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ABSTRACT Background. Psychophysiological and cognitive tests as well as other functional studies can
detect pre-symptomatic stages of dementia. When assembled with structural data, cognitive tests diagnose
NDs more reliably thus becoming a multimodal diagnostic tool. Objective. Our main goal is to improve
screening for dementia by studying an association between the brain structure and its function. Hypo-
thetically, the brain structure-function association has features specific for either disease-related cognitive
deterioration or normal neurocognitive slowing while aging. Materials and methods. We studied a total
number of 287 cognitively normal cases, 646 of mild cognitive impairment, and 369 of Alzheimer’s disease.
To work out a newmarker of neurodegeneration, we created a convolutional neural network-based regression
model and predicted the cognitive status of the cognitively preserved examinee from the brainMRI data. This
was a model of normal aging. A big deviation from the model suggests a high risk of accelerated cognitive
decline. Results. The deviation from the model of normal aging can accurately distinguish cognitively
normal subjects from MCI patients (AUC = 0.9957). We also achieved creditable performance in the
MCI-versus-AD classification (AUC = 0.9793). We identified a considerable difference in the MMSE
test between A-positive and A-negative demented individuals according to ATN-criteria (6.27±1.82 vs
5.32±1.9; p < 0.05). Conclusion. The deviation from the model of normal aging can be potentially used as
a marker of dementia and as a tool for differentiating Alzheimer’s disease from non-Alzheimer’s dementia.
To find and justify a reliable threshold levels, further research is required.

INDEX TERMS Error of cognitive score prediction, biomarker, Alzheimer’s disease, neuroimaging,
convolutional neural network, deep learning, cognitive decline, dementia, aging.

ABBREVIATIONS
AD Alzheimer’s Disease.
ADAS Alzheimer’s Disease Assessment Scale.
ADNI Alzheimer’s Disease Neuroimaging Initiative.
AUC Area Under the Curve.
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BAC Balanced Accuracy.
CDR Clinical Dementia Rating.
CN Cognitively Normal (Healthy Subject).
CNN Convolutional Neural Network.
CT Computed Tomography.
DMNA Deviation from the Model of Normal Aging.
CSF Cerebrospinal Fluid.
DL Deep Learning.
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DSST Digit Symbol Substitution Test.
MAE Mean Absolute Error.
MCI Mild Cognitive Impairment.
MMSE Mini Mental State Examination.
ML Machine Learning.
ND Neurodegenerative disorder.
RAVLT Rey Auditory-Verbal Learning Test.
ROC Receiver Operating Characteristic Curve.
SFA Structural-Functional Association.
TIV Total Intracranial Volume.
TMT Trail Making Test.

I. INTRODUCTION
A typical topic of studies in cognitive neuroscience is distin-
guishing between normal and accelerated aging manifesting
itself with dementia. The primary goal is to explain oper-
ation of the human mind in the healthy condition and in
pathology [1]. There are different ways to perform studies on
cognition. The model-based cognitive neuroscience approach
is the most commonly used routine. The models predict
brain measures from some parameters and provide a poten-
tial explanation of brain functioning [2]. Depending on the
study issues, researchers use symbolic, neural, connection-
ist, dynamical and other models. The conceptual framework
selected for the study influences the issue of the study, the
research questions we address, the experiments we perform,
and the ways in which we interpret the results [3]. We intend
to improve diagnostics of cognitive disorders and focus on the
difference between the brain structure and function in normal
and accelerated aging. Multimodal techniques for diagnosis
and prognosis of Alzheimer’s disease (AD) deserve particular
attention as they are more sensitive and promote screening
and early management strategies [4]. To use the advances
of multimodal diagnostics, we resort to models of structure-
function association (SFA). These models accumulate infor-
mation from both structural and functional findings, which
makes them more specific for norm or pathology.

Dementia is a disturbance of higher mental functions,
such as reasoning, planning, judging and memorizing. The
most common reason for dementia is Alzheimer’s disease
(AD). Currently, 57 million people worldwide suffer from
dementia. This number is predicted to triple by 2050 and
reach 152 million cases [5]. The reason for this exponential
increment in dementia is aging of society which raises the
incidence of neurodegenerative diseases (NDs). Diagnostics
of NDs is challenging since neither structural signs nor func-
tional tests are sensitive enough and specific. There is a big
list of unresolved issues to cover. First, there is no reliable tool
to predict whether the pre-dementia will progress. Second,
it is impossible to perform the differential diagnostics of exact
neurodegenerative diseases (ND) with non-invasive tests. For
instance, the early differentiation between mild cognitive
impairment (MCI) due to AD and MCI caused by other ND
conditions is particularly challenging in clinical settings.

To improve the current situation, we propose a combined
analysis of structural and functional data with machine learn-
ing (ML) [6]. The strengths and limitations of brain struc-
tural and functional assessment are briefly discussed below.
As seen from the references, there is no agreement between
researchers on which non-invasive diagnostic modality is
more promising for screening purposes. We chose to focus
on multimodal diagnostics to benefit from both types of data.

A. FUNCTIONAL TESTS FOR COGNITIVE ASSESSMENT
Physicians can use functional tests to improve early diagnos-
tics of NDs. However, there are some clear disadvantages of
the tests: they are time-consuming; they require a special test-
ing environment to keep the subject focused. Besides these,
their interpretation is challenging as there is no understanding
of the pathophysiological mechanisms underlying cognitive
decline, whose structural bases are not studied well [7].
At the same time, psychophysiological, cognitive tests and
evoked potentials studies can detect purely pre-symptomatic
stages of dementia. Many models of developing dementia
include cognitive test scores as predictors [8]. The most
commonly used cognitive tests are the Mini-Mental State
Examination (MMSE) [9], Rey Auditory-Verbal Learning
Test (RAVLT) [10], Alzheimer’s Disease Assessment Scale
cognitive subscale (ADAS-cog) [11], Digit Symbol Substi-
tution Test (DSST) [12], Trail Making Test (TMT) [13],
Clinical Dementia Rating (CDR) [14], Logical Memory Tests
(LMT), Immediate and Delayed Recall Test [15].

When assembled with structural data, cognitive tests
indentify NDs more reliably thus becoming a multimodal
diagnostic tool [16], [17]. Few studies focused on the pre-
diction of the cognitive status from brain structural images
(see Table 1). Some authors predicted MMSE scores from
resting state functional MRI of patients with AD [18].
While others calculatedMMSE, ADAS-cog, and CDR scores
from structural MRI [19]. The prediction of the results of
the tests that reflect a lower number of cognitive domains
(e.g., RAVLT) was less accurate than of the tests cov-
ering a larger set of the domains (ADAS or MMSE).
Another research team predicted MMSE and ADAS-cog
scores with the model that integrated spatial-temporal fea-
tures of the brain received from MRI findings [20]. Recent
studies provided an insight into neurophysiological and
morphological characteristics of the brain in patients with
dementia [16]–[20]. However, the clinical utility of the pro-
posed models remains limited.

B. BRAIN MORPHOLOGY STUDIES WITH MRI
The current study is dedicated to automatic analysis of MRI
findings which can be used for screening. Structural MRI is a
validmarker of the late stages of AD [21], but at an early stage
it is not particularly revealing about the difference of the brain
structural change in normal and accelerated aging. For this
reason, some authors believe that a reliable means of identify-
ing individuals at risk of AD should derive from electrophys-
iological diagnostics (e.g., event-related potentials) [8], [22].
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Contrarily, there is evidence that neuropathological changes
can be detected with neuroimaging much earlier than cogni-
tive decline becomes apparent [23]. Structural MRI exam-
inations reveal that the extent of age-related brain change
varies markedly across individuals [24]. Studies on brain
functioning bare inconsistencies in both the onset and the
rate of episodic memory loss among the elderly. Inherited and
lifestyle factors may account for these discrepancies. There is
no direct link between structural and functional impairment.
Researchers try to discover the structure-function relationship
in the brainwith advancedmethods of neuroimaging [7], [25].
They show the importance of visual rating scales, volumetric
assessment, and structured reporting.

A few brain regions are vulnerable to atrophy in NDs:
hippocampus, amygdala, entorhinal cortex, fusiform gyrus,
putamen, medial temporal lobe, etc. The aforementioned
structures are neural centers responsible for learning, mem-
ory, navigation, processing information, emotions, behavior
and time perception. Some authors study the brain at the
macrostructural level. With MRI they assess the enlarge-
ment of gray matter, white matter (WM), ventricles, and
accumulation of WM lesions - hyperintensitive areas in the
T2-weighted sequence [26], [27]. Other researches focus on
microstructural effects of NDs, e.g. neuronal death, accumu-
lation of β-amyloid and τ -protein in hippocampus, etc. [28],
[29]. Macrostructural characteristics of the brain (tissue vol-
umes) can be identified with MRI and used for screening for
NDs. Microstructural features (tissue organization) serve as
golden standards of diagnostics.

C. MACHINE LEARNING METHODS
Processing biomedical images with ML techniques is a field
of ongoing studies [30]. It has been already shown that an
association between structural and functional changes of the
brain can be studied with ML [6]. Numerous conventional
ML and deep learning (DL) methods were proposed to dis-
criminate AD patients from cognitively preserved people
with structural MRI data [31]. For instance, Altaf et al.
used a combination of textures (i.e., gray level co-occurrence
matrix) and clinical features (i.e., MMSE) to predict the
final diagnosis [32]. Ahmed et al. resorted to the bag-of-
visual-words approach to generate a unique signature of an
individual brain from hippocampus and posterior cingulate
cortex [33]. Khedher et al. analyzed tissue-segmented MRI
(i.e., white and gray matter images) to diagnose AD at an
early stage [34]. Other authors used slices or 2D patches
extracted from T1-weighted MRI as predictors in designed
2D-convolutional neural network (CNN) models [35]–[38].
Recently, 3D patches extracted from MRI were used to seg-
regate healthy individuals from patients withMCI orAD [39].
The authors extracted voxels corresponding to hippocam-
pus and used them as an input to 3DCNN classification
model [40]. 3D images of the whole brain also served as an
input to 3D subject-level CNNs [36], [41]–[47]. Qiao et al.
used a 3DCNN with sharing weights to extract the fea-
tures from MRI, followed by multiple sub-networks which

transformed the MMSE regression models into a series of
binary classification models [46]. All the methods discussed
are summarized in Table 1. We presume that new findings
on the brain structure-function association may foster further
research on earlier detection and treatment of NDs. Multi-
modal diagnostics that we develop with ML accumulates the
advantages of morphological and functional findings.

D. OBJECTIVE AND SUB-OBJECTIVES
Our main goal is to improve screening for dementia by
studying an association between the brain structure and its
function. Hypothetically, the brain SFA has features specific
for either disease-related cognitive deterioration or normal
neurocognitive slowing in aging. To address this objective,
we formulate the following tasks:

• Conduct an exploratory analysis of structural and func-
tional change in cognitively preserved population and in
subjects diagnosed with MCI or dementia.

• Propose a reliable marker of disease-related cognitive
decline.

• Justify the proposed marker as a screening tool for MCI
and dementia.

• Test if the proposed marker can prognosticate the con-
version of pre-dementia to dementia and differentiate
cognitive decline due to AD from other NDs.

II. MATERIALS AND METHODS
A. DATASET
The data used in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [62]. ADNI1 includes 400 subjects diagnosed with
MCI, 200 subjects with early AD, and 200 elderly control
subjects in the 55-90 age range [63]. See inclusion and
exclusion criteria at [64]. For more information about ADNI
datasets, visit the link https://adni.loni.usc.edu/. In this study,
we acquired MRI and clinical information on all the cases
collected to ADNI1 dataset in a cross-sectional and longitu-
dinal study design. This provided us with a total number of
1,337 study cases from 800 subjects. We excluded 35 cases
from our study because of a failure of FreeSurfer to segment
the brain MRI. For the remaining 1,302 cases (CN/MCI/AD:
22.04% /49.62% /28.34%; male/female: 59.91%/40.09%),
we collected the following information:

• Clinical data on the final diagnosis.
• Demographic data (i.e., age, gender, ethnicity).
• Morphometric data (i.e., volumes of brain areas mostly
affected by ND).

• Results of cognitive assessment with MMSE, RAVLT,
TMT (part B), DSST, ADAS-cog tests.

• Pre-processed T1-weighted MRI files.

B. PROPOSED FRAMEWORK
Figure 2 shows the general idea of proposed SFA model and
Figure 3 illustrates the proposed framework.
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TABLE 1. Recent papers related to diagnostics of MCI and AD.

The first objective was to conduct a comparative analysis
of the brain structure and function in CN subjects, MCI and
AD groups. We evaluated the separability of the three groups
with non-parametric statistical methods, i.e. Kruskal-Wallis
test for the continuous features and the Chi-square test for
the quantitative ones.
The second objective was to propose a new marker of

accelerated cognitive decline. In line with the hypothesis
of the study, we proposed to predict the cognitive status of
the cognitively preserved examinee from the brain MRI data
and worked out the SFA model. Then we applied the SFA
model to the findings of the study group. When the findings
of a scanned individual did not fit the standard SFA model,
accelerated aging was suspected. We calculated the deviation
from the model of normal aging (DMNA) as the error of
cognitive score prediction (see Equation 1).

DMNA = ypredicted − yactual (1)

where y is a result of the cognitive test.
Modeling cognitive performance from MRI is a com-

plex problem. To reduce its computational complexity,

we transformed MRI images into two-dimensional data (see
subsection II-C). Thenwe designed CNNmodel and trained it
on images of CN individuals. To generalize themodel to a true
rate error, we utilized the five-fold cross-validation technique.

As an input, we used the pre-processed MRI data (D(CN )
axial ,

D(CN )
coronal ,D

(CN )
sagittal). The output variables were the results of

the following cognitive tests: MMSE, RAVLT, TMT (part B),
DSST, ADAS-cog. After the prediction of cognitive perfor-
mance we calculated DMNA (see Equation 1).

1) THE THIRD OBJECTIVE WAS TO JUSTIFY THE RELIABILITY
OF DMNA)
It was a three-fold task. First, we employed non-parametric
statistical tests to compare DMNA values of the CN group
with MCI and AD patients. Second, we created ML models
that distinguish the following study cohorts by DMNA val-
ues: CN people from patients with MCI, and patients with
MCI from those with AD. The models were trained with
the ten-fold cross-validation technique. Finally, we evaluated
their performance. The performance of the regression models
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was expressed as mean absolute error (MAE). The accuracy
of the classification model was assessed with Sensitivity,
Specificity, F-measure, ROC, AUC, Accuracy, and Balanced
Accuracy.

2) THE FOURTH OBJECTIVE WAS TWO-FOLD
In the first part of sub-objective four, we tested if the proposed
marker can prognosticate the conversion of pre-dementia
to dementia. To find the cases of stable and progressive
MCI, we did an exhaustive search in all longitudinal studies:
ADNI1, ADNI2, ADNI-GO, ADNI3. Then, we built the con-
ventionalMLmodel segregating the cases according to stabil-
ity/progression.We usedDMNA inMMSE andADAS-cog as
more reliable predictors because the tests covered the global
cognitive functioning. To compare the distribution of DMNA
in two groups, we applied the non-parametric Kruskal-Wallis
test. We also assessed sensitivity and specificity of the model
classifying MCI cases into stable and progressive ones.

The second part of sub-objective four was to check if
DMNA could differentiate cognitive decline due to AD from
other NDs. To address the research question, we resorted
to ATN criteria [65] and adopted a two-step analysis.
Firstly, we dichotomized each biomarker category as either
normal (-) or abnormal (+) with the following cutoff thresh-
olds. A case was considered as A- if the CSF concentration of
beta-amyloid was higher than 81/ml [66], [67], T- if the level
of p-tau was less than 56 pg/ml [66], [68], andN- if FDG-PET
uptake was larger than 1.21 [69]. Secondly, we classified
all the cases with MCI and dementia into groups and calcu-
lated mean values of DMNA for them (see Table 6). Finally,
we identified the difference in DMNA between demented
individuals with Alzheimer’s continuum (A+) and those
with either normal AD biomarkers or non-AD pathologic
change (A–).

C. DATA PRE-PROCESSING
All the retrieved images passed through grad-warping and
intensity correction and were scaled to gradient drift with the
phantom data (for more details, see [63]). The pre-processed
T1 weighted structural MRI images were downloaded in
NIFTI format. We also retrieved the corresponding clinical
data from the dataset. Then the images were registered to
an MNI152 space with FLIRT tool from FSL package [70].
As brains differ in size and shape, each brain image was
translated into a common reference space (normalized) to
ensure consistency of orientation. To correct low-frequency
intensity non-uniformity, we used N4 bias field correction
algorithm [71]. Then we normalized the voxel intensities by
scaling them to the standard normal distribution parameters.
To enhance the predictive performance, we extracted the
brain parenchyma with Brain Extraction Tool (BET) from
FSL package [70].

One of the major challenges of studies on MRI is a high
dimensionality of data [72]. We used the following approach
to reduce it. An MRI image was defined as

I = {(vx , vy, vz) : x = 1,X , y = 1,Y , z = 1,Z }, (2)

FIGURE 1. Skull-stripped images averaged along axial (a), coronal (b),
and sagittal (c) axes.

where X ,Y ,Z were the dimensions of the MRI scan in axes x,
y and z. Then the jth sagittal, coronal or axial slice s of the I
image could be defined as:

s(j)sagittal = (j, vy, vz),

s(j)coronal = (vx , j, vz),

s(j)axial = (vx , vy, j) (3)

The corresponding averaged images were generated as
follows:

Isagittal =
1
X

X∑
i=1

s(i)sagittal

Icoronal =
1
Y

Y∑
i=1

s(i)coronal

Iaxial =
1
Z

Z∑
i=1

s(i)axial

In this way, we averaged voxel intensities along the sagittal,
coronal and axial axes and created two-dimensional datasets
Daxial , Dsagittal , and Dcoronal :

Daxial = {I1axial, I
2
axial, . . . , I

N
axial}

Dsagittal = {I1sagittal, I
2
sagittal, . . . , I

N
sagittal}

Dcoronal = {I1coronal, I
2
coronal, . . . , I

N
coronal}

Then, we removed the background by cropping the image
to the size of the brain mask. We down-sampled brain images
with nearest-neighbor interpolation to the size of 150 by
150 pixels, normalized them within the range of 0 to 1, and
stored in JPEG format as shown in Figure 1. To unify the
pre-processing workflow, we used Nipype which is an open-
source community-developed initiative under the umbrella of
NiPy [73]. To automate the deployment of the applications
within the software containers, we installed Neurodocker
which wraps up the aforementioned software in a complete
file system.

D. STATISTICAL ANALYSIS AND MACHINE LEARNING
We calculated volumes of WM hyperintensities and the fol-
lowing structures: interventricular CSF, hippocampus, puta-
men, caudate nucleus, amygdala, WM, enthorinal cortex,
fusiform gyrus, middle temporal lobe, gray matter, its cor-
tex and total intracranial volume. Subcortical and cortical
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FIGURE 2. Preparation and application of the proposed SFA model to clinical practice.

parcellation volumes were computed with FreeSurfer 7.1.0
software [74]. We resorted to Desikan/Killiany atlas as a
reference. All features were expressed as percentage to the
total intracranial volume and used as an input to the ML
model predicting the cognitive scores.

The functional data were presented with the results of
the following cognitive tests: MMSE, DSST, TMT (part B),
ADAS-cog (ADASQ4, ADAS11, and ADAS13) and RAVLT
(RAVLTimmediate, RAVLTlearning, and RAVLTforgetting) [62].
The associations between CSF% and performance in
ADAS-cog and RAVLT were stronger for ADAS-13 and
RAVLTimmediate compared to the other scores in these test. For
this reason we used ADAS-13 and RAVLTimmediate for further
analysis (see section III-A).

We started the statistical analysis by looking at the rela-
tionship among the attributes. The associations of the cog-
nitive test scores with age, functional and structural data
in healthy cohort and subjects diagnosed with MCI and
AD were assessed with Pearson’s correlation coefficient.
Then, we inspected the attributes for Gaussianity. Shapiro-
Wilk test revealed the non-normal distribution of all the
attributes. Therefore, we utilized non-parametric statistical
tests for further analysis. To check if the data from the
studied groups (CN, MCI, AD) came from a common dis-
tribution we used Kruskal-Wallis test with the continuous

features and the Chi-square test with the quantitative ones.
The results were expressed as IQR, mean ± std or the
number of cases, and their percentage in the observed
group.

To predict cognitive scores from the structural data,
we designed a CNN model. The proposed CNN regression
model consisted of six convolution layers followed by two
fully connected dense layers. The model was regularized with
L2 penalty and α = 0.0001. We used RMSProp optimizer
and trained the network for 200 epochs or until convergence.
To optimize a learning rate hyperparameter, wemonitored the
validation loss during the training process. When the metric
stopped improving for 10 continuous epochs, we multiplied
the learning rate value by 0.2. To optimize the training time,
we also monitored the validation loss. If it did not decrease
for 20 continuous epochs, we terminated the training process.
20%of the training datawas used for validation purposes. The
model was trained on the CN cohort in the five-fold cross-
validation technique. There were several arguments in favor
of the necessity to train models of SFA on non-demented
cases exceptionally. As the model reflected the brain SFA
for the healthy controls, it could be used as a reference
norm. If trained on a mixed cohort of healthy individuals and
patients, the model would fail to identify the patients out of
the reference range and would lose its diagnostic value. The
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FIGURE 3. Pipeline of proposed framework.

trained model from the last fold was tested on MCI and AD
groups.

For each case we had 2D images obtained by averag-
ing brain MRI in three planes: axial (A), coronal (B), and
sagittal (C). We could use them either separately or in com-
bination. For the combined approach we used two options:
data andmodel blending. The first onewas fusing predictions,
which was an ensemble estimator or voting regressor that
averaged model outcomes. The second method was model
blending. We trained the linear regression (LR) model on
the outcomes of three CNN models trained on axial, coronal,
and sagittal averaged images. The outcomes of the predictive
algorithm were the results of mental status tests such as
MMSE, RAVLT, DSST, ADAS-cog, and TMT (Part B).

We compared the distribution of the DMNA absolute val-
ues in the healthy population and patients with MCI and
Dementia. We also calculated 95% confidence intervals for
DMNA values with the t-test. To control the familywise
error rate related to multiple comparisons we employed

Bonferroni correction. All statistical tests were performed in
Python v. 3.6.9 with SciPy v. 1.16.4 library [75].

The experimental work was performed with the help of
Linux Ubuntu 18.04 Nvidia DGX-1 deep learning server
with 40 CPU cores and 8x NVIDIA Tesla V100 GPU
with 32 GB memory each, accessed with a web-based multi-
user concurrent job scheduling system [76]. The tensorflow-
gpu v.2.3.1 library was utilized to implement the proposed
solution.

III. RESULTS
A. DEMOGRAPHIC, FUNCTIONAL, AND STRUCTURAL
DATA IN STUDIED COHORTS
The structural data are presented in terms of percentage of
the volume of a specific brain area to the total intracranial
volume. There are significant differences among the studied
cohorts in the structures most vulnerable to change in ND
(see Table 2). The data reveal shrinkage of the brain parts
(hippocampus, entorhinal cortex, fusiform gyrus, medial
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TABLE 2. Demographics, cognitive performance and volumes of brain parts in studied groups.

TABLE 3. Performance of models trained on cognitively preserved population and tested on three different cohorts(MAE).

temporal lobe) and enlargement of ventricles in accelerated
aging. No significant differences in age among CN, MCI and
AD groups was detected (p = 0.1109).
In the MCI cohort, the ADAS-cog score is negatively asso-

ciated with the major part of the analyzed relative volumes.
The exception is the relative volume of WM, CSF, WM les-
sion, and caudate nucleus. The association of performance
in ADAS-cog with the relative volume of caudate nucleus is

almost significant (p = 0.061). The portion of TIV occupied
by WM lesions does not correlate with ADAS-cog scores in
this group (r = 0.03; p = 0.38). WM lesions are a typical
sign of brain aging. They result from chronic small vessel
disease and can be seen well as foci or areas hypointensive
on T1-weighted images and hyperintensive on T2-weighted
images including FLAIR. There are different patterns of the
emergence of the WM lesions in MCI and AD groups.
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FIGURE 4. Distribution of deviation from model of normal aging among study cohorts.

TABLE 4. Mean absolute error of voting regression ensemble model trained on structural brain images averaged along axial, coronal and sagittal axes.

The functional data in ADNI1 are obtained with cog-
nitive tests such as MMSE, ADAS-cog (ADASQ4, ADAS11,
ADAS13), DSST, RAVLT (RAVLTimmediate, RAVLTlearning,
RAVLTforgetting), and TMT (part B) [62]. The association
between the major marker of brain atrophy - CSF% - and
performance in ADAS-cog tests is stronger for ADAS13 (r =
0.18; p < 0.05) than for ADASQ4 (r = 0.15; p < 0.05)
and ADAS11 (r = 0.15; p < 0.05). This goes in line
with a research which evidenced a more pronounced annual
decline in ADAS13 than in ADAS11 in AD patients [77].
Similarly, the association of CSF% score withRAVLTimmediate
is stronger than with RAVLTlearning and RAVLTforgetting scores
(r = −0.19 vs −0.10 and 0.12; p < 0.05). Other
authors also showed that the accuracy of the model predict-
ing RAVLT scores from gray matter density is higher for
RAVLTimmediate score than for RAVLTforgetting [78]. Therefore,
we used ADAS13 and RAVLTimmediate in this study. Figure 5
shows the associations of the test results with age and struc-
tural data.

SFA. ADAS-cog and MMSE are primary cognitive tests
required in all recent Food and Drug Administration clinical
drug trials for AD in the USA [79]. From our data, the results
in ADAS-cog and RAVLT had the strongest association with
the structural markers of brain atrophy in the CN group. For
instance, the coefficient of correlation between hippocampal
volume and ADAS13 score was −0.18 in the CN cohort,
−0.34 in patients with MCI, and −0.20 in the AD group.
The same coefficient in RAVLTimmediate was 0.13, 0.24, and
0.18 in the correspondent cohorts (see Figure 5).

B. PROPOSED MARKER OF DISEASE-RELATED COGNITIVE
DECLINE
When applied to distinct cognitive test scores, the proposed
CNNmodel shows the best prediction performance in the CN

TABLE 5. Threshold values of the DMNA markers in binary classification.

cohort (see Table 3). Theworst performancewasmonitored in
the AD group. Data-blending did not boost the performance
considerably, i.e., there was no evident advantage in using
several image reconstructions. In contrast to this, the model-
blending approach showed the top accuracy. It allowed us
to retrieve maximum data for assessing SFA (see Figure 4).
The variability of the results in the studied cohorts is most
apparent in ADAS-cog and MMSE tests and less evident in
RAVLT, DSST, and TMT. The distribution of MAE differs
significantly among the cohorts (see Table 4). This justifies
that cognitively-normal people and patients with NDs have
different SFA patterns, which can aid to diagnostics of MCI
and AD.

C. JUSTIFICATION OF DMNA AS MARKER OF DEMENTIA
To determine a diagnosis from DMNA values, we employed
nine conventional ML classifiers (SVM linear and non-linear,
Gaussian NB, Extra Trees, Bagging, Random Forest, Logistic
Regression, Ridge Regression, Neural Network). DMNA val-
ues were obtained from skull-stripped brain images averaged
along the axial, coronal, and sagittal axes. The ML models
were evaluated with the ROC AUC metric.
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FIGURE 5. Associations of results in cognitive tests with age, functional and structural features in healthy cohort (a),
patients with MCI (b) and AD (c). Association is reported in terms of Pearson’s correlation coefficient. Cross-mark
overlays non-significant relationships between features (p > 0.05).

FIGURE 6. Performance of Random Forest model classifying cases into
healthy and AD groups. DMNA values are input to the model.

Diagnosing from DMNA values was most accurate with
Random Forest classifier jointly trained on DMNA MMSE
and DMNA ADAS-cog (see Table 4, Figures 6 and 7).

The performance of the CN-versus-AD classification model
(AUC = 1.0) was comparable to the accuracy of state-of-
the-art models trained on ADNI dataset (see Table 6). From
the table, DMNA can accurately distinguish CN subjects
from MCI patients (AUC = 0.9957). We also achieved
creditable performance in the MCI-versus-AD classification
(AUC = 0.9793). Therefore, DMNA can be potentially
used as a marker of dementia and can help to identify the
disease. Moreover, to use the proposed approach in clinics,
we assessed the possible threshold values of DMNAmarkers.
We undertook sequential values of DMNA and calculated
the accuracy of the CN vs MCI and MCI vs AD classifi-
cation. Table 5 lists the thresholds of DMNA markers in
the binary classification models. The optimal performance
is noted in the models based on ADAS-cog scores. These
models allowed us to distinguish normal aging fromMCI and
the latter from AD with a high accuracy (above 90%).

D. PREDICTION OF PROGRESSIVE MCI. DIFFERENTIATION
BETWEEN ALZHEIMER’S DISEASE AND OTHER
NEURODEGENERATIVE DISEASES
Table 7 shows the sensitivity and specificity of the
conventional model that classifies MCI cases into stable and
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TABLE 6. Performance of the proposed method in comparison with recently published ones.

FIGURE 7. Performance of Random Forest model classifying cases into CN and MCI cohorts (a); patients with MCI and AD (b). DMNA
values are the input to the model.

progressive ones. As seen from the table, there is no con-
siderable difference in DMNA values between the groups
(p=0.16÷0.21). Though the balanced accuracy of binary
classification is above 80%, low specificity can be considered
as a strong limitation of the models. We also identified the
difference in DMNA between demented individualswith A+
and A– subjects (see Table 8). Only in MMSE tests the dis-
tinction inDMNAwas considerable (6.27±1.82 vs 5.32±1.9;
p < 0.05). At the same time, there was no difference between
A+ and A– patients with MCI (p = 0.75− 0.98).

IV. DISCUSSION
A. ASSOCIATION OF COGNITIVE TESTS AND STRUCTURAL
DATA
In our study the structural markers of brain aging demon-
strated a stronger correlation with the results in ADAS-cog
than in the other tests. Other authors also justified
the informative value of ADAS-cog by predicting the
ADAS-cog score with a regressionmodel frommorphometric

features [20], [80]. We found an obvious correlation of
MMSE score with hippocampal volume (r = 0.44, p =
7.25e−86). This goes in line with another study that showed
their close association (r = 0.51, p < 0.001) [49].
The results we received suggest the presence of a distinct

SFA in healthy aging and ND. For instance, the proportion of
WM lesions to TIV does not show a linear association with
ADAS-cog score in subjects diagnosed with MCI. In contrast
to this, the relationship is strong in AD patients (r = 0.22;
p = 2.61e − 05). Other authors showed that WM lesions
enlarged with age and with the development of dementia [29],
[81]. It remains unclear why the emergence of WM lesions
has a common pattern in the CN adults and patients with AD.

We reported a prominent relationship between cognitive
functioning and the volumes of hippocampus, amygdala,
entorhinal cortex, and middle temporal lobe. Other studies
also justified the importance of the hippocampal area, amyg-
dala, and the middle temporal lobe for intellectual activi-
ties [82]–[93].
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TABLE 7. Performance of binary classification model to distinguish between stable and progressive MCI.

TABLE 8. Absolute values of DMNA according to A/T/N classification system.

B. DEVIATION FROM THE MODEL OF NORMAL AGING
Some authors found marked correlations between the pre-
dicted and actual scores in MMSE (r = 0.44, p =< 0.0001)
and ADAS-cog tests (r = 0.57, p =< 0.0001) [19], [20].
We also observed a significant linear association between the
predicted and actual values in the combined group of the CN
subjects, MCI, and AD patients (MMSE r = 0.09, p =
2.28e − 4, ADAS r = 0.05, p = 2.87e − 2, RAVLT r =
0.11, p = 2.24e − 05, TMT r = 0.22, p = 2.34e − 18).
We recorded conflicting findings (a non-correlation) in the
CN group due to distinct study design. Stonington et. al [19]
trained the model on three cohorts (CN,MCI, and AD), while
we fed the predictive model exceptionally with the CN cases.
Other researchers managed to predict MMSE results from
fMRI data accurately [18]. The calculation of cognitive scores
is more precise from the radiomics data than from the images
(see Table 3). The first reason for this is the noise of the 2D
images averaged along distinct axes. The second reason is
the relatively low number of cases used for training the deep
learning model. The high-dimensional computational model
needs a larger number of training samples because of the
dimensionally cursed phenomena [94].

The idea of using the deviation between the model and
actual values is not new for diagnostics. There is a large body
of evidence that the difference between the computed and
actual age - biological age gap - is a reliable marker of demen-
tia [95]–[97]. A study suggested an association between the
gap and cognitive performance. It also reported that BAG is
related to worsening in performance on the DSST and TMT
tests [98]. We applied the same idea to prediction of cognitive
performance.

C. DISTINCTION BETWEEN HEALTHY POPULATION,
PATIENTS WITH MCI AND WITH AD
Many papers reported a high accuracy of the models that clas-
sify healthy and demented subjects [32], [33], [35], [36], [39],
[40], [42], [43]. All the deep learning models were trained on
pre-processed MRI images of the cognitively preserved and

those with cognitive deterioration. In contrast to the studies,
we trained the model exclusively on CN people.

From our data, the predictive power of an SFA model
depends on the complexity of the cognitive test used for its
training. The accuracy is higher for the tests covering sev-
eral cognitive domains (MMSE, ADAS, TMT vs information
processing in DSST, memory in RAVLT). This supports the
results of a study by Stonnington et. al. [19].

We report that the model classifying MCI and AD patients
has the lowest accuracy (Acc = 0.9261). Recently different
authors received the same results [32], [35], [54], [58].

A limitation of the current research is that we did not study
convertible and non-convertible to ADMCI cases separately,
although some researchers suggest this [42]. Advances in
DL technology allowed neuroscientists to improve the clas-
sification accuracy of CN-versus-MCI and MCI-versus-AD
models [43]. However, the models were biased because of
the data leakage related to the late split [99]. Thus, substantial
work is required to use such algorithms as a diagnostic tool.

D. DMNA AS A MARKER OF PROGRESSIVE MCI AND
DIFFERENTIATION DIAGNOSTIC TOOL
From our data, DMNA cannot be recommended as a tool
for predicting the conversion of MCI to dementia because of
its low specificity (up to 75%). Other existing CSF markers
of progressive MCI also do not ensure the necessary level
of prediction: mean diffusivity (average accuracy of 77%),
tau concentration (74%), volumetry data retrieved from the
brain MRI (66%) [100]. There is a considerable distinction
in DMNA between demented individuals with Alzheimer’s
continuum (A+) and those with either normal AD biomarkers
or non-AD pathologic change (A–). Hence, the proposed
marker can be potentially used for differentiating dementia
due to AD from non-AD dementia. To find and justify a
reliable threshold level, further research is required.We failed
to identify a strong distinction between MCI due to the accu-
mulation of beta-amyloid and because of other pathologies
(p > 0.05). From our data, the biomarker is not applicable
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for discriminating MCI cases by underlying pathology (AD
vs non-AD).

V. CONCLUSION
• There is a strong association between the brain struc-
ture of a subject and his/her performance in cognitive
tests. However, the patterns of the structure-function
association differ among cognitively preserved people,
patients with MCI and with dementia. For instance, the
coefficient of correlation between hippocampal volume
andADAS13 score was−0.18 in the CN cohort,−0.34 in
patients with MCI, and −0.20 in the AD group. The
same coefficient in RAVLTimmediate was 0.13, 0.24, and
0.18 in the correspondent cohorts

• Towork out a newmarker of neurodegeneration, we pre-
dicted the cognitive status of the cognitively preserved
examinee from the brain MRI data. This was an SFA
model of normal aging. A big deviation from the model
of normal aging suggests a high risk of accelerated cog-
nitive decline, i.e., a high level of the error of cognitive
score prediction should rise awareness of a neurodegen-
erative disease.

• The results in the tests reflecting global cognitive func-
tioning - ADAS-cog and RAVLT - had the strongest
association with the structural markers of brain atrophy.
In line with this, the variability of the deviation from the
model of normal aging in the cognitively preserved sub-
jects, patients with MCI and dementia is most apparent
in ADAS-cog and MMSE tests and less evident in the
tests covering several cognitive subdomains - RAVLT,
DSST, and TMT. Diagnosing dementia from DMNA
values was most accurate with Random Forest clas-
sifier jointly trained on DMNA MMSE and DMNA
ADAS-cog. DMNA can accurately distinguish CN sub-
jects from MCI patients. We also achieved creditable
performance in the MCI-versus-AD classification.

• There is no considerable difference in DMNA values
between stable and progressive MCI cases. DMNA as
a prognostic criterium of progressive MCI has strong
limitation. Both the proposed and the existing markers
of progressive MCI do not ensure the necessary level of
prediction.

• The proposed marker can be potentially used for differ-
entiating dementia due to AD from non-AD dementia.
We identified a considerable difference in DMNA in the
MMSE test between demented individuals with (A+)
and (A–) according to ATN-classification (6.27±1.82 vs
5.32±1.9; p < 0.05). To find and justify a reliable
threshold level, further research is required.
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