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Abstract

Introduction: Relationships between brain atrophy patterns of typical aging and

Alzheimer’s disease (AD), white matter disease, cognition, and AD neuropathology

were investigated via machine learning in a large harmonized magnetic resonance

imaging database (11 studies; 10,216 subjects).

Methods: Three brain signatures were calculated: Brain-age, AD-like neurodegenera-

tion, andwhitematter hyperintensities (WMHs). Brain Chartsmeasured and displayed

the relationships of these signatures to cognition andmolecular biomarkers of AD.

Results: WMHs were associated with advanced brain aging, AD-like atrophy, poorer

cognition, and AD neuropathology in mild cognitive impairment (MCI)/AD and cogni-

tively normal (CN) subjects. High WMH volume was associated with brain aging and

cognitive decline occurring in an ≈10-year period in CN subjects. WMHs were asso-

ciated with doubling the likelihood of amyloid beta (Aβ) positivity after age 65. Brain
aging, AD-like atrophy, and WMHs were better predictors of cognition than chrono-

logical age inMCI/AD.

Discussion: A Brain Chart quantifying brain-aging trajectories was established,

enabling the systematic evaluation of individuals’ brain-aging patterns relative to this

large consortium.

KEYWORDS

Alzheimer’s disease pathology, beta-amyloid, brain aging, brain signatures, cognitive testing,
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1 INTRODUCTION

Aging is a complex and multi-factorial process that heterogeneously

affects brain structures,1-3 due to multiple potential age-associated

pathological processes superimposed on changes related to the "nor-

mal"’ brain aging that occur in the absence of concurrent pathol-

ogy. Although a variety of neurodegenerative conditions associated

with the deposition of abnormal protein deposits in the brain, such as

Alzheimer’s disease (AD), increase in prevalence with age and cause

neuronal injury and loss, aging itself appears to be linked to synaptic

and neuropil loss in the absence of a proteinopathy.4 Brain aging in

the absence of known co-pathology appears to be associatedwith gray

matter loss according tomagnetic resonance imaging (MRI) and can be

quantified via pattern analytic methods as a measure of “brain age,”

which is somewhat separable from but overlapping with patterns of

atrophy associated with neurodegenerative conditions.5-10 Evidence

from several studies shows that multiple risk factors may accelerate

the brain aging process,5,11 functionally manifested by an accelera-

tion in cognitive decline. Brain aging and neurodegenerative atrophy

have been linked to cognitive impairment affecting memory and exec-

utive function; however, each may differentially affect various cogni-

tive domains. For example, typical brain aging and small vessel ischemic

disease have been linked to deterioration of executive function12 and

working memory.13 AD, which is associated with abnormal deposition

of tau in neurofibrillary tangles (NFTs) and amyloid beta (Aβ) in neuritic

plaques, usually results in anamnestic-predominant,multi-domain syn-

drome.

Recent advances in machine learning and neuroimaging have

enabled the development of imaging markers that provide a summary

measure of the deviation of an individual’s brain structure or func-

tion from typical brain aging trajectories. Deviations from such mod-

els reflect biological processes that may reflect disease or resilience

to age-associated conditions. Patterns of brain change across multi-

ple dimensions, such as brain aging, white matter disease burden, and

neurodegenerative signatures, capture heterogeneity across individu-

als, leading to a multi-dimensional conceptualization of aging-related

disorders where every individual shows unique patterns of brain alter-

ations.

Structural MRI captures patterns of neurodegeneration and small

vessel ischemic disease. Although there is now considerable informa-

tion on brain aging using morphometric MRI methods,5-10,14,15 the

complexity and heterogeneity of factors affecting brain aging neces-

sitate much larger and diverse cohorts. Critically, clinical adoption of

imaging biomarkers requires stability and generalization across pop-

ulations and scanner characteristics. Larger, diverse cohorts can be

assembled by pooling together and harmonizing data from multiple

studies to enable the detection of complex associations between brain

structure, neuropathology, and cognition using advanced quantitative

metrics, although harmonization must be carefully performed to mini-

mize the removal of clinically relevant information. The current study
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overcomes previous limitations by pooling and harmonizing data from

11 cohorts with 10,216 brainMRIs to develop a unique resource defin-

ing brain normative curves of brain aging throughout the AD contin-

uum, termed the Brain Chart.

The Brain Chart is developed using advanced image-analysis,

machine-learning–based imaging indices, and the large harmonized

sample. It is important to note that it provides the potential for per-

sonalized quantification of white matter disease and patterns of brain

atrophy in brain aging and AD, allowing investigation of the clinical

utility of these biomarkers. We modeled structural MRI brain changes

using the following summary signatures: (1) the spatial pattern of atro-

phy for recognition of brain ageing (SPARE-BA) index (MRI brain age),

which measures “typical” age-related brain atrophy patterns derived

from cognitively normal (CN) adults across the lifespan5,6; (2) the spa-

tial pattern of abnormality for recognition of early Alzheimer’s disease

(SPARE-AD) index,5,16 a relatively specific imaging signature of AD-like

brain atrophy, which has also been found to predict progression from

normal cognition to mild cognitive impairment (MCI)16; and (3) total

white matter hyperintensity (WMH) volume, a measure of white mat-

ter disease.1

These measurements provide individualized metrics of three types

of age-relatedbrain changes and canbeused todetermine the relation-

ships between these changes themselves and with respect to chrono-

logical age and cognition. We hypothesized that these Brain Chart

indices derived using machine learning and harmonized data from a

large, diverse consortium of studies pooled together will demonstrate

associations with cognitive performance. In addition, we hypothesized

that cerebrovascular disease capturedbyWMHvolumewouldbeasso-

ciated with worsened SPARE-BA and worsened cognitive testing. Fur-

thermore, given prior work linking cerebrovascular disease with AD,

we hypothesized both WMH volume and SPARE-AD index would pre-

dict the presence of cerebral amyloid deposition. We anticipated that

these results would be present in both CN adults and thosewith cogni-

tive impairment.

2 MATERIALS AND METHODS

2.1 Participants in iSTAGING

To build the Brain Chart, we included 10,216 participants encompass-

ing a wide age range (22 to 90 years) from the Imaging-based coor-

dinate SysTem for AGing and NeurodeGenerative diseases (iSTAG-

ING) consortium, with cognitively healthy individuals (n = 8284) and

patients with MCI and AD (n = 1932). The iSTAGING consortium

included data from the following cohorts: The Alzheimer’s Disease

Neuroimaging Initiative (ADNI 1 and ADNI 2), The University of Penn-

sylvania Alzheimer’s Disease Center (ADC) now called the Aging Brain

Cohort (Penn-ABC), The University of Pennsylvania Memory Center

cohort (Penn-PMC), The Study of Health in Pomerania (SHIP), The UK

Biobank (UKBIOBANK), The Baltimore Longitudinal Study of Aging

(BLSA), The Australian Imaging, Biomarker, and Lifestyle (AIBL) Study,

The Coronary Artery Risk Development in Young Adults (CARDIA)

RESEARCH INCONTEXT

1. Systematic review: We extensively reviewed the litera-

ture. The use of machine-learning imaging analytics, and

a large, harmonizedmagnetic resonance imaging data set

to achieve generalizable imaging markers across popu-

lations/scanners, and construct a comprehensive Brain

Chart, is novel.

2. Interpretation: We present a dimensional neuroimaging

approach constructing a Brain Chart of imaging signa-

tures of neurodegeneration and white matter disease,

and investigate associations of these signatures with

cognition and amyloid beta (Aβ) deposition. Our frame-

work revealed early age associations between small ves-

sel ischemic disease and brain aging, lower cognition,

andAlzheimer’s disease (AD) neuropathology, potentially

indicating an early role of white matter disease in AD.

Associations between resilient brain aging and preserva-

tion of cognition were also found.

3. Future directions: This dimensional Brain Chart offers

numerous possible future extensions and promises to

enable large-scale studies linking neurobiological and

cognitive dimensions, and it provides personalized pre-

dictions of individuals’ brain aging trajectories.Moreover,

our workmay facilitate clinical trial enrichment.

Study, The Adult Children Study at Washington University (ACS), The

Biomarkers of Cognitive Decline Among Normal Individuals in the

Johns Hopkins University (BIOCARD) and TheWisconsin Registry for

Alzheimer’s Prevention (WRAP). Figure 1 shows a flowchart for the

included subjects. The supervisory committee of each cohort approved

its inclusion in this study, and this study was approved by the institu-

tional review board of the University of Pennsylvania.

2.1.1 Clinical assessment and cognitive tests
in iSTAGING

iSTAGING cohorts included a diverse and heterogeneous set of clin-

ical data. Our main objective in this analysis was to collect a com-

mon subset of brain aging–related risk factors5 and neuropsychologi-

cal tests,while alsomaximizing the possible sample sizes fromdifferent

cohorts. With this objective in mind, we included cognitive testing and

focused on tests of executive function andmemory. Selection of cogni-

tive testing variedwidely across the different cohorts.We selected the

Trail Making Test (TMT) considering the difference between the sub-

scores (TMT-B−TMT-A) as ameasureof executive function (n=4757).

We selected the California Verbal Learning Test long-delay free recall

(CVLT-long) as the most sensitive measure for memory function (n =

1128) across cohorts in the CN group; CVLT was not widely available
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F IGURE 1 Flow chart showing the inclusion and exclusion criteria and final sample included in this study
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across the AD/MCI groups so the Mini-Mental State Examination (or

MMSE) was used as a measure of cognitive impairment in these par-

ticipants (n = 1918). Details of the neuropsychological tests for the

individual participating cohorts are given in Supplement S.1 and Sup-

plementary Tables 3 and 4.

2.1.2 Aβ and tau status

In contrast to other clinical variables, measurements of Aβ and tau pro-
tein (thepathologic hallmarksofAD)wereonly available for a relatively

small set of participants (Supplementary Tables 3 and 4). We consid-

ered Aβ status as a binary variable (negative or positive), as derived

fromcerebrospinal fluid (CSF) or positron emission tomography (PET; n

= 1382). In addition, we considered phosphorylated tau assessed from

CSF, as a tau measure that is more specific to AD (n = 1215). We used

previously established thresholds for amyloid and tau positivity. (More

detail onmolecularmarkers ofADpathology in iSTAGINGcanbe found

in Supplementary Table 1 and Section S.2.)

2.2 Imaging protocols and image pre-processing

We chose a sample that varied across MRI acquisition protocols from

11 cohorts in iSTAGING so that results would be more generaliz-

able across populations. Imaging parameters for each of the indi-

vidual studies of iSTAGING are described in Supplementary Table 2.

We used a standardized and fully automated processing pipeline to

derive final imaging variables from this highly heterogeneous data set.

Pre-processing included bias correction17 and multi-atlas skull strip-

ping on the T1-weighted images.18 A robust multi-atlas label fusion-

based method was applied for segmentation of the brain into a set of

anatomic regions of interest (ROIs).19 ROI volumes were quantified

for all iSTAGING participants with T1 images (n = 10,216). WMH seg-

mentation was performed using a deep learning-based method that

operated on raw fluid-attenuated (FLAIR) and T1-weighted images20

(n = 8596). The details of the processing algorithms are given in the

Supplementary S.3.

2.3 Harmonization of ROI volumes

Removal of cohort-related effects, such as protocol-specific variabil-

ity, is critical for pooling such diverse data together for analysis. Imag-

ing measures were harmonized using regression-based methods that

removed cohort effects for each measure.21 For each ROI volume, a

location/scale adjustment is made for each cohort.21,22 The location

adjustment corrects for mean shifts across sites, and the scale adjust-

ment corrects for differences in variance across sites. Our harmoniza-

tionmethodmodelsROI volumesas anonlinear functionof age and sex,

using cubic splines, adjusting only location/scale effects and thereby

preserving age and sex differences across sites. We perform the

harmonization exclusively using cognitively healthy subjects from each

data set, and then apply the same correction toward the entire data set.

This procedure is basedon themethoddescribed in detail byPomponio

et al.21 (see Supplementary Section S3).

2.4 Dimensions of the Brain Chart coordinate
system

We projected complex imaging data into a lower-dimensional coor-

dinate system that reflects important different aspects of brain

structural changes related to aging and disease using three summary

indices. These indices have been validated previously and they reflect

patterns of brain changes measuring predicted brain age (SPARE-

BA),5,6 AD-like atrophy patterns captured by SPARE-AD,5,23 andwhite

matter disease asmeasured byWMHvolume. The SPARE indices were

derived from the harmonized ROI using machine-learning methods.

Although we calculated the SPARE-BA index for the entire sample,

we calculated SPARE-AD using the amyloid-positive AD participants

and age-matched amyloid-negative CN participants, resulting in

using participants 55 years of age or older. Higher SPARE-BA val-

ues indicate greater age-related atrophy compared to normative

trends of age-related changes in brain structure. Higher SPARE-AD

scores indicate more AD-related atrophy, whereas lower and neg-

ative scores indicate more normal appearance. Total WMH volume

was calculated from deep learning–based segmented images.20

(More detail on these indices is provided in the Supplementary

Section S.3.)

2.5 Brain Chart in aging

We investigated associations between Brain Chart imaging dimen-

sions and multiple other variables. Because we can only display at

most three dimensions at a time, we demonstrate associations of inter-

est via projection charts. Each of these charts represents in the x-

axis the chronological age of the subject and in the y-axis one of the

iSTAGING dimensions. The associations with a third target variable,

for example, cognitive test results, are shown using colormaps, with

red/blue indicating higher/lower values. To further assist in the inter-

pretation of these maps, we display isocontours, which are curves of

constant value for the third variable overlaid over the colormaps. As an

example, consider an isocontour of a memory score in a SPARE-BA

versus age plot. This isocontour indicates (age vs SPARE-BA) mea-

surements from all individuals having the same level of memory

performance. Vertical isocontours in such a map would indicate that

SPARE-BA has no effect on memory for a given age. Conversely, hori-

zontal isocontours would indicate that SPARE-BA, and not age, is more

predictive ofmemoryperformance.Moreon the implementationof the

brain aging charts can be found in the supplementary section S4. The

brain aging charts code can be downloaded24 and the models used in

this work can be also accessed as a reference in an online stand-alone
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application, in which independent dimensions of interest could also be

plotted.25

2.6 Statistical analysis

Westudied patterns of advanced brain aging andAD-like atrophy inde-

pendently in two age categories: middle age (40 to 65 years of age)

and old age (>65 years of age). In each age category, we modeled

the relationship between age as the independent variable and SPARE-

AD as the dependent variable in a quantile regression approach, to

identify high SPARE-AD (75th percentile) and low SPARE-AD (25th

percentile) individuals. We identified “advanced brain aging” versus

“resilient to brain aging” subjects as those with SPARE-BA scores 5

years higher than their actual age and those with SPARE-BA scores

5 years lower than their actual age, respectively. We applied Stu-

dent t test on brain ROIs between groups, and only results that sur-

vivedBonferroni correctionwere considered significant.Wecomputed

age-specific regional patterns of WMH load by averaging WMH maps

aligned to a common atlas space in five different age categories from

the fifth decade to the nineth decade.

To estimate isocontours in the Brain Charts, we fit a General-

ized Additive Model26 with the age and one of the iSTAGING dimen-

sions used as the predictors, and the single selected outcome vari-

able, for example, a specific cognitive test score or marker of AD

pathology, as the response. All models included a term for the par-

ent study. Models that included cognitive testing as an outcome vari-

able were also corrected for education. We performed a likelihood

ratio test for model comparison between a model with age as the sin-

gle predictor and a model with age and other predictors. All result-

ing P-values were corrected using the Benjamini-Hochberg approach

controlling 5% false-discovery rate and those <0.05 were reported

as significant. We calculated the 95% confidence bands of each iso-

contour to ensure robustness in the level of the isocontour using a

bootstrapping approach and plotted only significant isocontours, for

which the confidence bands do not overlap (Supplementary S.4). Due

to skewness in the raw data, TMT score, the difference between TMT-

B and TMT-A, and WMH were cube-root transformed to achieve

normal distribution. Statistical analyses were performed using R

software v3.3.

3 RESULTS

3.1 Subjects

We included 10,216 participants (age 22 to 90 years) from iSTAGING.

CN individuals (n = 8284) had a mean (SD) age of 60.5 (13.1) years;

54.5% were female. Among the patients with MCI or AD (n = 1932),

the mean (SD) age was 74.3 (7.7) years; 47.2% were female. A detailed

description of the CN cohorts is presented in Supplementary Table

3. The description of MCI and AD cohorts is given in Supplementary

Table 4.

3.2 SPARE-BA, SPARE-AD, and white matter
disease dimensions in CN

Figure 2.A shows the SPARE-BA scores calculated for the iSTAG-

ING CN sample. Neuroanatomical pattern of advanced (SPARE-BA 5+

years older) versus resilient (SPARE-BA 5+ years younger) brain aging

suggests that advanced brain aging (overall a >10-year SPARE-BA dif-

ference) was associated with widespread lower gray matter volumes,

most pronounced in the frontal operculum, superior temporal, insular,

and frontal and inferior parietal cortex, in addition to enlargement of

the ventricles (Figure 2.B, Supplementary Figure 1 and Tables 5 and 6).

Although the spatial pattern was similar, those with older chronologic

age (>65 to 90 years) had smaller effect sizes thanmiddle age (40 to 65

years) groups (Figure 2.B, Supplementary Figure 1 and Supplementary

Tables 5 and 6).

SPARE-AD scores of CN subjects in iSTAGING are shown in

Figure 2.C. SPARE-AD values displayed predominantly negative val-

ues and a consistently increasing trend with age. It is notable that at

middle age, high SPARE-AD subjects showed a more notable deviation

from thenormcompared to older ages. AD-like atrophy showed amore

specific regional pattern compared to SPARE-BA (Figure 2.D). Lower

graymatter volumes associatedwith higher SPARE-ADweremost pro-

nounced in the hippocampus, amygdala, entorhinal cortex, and inferior

temporal cortex. Effect sizes were smaller in the older age (>65 years)

than in the middle age (40 to 65 years) group (Figure 2.D, Supplemen-

tary Figure 1 and Supplementary Tables 7 and 8).

In CN individuals, WMH started to appear after the fifth decade

of life, with a highly non-linear trend of increase in WMH volume

with age (Figure 2.E). WMH showed a regional pattern of burden

that becomes apparent in periventricular areas around the sixth

decade of life and that increases with older age, both in terms of

the spatial extent and the frequency of occurrence across subjects

(Figure 2.F).

3.3 Brain Charts of BA, AD-like atrophy, and
WMH in CN subjects

Associations between the iSTAGING imaging dimensions and other

variables were evaluated using the Brain Chart projections. Advanced

brain aging was associated with lower executive function (Figure 3.A)

but not with memory function (Supplementary Figure 2). AD-like

atrophy was associated with both executive and memory functions

(Figure 3.B-C) after age 65 years.

Higher WMH burden was associated with advanced SPARE-BA

(Figure 4.A). This association was modulated by age: Among middle-

aged individuals, higher WMH volume had a stronger association with

advanced brain aging (ie, older SPARE-BA than actual age) as com-

pared to individuals at older ages (>80 years).WMHswere also associ-

ated with SPARE-AD after age 65 (Figure 4.B), an association that per-

sisted after adjustment for SPARE-BA in the sensitivity analysis (Sup-

plementary Figure 3). Increasing WMHwas associated with decline in

both executive function in participants over age 40 (Figure 4.C) and
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F IGURE 2 iSTAGING dimensions in cognitively normal subjects. A, SPARE-BA scores were calculated for n= 8284 subjects from 11 studies
from the iSTAGING consortium using a supervised learningmethod. Themodel was applied with cross-validation using harmonized regional
anatomical volumes of the subjects as input features. “Advanced” versus “resilient” aging groups were identified as individuals who deviated from
normative aging trends. B, Subjects in “advanced” and “resilient” groups displayedwidespread differences in atrophy patterns, most pronounced in
the frontal operculum, superior temporal, and insular cortex, and further extending to frontal and inferior parietal cortex, as well as enlargement of
the ventricles. C, SPARE-AD scores were calculated for n= 5460 subjects from 11 studies from the iSTAGING consortium using a supervised
learningmethod. Themodel was trained using harmonized regional anatomical volumes as input features on ADNI CN and Alzheimer’s disease
(AD) subjects and applied to all other studies; it was applied to ADNI subjects using cross-validation. D, Subjects with “high” and “low” SPARE-AD
scores differed by atrophy patterns most pronounced in the hippocampus, amygdala, entorhinal cortex, and inferior temporal cortex. E,White
matter disease dimension, represented bywhite matter hyperintensities (WMHs) as a function of age.WMHvolumewas calculated for n= 7357
subjects from 10 studies using a deep-learningmethod. F, Frequencymaps ofWMH in the iSTAGING consortium, showingWMHprogression
during the life span (in the 40s, n= 1110; 50s, n= 1918; 60s, n= 2093; 70s, n= 1330; and 80s, n= 321)

memory in participants over age 50 (Figure 4.D). Higher total WMH

volume after age 55 was associated with a higher probability of being

positive for cerebral Aβ (Figure 4.E) but not for tau (Supplementary

Figure 4).

3.4 Brain Charts in MCI and AD patients

Contrary to the findings observed in CN where chronological age had

stronger effects, executive function and memory were associated pri-

marily with SPARE-BA and SPARE-AD, depicted by the relatively hor-

izontal isocontours in Figure 5.A-D. In other words, brain age (SPARE-

BA) is a better predictor of cognitive decline in executive function and

memory compared to chronological age. Notably, these associations

were stronger in MCI/AD compared to CN (as measured by the higher

range and steeper isocontours). WMH regional distribution was more

extensive; burden was higher in the MCI/AD population compared to

the CN population (Figure 6.A, compare to Figure 2.F). Figures 5.E-F

and 6.B-C show the associations betweenWMH, advanced brain aging,

AD-like atrophy, andexecutive functionandmemory in theMCIandAD

stages. It is important to note that Figure 6.B indicates that the associ-

ation of WMH with advanced aging is more pronounced at relatively

younger ages. The effect of WMH on executive function is also more

pronounced at younger ages (relatively horizontal isocontours in Fig-

ure 5.E), whereas at older ages, both WMH and age were equal con-

tributors to diminished executive function. Finally, similar to CN indi-

viduals, WMH showed a significant relationship with the presence of

amyloid pathology in MCI and AD (Figure 6.D). At middle ages, WMH

volumebut not chronological agewas associatedwith increased preva-

lence of amyloid positivity, but at older ages (>80-years-old) the asso-

ciation between WMH volume and amyloid positivity was almost not

present.
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F IGURE 3 A, Brain charts show associations between chronological age, SPARE-BA, and executive function. The relative diagonal isocontours
indicate a contribution of age and SPARE-BA similar to the executive function (false-discovery rate [FDR] corrected P-value< .05). Put differently,
executive function at a given age cannot be estimated without SPARE-BA, and vice versa. B-C, Brain charts that show associations between
chronological age, SPARE-AD, and cognitive testing. The isocontours of the executive function indicate a stronger association with age compared
to SPARE-AD, but the effect of SPARE-ADwas significant (FDR corrected
P-value< .05) and increasing after the age of 65. The isocontours of thememory function showed a stronger association with SPARE-AD
comparedwith age after the age of 70 years, further emphasizing the role of AD-like atrophy onmemory

4 DISCUSSION

Weestablished a dimensional and quantitative summarization of brain

MRI scans, the Brain Chart of Aging, from a large, harmonized, multi-

site consortium, usingmachine-learningmethods.We found important

associations between imaging signatures of the Brain Chart, cognition,

and AD neuropathology. The large sample along with the harmoniza-

tion methodology helped us construct robust neuroimaging markers

of aging and early AD from heterogeneous data, which better reflect

diversity across people, clinical centers, and MRI protocols. The three

main axes of the Brain Chart were a brain aging index, an AD-like

atrophy index, and a measure of white matter disease captured with

WMH. Higher brain age was associated with reduced executive func-

tion, and higher SPARE-ADandWMHwere both associatedwith lower

executive and memory function in the CN population. Our results also

demonstrate that WMHs are associated with advanced brain aging,

AD-like atrophy patterns, cognitive decline, and presence of cere-

bral Aβ deposition. These associations also persisted in MCI and AD

patients, further suggesting a potential role of WMH in disease pro-

gression.

This study is among the first to develop neuroimaging signatures

across multiple cohorts using machine-learning methods, and pro-

duced imaging signatures that could provide individualized prog-

nostic information. A recent review showed intensive research

in the use of machine learning and neuroimaging for building

signatures for neuropsychiatric diseases, with >450 models pub-

lished to date.27 However, few of these signatures have had rig-

orous cross-validation in independent samples. In this work, we

provide further validation of the utility of SPARE-AD27 and of

SPARE-BA.

4.1 Advanced brain aging and cognitive decline

In a prior study, we showed considerable overlap between advanced

brain aging patterns of atrophy and those related toAD,5 but the effect
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F IGURE 4 A-B, Brain charts that show associations between chronological age, white matter hyper intensities (WMH) volume, and brain
atrophy capturedwith SPARE-BA and SPARE-AD. The isocontours of SPARE-BA and SPARE-AD indicate strong associations withWMH
(false-discovery rate [FDR] corrected P-value< .05 for both charts). C-D, Brain charts that show associations between chronological age,WMH
volume, and cognitive testing. The isocontours of the executive function indicate strong associations with both age andWMH starting from the
40s; the effect ofWMHwas significant (FDR corrected P-value< .05). The isocontours of thememory function showed strong associations with
age andWMH from the end of the 40s; the effect ofWMHwas significant (FDR corrected P-value< .05). E) Brain charts that show associations
between chronological age,WMH, and Alzheimer’s disease (AD) pathology. The isocontours of the Aβ status showed strong associations with age
andWMH from the 60s; the effect ofWMHwas significant (FDR corrected P-value< .05)

of advanced brain aging on cognitive decline was not apparent due

to limited cognitive testing. In the current cross-sectional study, we

demonstrated that advanced brain aging patterns in CN were asso-

ciated with lower executive function but not worse memory perfor-

mance. In contrast, higher SPARE-AD, characterizedby apattern show-

ing greater atrophy in temporal lobe regions, was associated with

both executive function and memory. These results support prevail-

ing hypotheses that different regional atrophy patterns are associ-

ated with different cognitive impairment profiles, and show that the

Brain Chart machine-learning indices are sensitive for different cog-

nitive outcomes. Furthermore, AD is heterogeneous in its phenotype

and pattern of neurodegeneration with, for example, relative dysex-

ecutive versus amnesic presentations.28,29 Advanced brain aging may

contribute to dysexecutive patterns of cognitive impairment in some

patients.

The observation that brain age, as well as other Brain Chart

dimensions, shows stronger associations with cognitive scores than

chronologic age fits with the concept that certain, apparently age-

associated phenomena may better be characterized as related to

changes that occur preceding a transition to dementia or at the

end of life, termed terminal decline.30 Prospectively, these transition

events are unknown and such data are not available for this cohort,



10 HABES ET AL.

F IGURE 5 Brain Charts in patients withmild cognitive impairment (MCI) and AD: Associations with cognitive testing scores. A-B, Brain Charts
that show associations between chronological age, predicted brain age (SPARE-BA), and cognitive testing. The isocontours of the executive
function indicate a stronger association with SPARE-BA thanwith age (false-discovery rate [FDR] corrected P-value< .05). Similarly, the
isocontours of thememory function showed a stronger association with SPARE-BA comparedwith age; the effect of SPARE-BAwas significant on
memory (FDR corrected P-value< .05). C-D, Brain Charts that show associations between chronological age, SPARE-AD, and cognitive testing. The
isocontours of the executive andmemory functions indicate association with SPARE-AD only (horizontal isocontours); the effect of SPARE-ADwas
significant (FDR corrected P-value< .05). E-F, Brain Charts that show associations between chronological age, white matter hyper intensities
(WMH), and cognitive testing. The isocontours of the executive function indicate that the effect ofWMHvolume on executive function was
relatively more pronounced at younger ages (relatively horizontal isocontours), whereas at older ages, bothWMHand age are equal contributors
to diminished executive function; the effect ofWMHon executive function was significant (FDR corrected P-value< .05). The isocontours of the
memory function showed stronger associations withWMH than age (FDR corrected P-value< .05)

but the accumulation of adverse changes in brain age, SPARE-AD,

or WMH volume conceptually quantifies progression toward these

events.

4.2 WMHs and the association with SPARE-AD
and SPARE-BA

WMHsareestablishedbiomarkers of small vessel ischemic injury in the

brain, strongly associated with vascular risk factors, specifically hyper-

tension, and related to vascular contributions to cognitive impair-

ment and dementia (VCID). Several mechanisms have been proposed

to explain the association between WMHs and gray matter atrophy,

such as ischemic damage31 or Wallerian degeneration.32 Vascular risk

factors have been linked to development of AD neuropathology and

advanced brain aging.33,34 However, it is unclear whether the effects

of VCID and AD are merely additive or whether they are synergistic.

The association of WMH to AD-like atrophy observed in this study

has been previously observed, albeit often in single cohorts.1,6 In this

study, the association between WMH and SPARE-BA was relatively

more pronounced at younger than in older ages, both in CN individu-

als and in MCI and AD. A couple of factors likely underlie this finding.

First, younger and overall healthier brains are relativelymore homoge-

neous in brain structure in the CN group, so presence ofWMH-related
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F IGURE 6 Brain Charts in patients withmild cognitive impairment (MCI) and AD: the white matter hyper intensities (WMH) dimension. A,
Frequencymaps ofWMH in theMCI and Alzheimer’s disease (AD) patients, showingWMHprogression over age (in the 50s, n= 47; 60s, n= 326;
70s, n= 569; and 80s, n= 289). B-C, Brain Charts that show associations between chronological age,WMHvolume, and brain atrophy captured
with SPARE-BA and SPARE-AD. The isocontours of SPARE-BA and SPARE-AD indicate strong associations withWMH (false-discovery rate [FDR]
corrected P-value< .05 for both charts). D, Brain Chart that shows associations between chronological age,WMH, and AD pathology. The
isocontours of the Aβ status showed stronger associations withWMH than age (FDR corrected P-value< .05)

atrophy can be detected even if relatively mild. Second, vascular dis-

ease, although present in a minority, is one of the few processes active

at younger ages; the widespread prevalence of WMH and heteroge-

neous presence of other neuropathologic processes later in life dimin-

ishes the relative influence ofWMHon brain aging. This finding under-

scores the importance of modifying vascular risk factors at middle

age.11

4.3 WMH and the association with AD pathology

Our observation of associations between WMH and increased levels

of AD pathology markers at any given age add to the recent body of

literature35,36 and has important implications. Possibilities for the link

between WMH and AD pathology include (1) Wallerian degeneration

secondary to neurodegenerative changes; (2) ischemic injury to axons,
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manifested as white matter changes, which may lead to tangle forma-

tion and neuronal degeneration32; (3) demyelination, which could be

present in ADand lead to the appearance ofWMH.37 However,WMHs

were associated with approximately double the likelihood of Aβ pos-
itivity throughout all ages in the CN cohort. Although this result is

intriguing and suggests the possibility that prevention of small vessel

ischemic diseasemight delayADpathology andbrain aging, the current

study cannot elucidate whether this relationship is causal or results

from another latent neuropathologic process that leads to bothWMH

and Aβ deposition andmight be a primary treatment target in AD. This

observation may help enrich clinical trials for Aβ-positive individuals,

asMRI is commonly obtained in AD clinical trials.

4.4 WMH and the association with cognitive
function

Our data demonstrate that the association between WMH and cogni-

tive decline can start as early as the age of 40, more than two decades

before the age at which the prevalence of AD dementia reaches 1%.

This finding, especially in conjunction with the relationship between

WMH and AD pathology markers, further demonstrates the potential

role of WMH as an early contributor to AD. Previous work showed

that WMHs were associated with declining executive function38 and

that vascular risk factors were associated with smaller prefrontal

volumes.39 The anterior temporal lobe has dense connectivity with

several sensory modalities, for example, white matter tracts have been

observed between the anterior temporal lobe and the frontal lobe via

the uncinate fasciculate,40 which might explain the association with

cognitive decline in memory and executive functions.

The emphasis in this article was on cross-sectional relationships

between imaging signatures and other variables, including cognition.

However, one of the main goals of this work is to develop prognostic

markers, based on the Brain Chart’s coordinates, that is, expression of

these imaging signatures.Applicationof thisBrainChart to longitudinal

studies, including the ones alreadypart of iSTAGING2,41-43 will allowus

to construct personalized predictions of an individual’s brain aging tra-

jectory, based on their Brain Chart coordinates. In this study we have

established different associations of the Brain Chart coordinates, sug-

gesting that they may be useful to predict future cognitive decline on

an individual basis.

This study has several strengths including the large sample size,

diverse harmonized populations with rich phenotyping, and the use

of machine-learning signatures as well as automated pipelines and

advanced statistics to build highly quantitative Brain Charts enabling

prediction at an individual level. However, this study also has limita-

tions. (1) We did not include serial MRI to study longitudinal effects,

which requires additional effort in harmonization. (2) Our analysis did

not include other measures of small vessel disease such as infarcts

and periventricular spaces assessment, and those should be consid-

ered in future research. (3) MCI diagnosis was not necessarily due

to AD, and we did not exclude subjects who developed MCI without

ever progressing to AD. For this study, we included all subjects with

cognitive decline, whether the disease progressed beyond MCI or not.

We acknowledge that this grouping ofMCI participants, although com-

mon, can decrease power to detect early AD-related changes. (4) The

heterogeneity in sampling strategies and exclusion criteria of each

study might still pose difficulties in generalizing our study findings

without clearly defining a reference population. Hence our results

are generalizable with respect to our pooled samples, which as far

as we know, is one of the largest MRI databases available. (5) Fur-

thermore, although our consortium is large, some important biomark-

ers such as Aβ or tau positivity status were less available across

cohorts, thereby decreasing our statistical power for thesemarkers. (6)

Although the three Brain Chart coordinates used in this study provide

insight into understanding someof themost commonbrain age-related

processes, they do not specifically account for other pathologies in the

brain such as limbic-predominant age-related TDP-43 encephalopathy

(LATE) pathology, which were likely present in varying, low frequen-

cies in this large sample. Contributions of other pathologies could be

added with incorporation of appropriate data sets in the future. (7) In

addition, SPARE-BA and WMH volumes, in particularly, are not intrin-

sically disease specific, but rather capture contributions fromanumber

of potential co-pathologies. This can increase the applicability of these

indices, but greater disease specificity could be obtained as additional

data allows for further tailoring of these measurements and develop-

ment of additional Brain Chart dimensions.

5 CONCLUSION

A Brain Chart derived from a large, harmonized, multi-site sample

is established as a means to understand relationships between brain

aging, cognition, and AD neuropathology. Machine-learning–based

methods are used to derive three comprehensive, yet complementary,

imaging signatures of typical brain aging, AD neurodegeneration, and

white matter disease, reflecting the effects of underlying neuropatho-

logic processes on brain structure. By plotting these dimensions,

which have previously demonstrated prognostic value,5,6,8,12,16,35,36

onto a standardized coordinate system, one can derive a system-

atic and quantitative way to assess an individual’s brain health. Our

results using this Brain Chart revealed many relationships. In partic-

ular, one of the most conclusive findings of our study was the impor-

tance of white matter disease, which was associated with worse cog-

nitive function, advanced brain aging, increased expression of AD-

patterns of atrophy, and Aβ positivity. Our results do not necessarily

imply causality in the aforementioned relationships, but rather demon-

strate a very strong statistical association, which suggests that pre-

ventive strategies against white matter disease might delay cogni-

tive aging. Recent evidence from interventional studies supports this

hypothesis.44
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