataset. This 

sually involves a registration step, which is not only challenging 

ut also computationally expensive for large databases. Moreover, 

omologous features may not exist when comparing shapes that 

re subject to strong variations, e.g., over the course of brain de- 

elopment. While our method is also based on point clouds, we 

o not require correspondences between shapes. 

A variational autoencoder has been proposed for learning a 

ow-dimensional shape representation from meshes ( Shakeri et al., 

016 ), where correspondences between meshes were computed 

ith spectral matching ( Lombaert et al., 2013 ). An autoencoder 

or shape analysis on binary images was proposed in ( Evan and 

abuncu, 2019 ). Other popular generative shape models are based 

n skeletal representations ( Pizer et al., 2013 ), spherical harmon- 

cs ( Gerardin et al., 2009 ), and deformations ( Miller et al., 2014;

urrleman et al., 2014; Pennec et al., 2019 ). 

Conditional variational autoencoders (CVAE) ( Kingma and 

elling, 2013; Sohn et al., 2015 ) are an extension of the gener- 

tive model in variational autoencoders by introducing a condi- 

ion vector, which allows to include prior information in the au- 

oencoder. A CVAE has recently been used in medical imaging for 

D fetal skull reconstruction from 2D ultrasound ( Cerrolaza et al., 

018 ). Conditional generative models have also recently be- 

ome popular in the context of generative adversarial networks 

 Goodfellow et al., 2014 ). A conditional adversarial networks was 

roposed as a general-purpose solution to image-to-image trans- 

ation problems ( Isola et al., 2017 ). In contrast to those previous 

ork, we are proposing a conditional generative model for shape 

nalysis on point cloud representations. 

An earlier version of this work has been presented at confer- 

nces ( Gutiérrez-Becker and Wachinger, 2018; 2019 ), and has been 

onceptualized and expanded in this article. 

. Method 

We present a modular and versatile framework for shape anal- 

sis on point clouds with deep neural networks. In Section 2.1 , we 

ntroduce several computational blocks for processing point clouds 

ith neural networks. In Section 2.2 , we compose the blocks 

o form a discriminative and generative model, respectively. The 

iscriminative model finds low-dimensional representations opti- 
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Fig. 1. The global signature network is the main building block of our approach, 

which maps a point cloud P to the global signature v . The network is composed of 

a multi-layer perceptron (MLP) with shared weights and a max-pooling operator. 
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ized for regression or classification tasks; the generative model 

ims to estimate the data distribution and samples from it to ob- 

ain new shapes. Finally, Section 2.3 presents the extension of the 

odels to the joint analysis of multiple structures. 

.1. Computational blocks 

We present four computational blocks for shape analysis on 

oint clouds. The input are point cloud representations P = 

 p 1 , . . . , p N } with p i = [ x i , y i , z i ] being the coordinates of point i on

he surface of an anatomical structure and N the number of points. 

.1.1. Global signature network 

A key building block of our method is a function f : P �→ v , which

aps a point cloud representation to a global shape signature v ∈ 

 

F . Function f has to take the properties of point clouds into ac- 

ount. A point cloud representation is unordered , which means 

hat any operation applied to the point cloud P must be invari- 

nt to permutations on the ordering of the points. This also en- 

ures that we do not need one-to-one correspondences between 

oint clouds. In our framework, function f is based on a PointNet 

etwork ( Qi et al., 2017 ), which is an architecture specifically de- 

igned to operate on point cloud representations. The architecture 

f the network, which approximates function f is based on two op- 

rations: 

• A function h : p i �→ h i , which maps each individual point p i to

a higher dimensional representation h i ∈ R 

F . By applying h to 

each point of the cloud P , we obtain the matrix H ∈ R 

N×F ,

which corresponds to a high dimensional representation of 

point cloud P . 
• A symmetric operator g : H �→ v , which aggregates these high 

dimensional representations into a vector v ∈ R 

F that corre- 

sponds to a global signature of the point cloud; in practice, 

function g corresponds to a max-pooling operator g(H ) := [
max i ∈ N H i j 

]
j=1 , ... ,F 

. 

utting these together, function f : P �→ v is approximated by: 

 = f (P ) ≈ g(h (P )) . (1) 

Fig. 1 illustrates the Global Signature Network (GSN) that ap- 

roximates function f . 

It consists of a multi-layer perceptron (MLP) that projects the 

oint cloud P ( N × 3) into a higher dimensional representation 

 N × F ). The subsequent max-pooling layer extracts the most rele- 

ant features from this representation to form the global signature 

 (1 × F ). Qi et al. (2017) also evaluated to learn the pooling op-

rator, however, the max-pooling layer yielded higher performance 

o that we use it in our network. 

GSN blocks are components for the networks in the following 

ections, where the dimensionality F depends on the complexity 
3 
f the task (e.g., F = 256 for the rotation network in 2.1.2 and F =
024 for the discriminative network in 2.1.3 ). 

.1.2. Rotation network 

According to one of its most popular definitions, shape is all 

he geometrical information that remains when location, scale and 

otational effects are filtered out from an object ( Kendall, 1989 ). 

ence, when our network receives as input a raw point cloud P raw 

, 

e must first ensure that its output is invariant to similarity trans- 

ormations (scaling, translation, and rotations). 

In our framework, the effects of scale and translation are elim- 

nated by centering all shapes around their center of mass, and by 

ormalizing the range of the coordinates of the points to lie within 

he range [ −1 , 1] . To guarantee invariance to rotation, we intro- 

uce a rotation network that learns the mapping P raw 

�→ θ , such 

hat P = T (θ ) P raw 

is in spatial alignment with a reference point 

loud R . A similar idea is also used by spatial transformer net- 

orks ( Jaderberg et al., 2015; He et al., 2019 ). The rotation matrix 

( θ) is parameterized by the rotation vector θ = [ θx , θy , θz ] 
T . Fig. 2

llustrates the rotation network, which builds onto the GSN to ex- 

ract the global signature vector v that is then fed to a multilayer 

erceptron to regress the rotation vector θ . 

To ensure the alignment with the reference point cloud, we 

easure a distance between R and P . As we are operating on un- 

rdered point clouds, we require a metric, which is permutation 

nvariant. We use the 1-Wasserstein distance, also known as earth 

over’s distance (EMD) ( Rubner et al., 20 0 0 ), in our loss function

 align (P , R ) = EMD (P , R ) = min 

φ: P → ̂

 R 

∑ 

p ∈ P 
|| p − φ(p ) || 1 , (2)

here φ( p ) is the optimal bijection that maps a point p ∈ P to a

oint point r ∈ R , such that the distance between the two sets is

inimal. Notice that EMD differs from other point cloud measures, 

ased on Nearest Neighbour search (e.g. Chamfer Distance or ICP 

rror), in the fact that it enforces a one-to-one mapping between 

wo sets of points. 

.1.3. Encoder network 

The encoder block allows to produce representations z , which 

apture the geometrical information of the object of interest. As 

uch, this can be used in a generative, as well as, a discriminative 

odel. Here, we describe a more generic version of the encoder, 

s it would be used in a generative model. The goal is to approxi- 

ate the posterior distribution q ( z | P ) with z ∈ Z ⊂ R 

k being a vec-

or in the latent space Z . For simplicity, we make the assumption 

hat q is a Gaussian probability density N (μ, �) , with mean μ and 

ovariance matrix � = diag [ σ0 , σ1 , . . . σk ] . Fig. 3 illustrates the en- 

oder network that approximates q . The network is based on the 

SN to compute the global signature, which is the input of an MLP 

ith output ( μ, �). A latent vector z is obtained by sampling from 

he distribution q . 

The encoder bears similarities to the rotation block, but instead 

f estimating the rotation vector, the mean and variance of the 

ata distribution are estimated. 

The latent loss L latent of the variational autoencoder is given by 

he Kullback-Leibler divergence between N (μ, �) and a Gaussian 

rior N (0 , I ) . Since � is a diagonal matrix, the Kullback-Leibler di-

ergence between these distributions is 

 latent = 

k ∑ 

i =1 

σi + μi − log (σi ) − 1 . (3) 

.1.4. Decoder network 

The decoder network takes as input a latent vector z ∈ R 

k and 

enerates a point cloud 

ˆ P . In our framework, we consider next to 
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Fig. 2. The rotation network transforms the input point cloud P raw to bring it into alignment with the reference template R . It is composed of a GSN block, which extracts 

the signature vector v , and an MLP, which regresses the rotation parameters θ from the signature v . The original point cloud is aligned to a template R by applying the 

transformation T θ , parameterized by θ . The quality of the alignment is measured by the loss function L align . . 

Fig. 3. The encoder network finds low-dimensional shape representation z of a 

point cloud. The global signature is extracted by the GSN and an MLP estimates 

the mean and variance of the data distribution. The latent vector z is obtained by 

sampling from the distribution. The quality of the distribution estimation is as- 

sured by enforcing L latent , the latent loss of the variational autoencoder given by 

the Kullback-Leibler divergence. 

Fig. 4. Decoder network approximates the mapping [ z, c ] �→ P . The input of the de- 

coder are the embedding z and the condition vector c . The output is the recon- 

structed point cloud ˆ P . The accuracy of the reconstruction is measured using the 

reconstruction loss L rec . 
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Fig. 5. The Discriminative Model is based on three main components: 1) the rota- 

tion module bringing the input point cloud to a canonical space, 2) the Global Sig- 

nature Network which extracts the feature vector ( F = 1024 ) and passes it through, 

3) a fully connected block for making the final decision. 
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he latent vector also a condition vector c ∈ R 

m as input to the de-

oder, as illustrated in Fig. 4 . The condition vector c is an optional

et of parameters that can be used to introduce prior knowledge 

n the shape model. For example, the condition vector can include 

 variable indicating the diagnostic status of the point cloud being 

enerated. The decoder therefore models the mapping [ z, c ] �→ P . 

As illustrated, the decoder approximates this mapping with a 

ully connected MLP with 3 layers. In a generative model, the de- 
4 
oder is assigned a reconstruction loss 

 rec = EMD (P , ̂  P ) , (4) 

hich assesses the quality of the reconstructed point cloud 

ˆ P with 

espect to P . 

.2. Single-Structure models 

We present a discriminative and a generative model for shape 

nalysis on single anatomical structures based on the previously 

ntroduced computational blocks. 

.2.1. Discriminative model 

The goal of the discriminative model is to learn the mapping 

 �→ y between a point cloud and a label y , which can either be

 real number in the case of a regression task or a categori- 

al variable for classification. Fig. 5 illustrates the discriminative 

odel that is trained in an end-to-end fashion. Note that the net- 

ork consists of two GSN blocks (one inside the rotation network), 

hich are independent. 

The raw point cloud P raw 

is the input to the discriminative 

odel and first processed with rotation network to align the point 

loud. The global signature is then extracted with the GSN and 

assed through multi-layer-perceptron with label y as output. 

The discriminative network is trained end-to-end by combining 

 classification/regression loss L cls with the alignment loss L align 

 = L align + L cls . (5) 

or L cls , we could either use a cross entropy loss for classification 

asks or an l 2 -loss in the case of regression. Training the network 

n this manner will result in global signatures v of point clouds 

hat are optimized for the particular discriminative task. 

.2.2. Generative model 

Fig. 6 illustrates the generative model, which is based on a Con- 

itional Variational Autoencoder (CVAE). The network encodes a 
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Fig. 6. The Generative Model is based on a Conditional VAE. It is formed by three main components: 1) the rotation module bringing the input point cloud to a canonical 

space, 2) the encoder module approximating the posterior distribution P E ( z | P ), and 3) the decoder module reconstructing the point cloud by approximating the mapping [ z, 

c ] �→ P . 
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Fig. 7. In the Multi-Structure Discriminative Network, each structure is processed 

by using separate paths to create independent global signatures, illustrated in dif- 

ferent colors. The individual signatures are then concatenated and passed through 

an MLP for predicting the label y . 
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oint cloud into a k -dimensional latent variable z , and then de- 

odes this embedding to reconstruct a point cloud 

ˆ P . The genera- 

ive model combines three computational blocks: 1) a rotation net- 

ork, which aligns raw point clouds to a canonical space, 2) an en- 

oder, which approximates the posterior distribution q ( z | P ), and 3) 

 decoder, which models the mapping [ z, c ] �→ P with a condition

ector c . 

The generative model is trained by optimizing the combined 

oss function 

 = w a L align + w r L rec + w l L latent , (6) 

ith the alignment ( L align ), reconstruction ( L rec ) and latent ( L latent )

osses. The weights w a , w r and w l balance the contribution of 

ach one of these terms in the total loss function. In practice, 

he most important weight parameters to take into account is the 

eight of the latent loss w a . A small weight of the latent loss re-

oves the variational component of the autoencoder, and turns the 

odel into a regular autoencoder. As a consequence there is no 

ay to ensure that the learned representations are smooth. How- 

ver when the weight of the latent loss is too high, the varia- 

ional autoencoder looses its ability to capture high frequency de- 

ails of the shape. In our experiments the values of these weights 

re w a = 1 , w r = 1 , w l = 10. 

The resulting generative model finds a low-dimensional shape 

epresentation z given an input point cloud, which could be 

sed as features for training a classifier, as we will describe in 

ection 3.2 . At the same time, the model allows to generate point 

louds ˆ P from the learned embedding space by sampling z from a 

ultivariate Gaussian and setting a condition vector c . 

.3. Multi-Structure models 

So far, we have focused on shape analysis for single structures. 

n advantage of our framework is that it can be easily extended 

o the joint analysis of multiple structures. This is important as we 

re often interested in a holistic morphological modeling of mul- 

iple anatomical structures, which are not independent from each 

ther. To ease notation, we use P 

0 , . . . , P 

K to refer to multiple raw 

oint clouds without explicitly stating ‘raw’. 

.3.1. Multi-structure discriminative model 

Fig. 7 illustrates the multi-structure extension of the discrimi- 

ative model. Each shape is first passed through an individual ro- 

ation network and GSN to extract a global signature per shape. 

hese global signatures are then concatenated and fed into an MLP 
5 
o make the prediction, which takes into account morphological 

eatures of all structures. As an alternative to this architecture, we 

ould directly concatenate all point clouds and pass them through 

 single rotation network and GSN. However, we have demon- 

trated in our earlier work ( Gutiérrez-Becker and Wachinger, 2018 ) 

hat keeping separate branches for each individual structure yields 

o a higher performance than directly concatenating point clouds. 

.3.2. Multi-structure generative model 

Fig. 8 illustrates the multi-structure generative model, 

hich concatenates independent GSN paths and passes them 

hrough an MLP in order to estimate the posterior distribution 

 (z | P 

0 , P 

1 , . . . , P 

K ) . The latent vector z is sampled from the distri- 

ution and passed through a decoder shared by all the structures. 

 latent remains identical to Eq. (3) , while L rec and L align are 

veraged over the different structures 

 rec = 

1 

K + 1 

K ∑ 

i =0 

EMD ( P 

i , ˆ P 

i ) , (7) 

here the extension of L align is analogously. 
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Fig. 8. In the Multi-Structure Generative Network, each structure is processed using separate paths to create independent global signatures. The signatures are then con- 

catenated and fed into an MLP to estimate the posterior probability q (z | P 0 , P 1 , . . . , P K ) . N otably, the embedding jointly encodes all structures. For generating structures 
ˆ P 0 , ̂  P 1 , . . . , ̂  P K , a latent vector z is sampled from the distribution, combined with a condition vector, and passed through the MLP decoder. 
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3 https://www.kaggle.com/daavoo/3d-mnist 
. Experiments 

We evaluate the discriminative and generative models in sev- 

ral supervised and unsupervised tasks, where we describe the 

ata and pre-processing in Section 3.1 . In Section 3.2 , we ana- 

yze the performance of the discriminative model in regression and 

lassification tasks. In sections 3.3 and 3.4 , we evaluate the gener- 

tive model for single and multi-structure tasks. 

.1. Data and pre-processing 

We want to explore the capabilities of our model in different 

cenarios. Hence, in our experiments, we work with point clouds 

rom two datasets from different domains. As explained before, all 

oint clouds are centered and divided by the Euclidean norm of 

he furthest point (with respect to the origin of coordinates), so 

hat their values lie inside a sphere with radius 1, in order to re-

ove the effects of translation and scale. 

.1.1. ADNI 

We work with data from the Alzheimer’s Disease Neuroimaging 

nitiative (ADNI) (adni.loni.usc.edu) ( Jack et al., 2008 ), which con- 

ains magnetic resonance imaging (MRI) scans from healthy con- 

rols (HC) and patients with mild cognitive impairment (MCI) and 

lzheimer’s disease (AD). Segmentations of the structures of inter- 

st are obtained using the automatic segmentation tools included 

n FreeSurfer ( Fischl, 2012 ). From these segmentations meshes are 

xtracted and point clouds are obtained by uniformly sampling 

oints for each structure. ADNI is a longitudinal study, i.e., we have 

ultiple follow-up scans per participant. In total, we work with 

974 images (2,423 HC, 978 AD, and 4625 MCI). As reference shape 

or the rotation network, we randomly selected an image from the 

XI dataset (IXI013), where we noted similar results for different 

eference shapes. 
6 
.1.2. 3D-MNIST 

As second dataset, we use a 3D point cloud version of the 

NIST database 3 . It contains point clouds of handwritten digits 

rom 0 to 9. The advantage of this computer vision dataset is that 

he classes are visually very different, so that it is easier to perceive 

he model’s performance. In contrast, changes on medical data are 

ypically much smaller and therefore not as easy to visualize. The 

ataset contains 50 0 0 3D point clouds, where we uniformly sam- 

led 1024 points for each point cloud. 

.2. Discriminative predictions 

In our first experiment, we perform regression and classifica- 

ion tasks on shapes from ADNI. In the classification task, we per- 

orm two experiments: in the first one we classify between healthy 

ontrols and patients diagnosed with Alzheimer’s Disease (AD) 

nd in the second one we perform classification between healthy 

ontrols and patients with Mild Cognitivie Impairment (MCI). In 

he regression task, we estimate the age. For these experiments, 

e use shapes from 4 brain structures and 512 points per struc- 

ure: the left and right hippocampi and the left and right lat- 

ral ventricles. We split the data in training, validation and test 

ets (70%, 15%, 15%) on a per subject basis in order to guaran- 

ee that scans from the same subject do not appear in different 

ets. 

We evaluate three different methods to perform the discrimi- 

ative tasks: 1) a multilayer perceptron trained on BrainPrint fea- 

ures ( Wachinger et al., 2015 ), which are shape descriptors that 

ave presented high performance on Alzheimer’s disease classifi- 

ation and age estimation ( Wachinger and Reuter, 2016 ), 2) a mul- 

ilayer perceptron trained on shape features obtained using the 

ulti-structure autoencoder (i.e. z in Fig. 8 ), and 3) the end-to-end 

ulti-structure discriminative network, as illustrated in Fig. 7 . 

https://www.kaggle.com/daavoo/3d-mnist
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Table 1 

Precision, Recall and F1-score for AD and MCI classification 

with BrainPrint, the generative model, and the discrimina- 

tive model. For BrainPrint and the generative model, an MLP 

classifier is trained on the shape representations. 

Precision Recall F1-score 

HC-AD Classification 

BrainPrint 0.80 0.79 0.78 

Generative Model 0.78 0.79 0.78 

Discriminative Model 0.83 0.84 0.82 

HC-MCI Classification 

BrainPrint 0.60 0.69 0.62 

Generative Model 0.59 0.72 0.63 

Discriminative Model 0.66 0.68 0.67 

Fig. 9. Mean absolute error (MAE), and its standard deviation, in years for the age 

prediction experiments with all ADNI subjects (top) and healthy controls (bottom). 

We compare BrainPrint, the generative model, and the discriminative model. For 

BrainPrint and the generative model, an MLP is used for obtaining a prediction from 

the shape representations. 
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Table 1 summarizes the results of the Alzheimer’s Disease 

lassification experiments. For both tasks, BrainPrint and features 

btained from the multi-structure autoencoder have a compara- 

le performance, which shows that the generative model is able 

o capture a meaningful representation. The discriminative model 

as the highest precision and F1-score for both tasks and higher 

ecall on AD classification. This illustrates the potential of learn- 

ng feature representations, which are optimal for a particular dis- 

riminative task. We also observe a drop in the performance of the 

odels for HC-MCI classification. This is due to the high variability 

ithin the class, since the detection of MCI is more symptomatic 

nd it is sub-divided in different stages. 

For the regression task, we evaluate brain age predic- 

ion ( Franke et al., 2010; Becker et al., 2018 ), i.e., the prediction of

 person’s age from a brain MRI scan. The prediction of the brain 

ge is of interest as it was demonstrated that brain age relates to 

ognitive aging and that the difference to the chronological age is 

ssociated to neurodegenerative diseases. We perform two experi- 

ents on the ADNI dataset. In the first one, we include all subjects 

rom the dataset and in the second one, we only select healthy 

ontrols for the analysis. Fig. 9 summarizes the results of this ex- 

eriment with plots of the mean absolute error (MAE). The eval- 

ations are done again on the same brain structures used for the 

lassification task. In the experiment on all subjects, there is a sig- 

ificantly lower prediction error for the discriminative model than 

or the generative model ( p < . 001 ) and BrainPrint ( p < . 001 ). Fur-

her, the difference between the generative model and BrainPrint 

s significant ( p < . 001 ). For the experiment on healthy subjects, 

here is no significant difference between the generative model 
7 
nd BrainPrint, but the improvement of the discriminative model 

s again significant. 

Overall, the results for the regression task are similar to those 

rom the classification task with the discriminative model showing 

he best performance. When using the features from the genera- 

ive model, we obtain a lower error than with BrainPrint features, 

hile it is reversed for classification. 

.3. Single-Structure generative model 

In this section, we will asses the single-structure generative 

odel in a number of applications. 

.3.1. Conditional shape model of 3D-MNIST 

As a first experiment, we train a generative shape model on 

D-MNIST and successively sample point clouds from the low- 

imensional embedding. We trained two separate generative mod- 

ls. For the first one, we set the dimension of the embedding z 

o k = 2 , and we use a 10-dimensional one hot encoding of the

lass of each digit as the condition vector c . The second model is 

rained under the same settings but with the condition vector c set 

o all zeros. This means that both models are essentially identical, 

ith the important difference that the first one is equipped with 

 condition vector, which allows us to give information to the net- 

ork about the digit to be encoded and reconstructed. In Fig. 10 , 

e present artificial point clouds generated by these two models. 

t the bottom right of Fig. 10 , we show point clouds generated 

ithout the use of the condition vector c . Although the model is 

ble to generate some realistically looking digits (like the 1s in the 

enter column), the reconstructed point clouds are generally not 

s sharp as those generated by the conditional model. In contrast, 

y setting the condition vector to generate a specific digit, we are 

ble to obtain sharp point clouds, while at the same time captur- 

ng complex non-linear deformations for each digit. The digits in 

ig. 10 present a very similar orientation (tilted to the right and 

ligned with respect to the x, y plane). This is the result of align- 

ng the point clouds to a reference template using the rotation net- 

ork. An important observation is that all digits are sampled from 

he same shape space Z, and only the condition vector c changes. 

his means that the encoding z is able to encode common shape 

haracteristics between all digits. For example, the 1st embedding 

imension in Fig. 10 captures the width of the digits. It is also 

orth mentioning that for many typical statistical shape models, 

raining a shape model consisting of 50 0 0 point clouds would be 

mpractical due to memory limitations and to the computationally 

xpensive task of finding corresponding points between all these 

hapes. 

.3.2. Conditional shape model of the hippocampus 

In our second experiment, we build a shape model of the left 

ippocampus. Our goal is to assess shape differences between 

ealthy controls and subjects diagnosed with Alzheimer’s disease. 

everal previous studies have established strong morphological 

hanges in the hippocampus associated to the progression of de- 

entia ( Frisoni et al., 2008; Gerardin et al., 2009 ). For compari- 

on, we build a statistical shape model of the hippocampus us- 

ng the ShapeWorks framework ( Cates et al., 2008 ). ShapeWorks 

s a statistical shape model tool, which achieved the best per- 

ormance in several shape analysis tasks in a recent comparison 

 Goparaju et al., 2018 ). To perform a fair comparison with Shape- 

orks, which is limited in the number of samples to be analyzed 

ue to memory constraints, the number of samples for performing 

his experiment was reduced to 200 randomly selected samples 

100 HC / 100 AD). We split the images into a training and testing 
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Fig. 10. Point clouds sampled from the 2D embedding space generated by training our model using the 3D MNIST dataset. On the bottom right we show 3D point clouds 

generated by setting the conditional vector c to zero. For the other figures, c is set to generate point clouds of the digits 9,0 and 7. The arrows show the areas where we 

have observed the major changes.. 
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et (100 / 100 split) and we build a statistical shape model of the 

eft hippocampus using the training set (50 HC and 50 AD). Seg- 

entations are pre-processed using the grooming operations in- 

luded in ShapeWorks to obtain smooth hippocampi surfaces, and 

odels of 1024 points are trained. As a condition vector c , we use 

 one hot encoding of the diagnosis of the patient ([0,1] for HC, 

1,0] for AD). It is also worth mentioning that training the Shape- 

orks model for 100 images took 5h, compared to the 2h training 

ime for our model. 
8 
Reconstruction error: We first evaluate the ability of our 

odel to obtain an accurate and compact representation of the 

ippocampus shape. To this end, we measure the reconstruction 

rror between the reconstructed shapes ˆ P and the input shapes P 

y evaluating EMD (P , ̂  P ) . We train 5 different models with embed-

ing dimensions ranging from k = 1 to k = 5 . As a comparison, we

uantify the reconstruction error of synthetic hippocampus shapes 

enerated by ShapeWorks. The lower reconstruction errors of our 

ethod in Fig. 11 indicate that it captures the complex deforma- 
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Fig. 11. Left: reconstruction error of shapes generated using either ShapeWorks or our CVAE framework with respect to the input point cloud. Right: HC vs AD Classification 

accuracy for a discriminative model trained either using point clouds obtained from real segmentations or synthetic hippocampus point clouds generated by the generative 

model. 

Fig. 12. Hippocampus surfaces generated using point clouds sampled from our model trained on segmented images obtained from the ADNI database. The top row corre- 

sponds to point clouds generated by setting the condition vector to generate HC shapes, and the middle row corresponds to AD. Point clouds are generated by moving along 

the first embedding dimension. For the top two rows, the color coding shows the deformation (measured as the absolute distance between corresponding points) between 

the mean and the generated point cloud. In the bottom row, we show the deformations between HC and AD shapes generated using the same shape embedding z and only 

the conditional vector changes (i.e. the difference between the two top rows). 

t

r

b

f

o

o

s

t

o

s

i  

p

c  

t

t

t

c

w

a

b

l

t

e

r

p

f

a

v

ions of the hippocampi and therefore allows for a compact shape 

epresentation with few modes. 

Effect of conditioning the shape model using a diagnostic la- 

el: One of the main contributions that separates our framework 

rom previous approaches for shape analysis is the introduction 

f the conditional vector c . We have observed in our experiment 

n the MNIST dataset that our method is able to generate realistic 

hapes of digits given different condition vectors c . 

To evaluate the effects of the condition vector in the model of 

he hippocampus shapes, we use the model trained on the previ- 

us experiment (for embedding dimension k = 2 ) and generate a 

et of synthetic point clouds by sampling values of z and assign- 

ng either c = [1 , 0] or c = [0 , 1] to generate synthetic hippocam-

us shapes corresponding to morphological characteristics asso- 

iated to either HC or AD. In Fig. 12 we can observe some of
9 
he synthetic shapes generated by our model, corresponding to 

he mean shape (center) and shapes generated by moving across 

he first embedding dimension z 0 . Notice that shapes in the same 

olumn correspond were generated using the same embedding z , 

ith different condition vector c . Fig. 12 shows that by moving 

cross z 0 , our model captures shape differences that are common 

etween the HC and AD cases. For example, we observe that the 

eft most example for both cases has a large deformation on the 

op part of the hippocampus. On the bottom row, we show differ- 

nces between the point clouds of the top two rows, which cor- 

espond to the shape variations that our model associates to the 

resence of AD. These shape variations correspond to large de- 

ormations in the lateral part of the hippocampus body, roughly 

round the CA1 subfield. These observations are in line with pre- 

ious findings on shape differences of the left hippocampus as- 
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Fig. 13. In order to asses the effect of conditioning and the multi-structure analy- 

sis, we compute the reconstruction error along the dimension of the feature vector 

per structure for different scenarios: 1) using Shapeworks for generating the indi- 

vidual structures (green curve) ; 2) Single Structure: Training our generative model 

for each structure without adding any condition (continuous blue); 3) Single Struc- 

ture Conditional: training our generative model for each structure conditioning on 

the disease (dashed blue); 4) Multi-Structure: Training our multi-structure genera- 

tive without adding any condition (continuous red); 5) Multi-structure Conditional: 

Training our multi-structure generative model conditioning on the disease (dashed 

red). Notice that for the multi-structure cases 4) and 5), the total dimension of the 

descriptor is four times the dimension on the x-axis, since for a fair comparison, 

we analyze it per structure. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 14. Deformation with respect to the healthy control (HC) mean shapes when 

only the conditional vector changes from HC to AD. Top row corresponds to left 

and right hippocampi and the bottom to left and right lateral ventricles. The figure 

follows the same color scheme as Fig. 12 , the darker the color on the voxel is, the 

larger the deformation is for that particular region. 
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ociated to AD diagnosis ( Frisoni et al., 2008; Gerardin et al., 

009 ). 

Synthesizing training data: A critical question to answer is 

hether our synthetically generated point clouds capture shape 

ifferences that are specific to AD. To this end, we train our dis- 

riminative model on synethetically generated point clouds. In de- 

ails, our model generates hippocampi for HC and AD subjects by 

etting the condition accordingly and then use them for training an 

C-AD classifier. We vary the size of the synethetically generated 

raining set and use the following sample sizes: 50, 10 0, 20 0, 40 0,

0 0, and 10 0 0. For each dataset, a separate classifier is trained. As

aseline, we use a disriminative model that is directly trained on 

he real 100 hippocampi, which have been used for training the 

enerative model. 

Fig. 11 shows the classification accuracy for this experiment. 

he results demonstrate that the generated samples are realistic 

nough to train a classifier relying solely on the synthetic images. 

nterestingly, the generator allows us to sample an arbitrary num- 

er of samples, giving us the possibility to boost the accuracy of 

he classifier by artificially increasing the size of the dataset. This 

s insofar surprising, as the total amount of real data used for train- 

ng is identical in both scenarios, making this a fair comparison. 

.4. Multi-Structure generative model 

In our final experiment, we demonstrate the generative model 

or multiple brain structures. We extend two of the experiments 

resented in the previous section to jointly modeling four struc- 

ures: left and right hippocampi and left and right lateral ventri- 

les. The split and the number of points per structure are the same 

s in the single-structure experiments (100/100 and 1024, respec- 

ively). 

Reconstruction Error: We evaluate the effect that condition- 

ng and using multi-structure information have on obtaining accu- 

ate and compact representations of all the shapes in parallel. As 

n Section 3.3 , the reconstruction error is computed with EMD be- 

ween original and generated point clouds, where we are averaging 

he EMD across multiple structures, as seen in Eq. (7) . 

As we want to study the effect of conditioning and the effect 

f jointly modeling multiple structures, we evaluate five different 

cenarios: 

1. Generating each shape using Shapeworks 

2. Training an independent non-conditional single structure gen- 

erative model (Single Structure) for each structure 

3. Training an independent conditional single structure generative 

model (Single Structure Conditional) for each structure (with 

the same one-hot encoding as in Section 3.3 ). 

4. Training non-conditional multi-structure generative model 

(Multi-structure) for all the structures. 

5. Training conditional multi-structure generative model (Multi- 

structure Conditional) for all the structures (with the same one- 

hot encoding as in Section 3.3 ). 

Fig. 13 illustrates the averaged reconstruction error when 

hanging the number of latent features used for encoding each 

tructure. Notice that in case of the multi-structure models, a uni- 

orm distribution of the number of features per structure is as- 

umed (we divide the dimension of the latent space by the num- 

er of structures that are used). We observe that adding multiple 

tructures and conditioning the latent vectors leads to the low- 

st reconstruction error per structure. As a matter of fact, if we 

ompare the scenario where a four-feature vector is used for each 

tructure (Single Structure Conditional) against the case where a 

our-feature (one per structure) vector is used to encode all the 

tructures (Multi-structure Conditional), the reconstruction error 
10 
s practically the same, showing that the multi-structural method 

rovides a more efficient representation. 

Effect of conditioning the shape model using a diagnostic 

abel: As for the single structure experiment, we evaluate the ef- 

ect of the condition vector in the model, but this time on all four 

tructures. Fig. 14 shows synthetically generated shapes for healthy 

ontrols and AD patients, by setting the condition vector accord- 

ngly. The difference between HC and AD shapes is illustrated in 

olor. 

We observe that the most critical areas in the hippocampus 

dark red) are again placed in the lateral part of the hippocam- 

us body, roughly around the CA1 subfield. This is consistent to 

he previous results on the single structure analysis. While we also 



B. Gutiérrez-Becker, I. Sarasua and C. Wachinger Medical Image Analysis 67 (2021) 101852 

o

n

3

d

t

p

s

t

d

b

d

t

a

c

p

l

d

m

w

s

f

i

s

t

f

a

t

p

e

w

a

c

i

p

e

w

p

c

c

a

4

w

d

e

i

n

c

c

s

p

d

t

b

t

s

a

v

c

t

t

m

e

n

o

s

r

m

f

d

o

a

f

D

c

i

C

M

S

v

o

A

B

t

t

I

p

i

t

e

A

i

I

m

t

I

s

M

N

P

m

p

s

t

i

t

S

s

o

R

B  
bserve differences for the lateral ventricles, they are not as pro- 

ounced as for the hippocampus. 

.5. Summary of experiments 

Our results on Alzheimer’s prediction and age regression have 

emonstrated the advantage of learning shape representations. In- 

erestingly, even shape features that are not optimized for that 

articular task, i.e., generative features, achieve state-of-the-art re- 

ults. The advantage of working with the generative features is 

hat we can reconstruct shapes from the low-dimensional embed- 

ing. This helps in understanding the representations that have 

een learned and to perform shape manipulations in the low- 

imensional space. Other shape representations like spectral signa- 

ures do not offer the possibility for reconstructing the shape from 

rbitrary points in latent space. Moreover, the additional cost of 

lassifying/processing shapes after training is negligible ( < 20ms 

er patient on an NVIDIA GPU GTX1080) compared to non-deep 

earning approaches. 

Our results have further demonstrated the potential of the con- 

itional vector. In the MNIST experiment, we have trained a single 

odel for all numbers and by setting the condition accordingly, 

e were able to reconstruct specific numbers, where the latent 

pace among all numbers is shared. The condition vector there- 

ore presents a powerful means to include non-image information 

n the model. Similar results for patients with Alzheimer’s disease 

howed that shape changes associated to dementia can be iden- 

ified. Training a classifier on these synthetically generated shapes 

or AD classification was even able to obtain a higher accuracy than 

 directly trained model. Finally, the extension to multiple struc- 

ures leads to a more efficient encoding than working with multi- 

le individual models, as relevant information can be shared. 

We used the same number of points per point cloud within 

ach experiment. For the discriminative network, we could also 

ork with varying numbers of points, since the GSN will output 

 feature vector with a fixed length. For the generative model, in 

ontrast, we need to fix the number of points for the decoder as 

t consists of an MLP. In our experiments, we used up to 1024 

oints per point cloud, which was sufficient to capture the geom- 

try of subcortical structures and MNIST numbers. For structures 

ith more complex geometry, e.g., the cortex, a larger number of 

oints would be necessary to have a faithful representation, which 

ould be challenging for our framework as there are GPU memory 

onstraints. Yet, we would also like to emphasize that other shape 

pproaches like ShapeWorks are more limited in this regard. 

. Conclusions 

We have presented a framework for anatomical shape analysis 

ith deep neural networks and demonstrated its application for 

iscriminative and generative tasks. The framework consists of sev- 

ral computational blocks that cover a variety of shape process- 

ng tasks. It takes unordered point clouds as input, without the 

eed of correspondences between them, and extracts features that 

an be used for different applications, e.g., classification and re- 

onstruction. Next to the analysis of single structures, we have pre- 

ented an extension that learns feature representations from multi- 

le structures simultaneously. In exhaustive experiments, we have 

emonstrated the advantages of the framework on real and syn- 

hetic data. The discriminative model results in high accuracy in 

oth classification and regression tasks, when compared to alterna- 

ive shape descriptors. The generative model can encode complex 

hape variations using a low-dimensional embedding that leads to 

 low reconstruction error. Further, the introduction of a condition 

ector enables to integrate phenotypic information and additional 
11 
ontrol on the reconstruction. We have demonstrated the proper- 

ies of our generative model by creating realistically looking syn- 

hetic shapes, which can even be used to train deep learning based 

odels. This has the potential to enable the use of powerful mod- 

ls in scenarios where the amount of annotated data is limited. Fi- 

ally, we have demonstrated the advantages of the joint modeling 

f multiple structures. 

Overall, our network facilitates processing of large datasets, 

ince we do not require expensive operations for finding point cor- 

espondences between samples. On the neuroanatomical experi- 

ents, we operated on relatively small sample sizes to ensure a 

air comparison to previous approaches, but on the MNIST data we 

emonstrated that our network scales to datasets with thousands 

f shapes. We believe that our framework can also be used to an- 

lyze other anatomical structures and more diverse phenotypic in- 

ormation in the condition vector. 
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