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Abstract 

Magnetic resonance imaging (MRI) has been widely used in assessing development of Alzheimer’s dis-

ease (AD) by providing structural information of disease-associated regions (e.g., atrophic regions). In 

this paper, we propose a light-weight cross-view hierarchical fusion network (CvHF-net), consisting of 

local patch and global subject subnets, for joint localization and identification of the discriminative local 

patches and regions in the whole brain MRI, upon which feature representations are then jointly learned 

and fused to construct hierarchical classification models for AD diagnosis. Firstly, based on the extracted 

class-discriminative 3D patches, we employ the local patch subnets to utilize multiple 2D views to rep-

resent 3D patches by using an attention-aware hierarchical fusion structure in a divide-and-conquer man-

ner. Since different local patches are with various abilities in AD identification, the global subject subnet 

is developed to bias the allocation of available resources towards the most informative parts among these 

local patches to obtain global information for AD identification. Besides, an instance declined pruning 

(IDP) algorithm is embedded in the CvHF-net for adaptively selecting most discriminant patches in a 

task-driven manner. The proposed method was evaluated on the Alzheimer’s Disease Neuroimaging In-

itiative (ADNI) dataset and the experimental results show that our proposed method can achieve good 

performance on AD diagnosis. 

Keywords: Cross-view, Hierarchical fusion, Instance-declined pruning, deep learning, Alzheimer’s dis-

ease 

1. Introduction 

Alzheimer’s disease (AD), characterized by cognitive impairment, is an irreversible neurodegenera-

tive disorder disease caused by the accumulation of toxic protein (i.e., protein tau) [1]. Back in 2006, 26.6 

million people suffered from AD around the world, and mild cognitive impairment (MCI), as the pro-
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dromal stage of AD, accounted for 56% [2]. With population aging worldwide, the number of AD pa-

tients will increase consistently and it is estimated to be over 100 million by 2050. Early diagnosis of 

AD is beneficial to patient care and disease management [3]. Nowadays, magnetic resonance imaging 

(MRI), a routine clinical imaging tool, has been widely used in assessing development of AD by provid-

ing structural information of disease-associated regions, based on which many computer-aided methods 

have been proposed for early diagnosis of AD [4, 5, 6]. 

Existing computer-aided methods for the early diagnosis of AD can be roughly categorized as con-

ventional machine-learning based and deep-learning based approaches [7, 8]. Conventional machine 

learning methods [9-14] generally contain three steps: regions-of-interest (ROI) identification, feature 

extraction and classification model construction. For example, Zhu et al. [9] dissected the whole brain 

into non-overlapped 93 ROIs by wrapping it into the Jacob template [15], and then extracted morpho-

logical features (i.e., volume of gray matter) to construct a support vector machine with several relational 

regularizations for joint regression and classification of AD. Koikkalainen et al. [11] and Liu et al. [12] 

spatially normalized the whole brain into multiple atlases, and then extracted regional features from each 

atlas space to construct ensemble models for AD/MCI diagnosis. Wang et al. [13] and Sørensen et al. 

[14] extracted shape and textural features of bilateral hippocampi for AD classification, respectively. 

Recently, deep-learning based methods, especially convolutional neural networks (CNNs), have been 

successfully used for AD-related diagnosis by integrating feature extraction and model construction into 

a unified framework [6, 16-21]. For example, Li et al. [18] and Khvostikov et al. [20] extracted bilateral 

hippocampi as the most discriminative regions to train CNNs for early diagnosis of AD. Suk et al. [22] 

learned the shared feature representations between patches extracted from sMRI and positron emission 

tomography (PET) images based on deep Boltzmann machine [23] to train an ensemble SVM classifier 

for AD/MCI classification. 

To further improve the performance for the early diagnosis of AD, some studies first identified AD-

relate regions, and then used the features extracted from the patches centered at the AD-relate voxels for 

AD classification. Typically, in [24], patches centered at the voxel with the smallest mean p-value were 

extracted to train hierarchical classifiers for AD diagnosis. In [25], probability map was generated via 

elastic net method [26] and used to extract discriminative patches to construct mi-Graph model for AD 

diagnosis. In [27, 28], Liu et al. proposed a landmark-based deep multi-instance learning framework for 

AD/MCI classification and a weakly supervised densely connected neural network (wiseDNN) for lon-

gitudinal clinical scores regression using baseline sMRI, respectively. In [29], Lian et al. proposed a 

patch-based hierarchical fully convolutional network to automatically identify discriminant patches and 

regions by using image labels for supervised learning (on patch and region subnets, respectively), and 

then multi-scale feature representations were jointly learned and fused for AD diagnosis. It is to note that, 

to catch sufficient information, the above approaches are based on 3D patches. However, it accordingly 

brings huge computational cost and is time-consuming. It is also inadequate if an iterative procedure is 

needed in the method. 

Recently, some methods extracted multiple 2D views to represent 3D ROIs and obtained promising 

results. In [30], multiple 2D views of pulmonary nodules were extracted to train multi-stream ConvNet, 

in which features of different views were combined for pulmonary nodule detection. In [31], Luo et al. 

proposed an integrative framework of deep learning and bag-of-feature model for preoperative prediction 

of sentinel lymph node metastasis by learning and fusing three 2D representative orthogonal views of 

3D ROIs. In [32], a multi-view saliency-based framework was developed to detect abnormalities from 

MRI and classify subjects using a multiple kernel learning method. These 2D based methods also achieve 
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promising results, by use of small number of parameters, and thus are time-saving and have less compu-

tational cost. Correspondingly, there rises a key problem: how to fuse the multi-view information to 

represent 3D ROIs efficiently. 

In this paper, we propose a light-weight cross-view hierarchical fusion network (CvHF-net), consist-

ing of local patch and global subject subnets, for joint localization and identification of the discriminative 

local patches and regions in the whole brain MRI, upon which multi-group feature representations are 

then jointly learned and fused to construct hierarchical classification models for AD diagnosis. As shown 

in Figure 1, based on the extracted class-discriminative 3D patches, we first employ the local patch sub-

nets to utilize multiple 2D views to represent 3D patches by using an attention-aware hierarchical fusion 

structure in a divide-and-conquer manner. Since different local patches are with various abilities in AD 

Instance-declined Pruning
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Figure 1: The architecture of CvHF-net. The multi-group 2D views are first extracted from the candidate 3D patches. 

Then, the local patch subnet, including single-view stream (SVS), double-view stream (DVS), and triple-view stream 

(TVS), utilizes multiple 2D views to represent the 3D patch using the attention-aware hierarchical fusion structure 

in a divide-and-conquer manner. Besides, an instance-declined pruning strategy is embedded to adaptively identify 

AD-associated regions at the end of the local patch subnet. Finally, the global subject subnet is developed for ob-

taining global information for AD identification. 

Table 1. The characteristic of baseline subject 

 AD pMCI sMCI NC 

Gender (M/F) 56/37 48/31 86/35 60/39 

Age 75.43±7.34 74.97±6.68 74.85±7.48 75.68±4.73 

MMSE 23.47±2.13 26.81±1.68 27.40±1.64 28.93±1.12 

Education 14.80±3.00 15.80±2.70 15.77±2.8 15.80±3.10 

diagnosis, the global subject subnet is developed to bias the allocation of available resources towards the 

most informative parts among these local patches via attention mechanism to obtain global information 

for AD/MCI classification. Besides, an instance declined pruning (IDP) algorithm is embedded in the 

CvHF-net for adaptively selecting most discriminant patches in a task-driven manner. The experimental 

results on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset show that, the proposed 

method can efficiently perform disease diagnosis for AD. The major contributions of this work are sum-

marized as follows: 
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 We propose a light-weight unified framework to perform jointly localization and identification 

for AD diagnosis, in which we take full advantages of local-to-global representations of disease-

associated regions.  

 Motivated by multi-instance learning [27], the instance-declined pruning (IDP) strategy is pro-

posed to effectively and adaptively localizing most disease-associated regions. 

 We propose to utilize multiple 2D views to represent 3D patches using the attention-aware hier-

archical fusion structure in a divide-and-conquer manner. It is not only time-saving, but also 

provides an extra data augmentation manner for network training. 

The rest of this paper is organized as follows. In Section 2, the used dataset and the proposed method 

are described in detail. Experimental settings and results are presented in Section 3. Finally, discussion 

and conclusion are provided in Sections 4. 

2. Method 

In this section, we first introduce the dataset and its image preprocessing pipeline. Subsequently, we 

describe the proposed CvHF-net, including view extraction, local patch subnet, global subject subnet, 

loss function, and instance-declined pruning (IDP) algorithm, respectively. 

(a) (b) 
 

Figure 2: The visualization of the candidate regions with significant difference. a) 3D visualization of the candidate 

regions (the red part means more significant); b) 2D location visualization of the candidate regions. The statistically 

significant voxels are mostly distributed in hippocampus, corpus callosum and their surrounding regions. 

2.1 Dataset and pre-processing 

In this paper, we collected data from the public AD Neuroimaging Initiative-1 (ADNI-1, 

http://adni.loni.usc.edu). In total, 392 subjects with baseline sMRI were enrolled. According to some clinical 

criteria, such as clinical dementia rating and mini-mental state examination scores, these subjects were 

classified into three categories, namely, normal control (NC), mild cognitive impairment (MCI), and AD. 

As a part of MCI subjects would convert to AD within 36 months and the remaining are stable over time, 

MCI subjects can be further divided into progressive MCI (pMCI) and stable MCI (sMCI). In summary, 

99 NC, 121 sMCI, 79 pMCI and 93 AD were used to train and evaluate the proposed method. The char-

acteristics of enrolled subjects are presented in Table 1. 

All MR images have been reviewed and corrected by ADNI researchers for spatial distortion caused 

Page 4 of 16AUTHOR SUBMITTED MANUSCRIPT - PMB-111424.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Journal XX (XXXX) XXXXXX KF. Han et al.  

5 

 

by B1 field inhomogeneity and gradient nonlinearity. Our image pre-processing contains following pro-

cedures: (1) anterior commissure-posterior commissure (ACPC) correction via MIPAV software 

(http://mipav.cit.nih.gov/clickwrap.php), (2) intensity inhomogeneity correction using N3 algorithm [33], (3) skull 

stripping, cerebellum removal with aBEAT (https://www.nitrc.org/projects/abeat), and manual confirmation for 

cleanly skull and dura removal, (4) the linear and non-linear registration [34, 35] were used to align each 

MR image to the Colin27 template [36], and (5) resampling all MR images to the fixed size of 256 × 256 

× 256 and spatial resolution of 1 × 1 × 1 mm3.   

Figure 3: The detailed architecture of SVS/TVS in the local patch subnet. The number of channels (e.g., 64), kernel 

size (e.g., 3 × 3), and stride (e.g., 1) in each convolutional layer is denoted as “Conv_64@3 × 3_1”.   

2.2 Architecture 

2.2.1 View Extraction 

To better utilize local regional information, we first extract class-discriminative 3D patches in the 

whole brain MRI image. Following [22, 24], we perform group-wise analysis to exploit the voxels with 

statistical significance in each patch. Specifically, by performing group comparison (e.g., AD and NC, 

pMCI and sMCI), we obtain p-value for all voxels and find these statistically significant voxels (i.e., p-

value < 0.05). As p-value distribution map shown in Figure 2, we can observe that these statistically 

significant voxels are mostly distributed in hippocampus, corpus callosum and their surrounding regions, 

which has been verified to be related to the development of AD [37]. Subsequently, given a fixed patch 

with a size of w × w × w (the patch size is experimentally set to 32 × 32 × 32 in our study, see section 3.5 

for details), we use it to scan all statistically significant voxels and select class-discriminative patches in 

a greedy manner with the following rules: (1) The candidate patch should be overlapped less than 25% 

with any of the selected patches, and (2) Among the candidate patches that satisfy the rule above, we 

select patches which cover the more number of statistically significant voxels. Considering the difference 

in pathological changes between AD and MCI subjects, the aforementioned steps are implemented on 

two tasks (AD vs. NC and sMCI vs. pMCI) independently. In total, 36 and 30 3D patches are chosen for 

AD and MCI diagnosis, respectively. Unlike other view extraction methods [30-32], we extract multi-

group 2D views for each 3D patch. As shown in Figure 1, we first find all main-diagonal points of the 

3D patch, based on which the axial, coronal, and sagittal planes across each main-diagonal point are 

extracted as a group of views. The view extraction approach here has some advantages: (1) It reduces the 

computational cost, (2) It can retain sufficient information of the 3D patch, and (3) A patch can generate 

multi-group views, which provides an extra data argumentation way for network training. 
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2.2.2 Local patch subnet 

To better utilize multiple 2D views to represent the 3D patch, we develop a local patch subnet to 

learn discriminative view representations using the attention-aware hierarchical fusion structure in a di-

vide-and-conquer manner. As shown in Figure 1, the local patch subnet consists of three-level attentional 

streams, namely, single-view stream (SVS), double-view stream (DVS), and triple-view stream (TVS).  

Single-view stream (SVS). As Figure 1 and 3 shown, the SVS is used to independently extract the spe-

cific features for each view, which basically contains several convolutional layers, two skip connections, 

and a tiny U-net-like block. Specifically, the SVS first uses a convolutional layer with a kernel size of 3 

× 3 to extract features for each view. Then, a tiny U-net-like block is placed to capture global view 

representations, increase the receptive field, and reduce the number of parameters, which consists of a 3 

× 3 convolutional layer, a 2 × 2 pooling layer, a 3 × 3 convolutional layer, and a 2 × 2 up-sampling layer 

in sequence. Subsequently, a 3 × 3 convolutional layer is used to further learn high-level features and a 

skip connection is applied for fusing the input and output of this layer. To retain low-level and high-level 

feature representations, the feature maps output by the first convolutional layer are concatenated with the 

output of the skip connection, followed by two consecutive convolutional layers (with kernel size of 3 × 

3 and 1 × 1, respectively) and a 2 × 2 pooling layer. The filter number of 6 convolutional layers is set to 

64, 96, 96, 96, 160, and 80, respectively.  

Feature maps

Global Pooling

 

Figure 4: The architecture of attention fusion module. The solid lines denote the process of this module in DVS for 

any two views, and the dotted lines show the extended version in TVS for three views. 

Double-view stream (DVS). As the features of each view are extracted independently by SVS, it may 

loss the inherent information between any two of views. To this end, we construct a module of DVS to 

fuse the information from any two views. In particular, to take advantage of the interdependence between 

the channel maps from two views, we can emphasize the interdependent feature maps from the views 

and improve the feature representation of specific semantics. Herein, similar to the attention strategy 

used in SENet [38], we build an attention fusion module to excavate the interdependencies between 

views, as shown in Figure 4. Specifically, the SVS output feature maps from any two of views are first 

averaged. And then, the channel attention mechanism is applied on these averaged feature maps. Subse-

quently, we perform a matrix multiplication between channel-attention-weights and the feature maps 

from each view, and obtain the channel-attention-weighted feature maps for each view. The attention-

weighted feature maps of any two of views are then fused into output features by pixel-wise average. 

Triple-view stream (TVS). The DVS only fuses the feature representations from any two views, based 

on which the TVS is constructed to further learn the shared representations of three views. Similar to 
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DVS (as the dotted part of Figure 4 illustrated), TVS also uses an attentional-aware view fusion module 

with three input channels that matched with the output of DVS, to generate the corresponding weighted 

vectors for the feature maps at each input channel. Finally, the attention-weighted feature maps of all 

three views (i.e. axial, coronal, and sagittal plane) are then fused into output features by pixel-wise aver-

age. It is worth to note that this output features only represent one-group views extracted at one main-

diagonal point. We then develop a view pooling approach at the end of TVS to integrate the features of 

all group 2D views extracted from all main-diagonal points for representing each 3D patch. Specifically, 

let C and V denote the channel of fused feature maps (with the size of W×H) for each group views and 

the number of group views of a 3D patch, respectively. For V group of views, the view pooling layer first 

extracts the feature maps at c-th (c ranging from 1 to C) channel to form a V×W×H feature tensor and 

averages features along the first-dimensional direction to obtain the feature map with the size of W×H. 

The aforementioned process is repeated for each channel and finally forms a C×W×H feature tensor to 

represent each 3D patch.   

2.2.3 Global subject-net 

Finally, all patch level feature representations (size L × C × W × H, L is the number of extracted 

class-discriminative patches, which is 36 for AD classification and 30 for MCI conversion prediction, 

respectively) are averaged by using a patch pooling operation [39] along patch direction. Specifically, 

given L candidate patch representations with the size of C × W × H yielded by local patch subnet, that 

is, the size of the input of the global subject-net is L × C × W × H, the patch pooling strategy is imple-

mented on the corresponding features of each patch, and averages the patch representations to obtain the 

fused features with the size of C × W × H. Subsequently, two convolutional layers with a kernel size of 

3 × 3 and 1 × 1, respectively, and three fully-connected (FC) layers with the number of neural units of 

64, 64, 1, respectively, are used to make the final diagnosis for each subject. It is worth mentioning that 

the dropout operator with dropout rate of 0.3 is armed with the three fully connected layers for avoiding 

overfitting. 

2.3 Loss function 

We design a hybrid loss function to train the proposed CvHF-net efficiently. Specifically, let 

 
=1

( , y )
N

n n n
be the training set, where 

1

1{ , , }M L

i il il l X X  denotes the ROI of i-th subject and 

each ROI has L 3D patches that consists of M 2D views groups (denoted as 
, , ,={ , , }m m a m c m s

il il il ilX x x x , M 

is the number of group for each 3D patch), and 
1y {y }L

i l l  denotes the corresponding class label. The 

loss function is designed as follows: 

 , ( , , y ) ( , , y )p s s p p

s n n p l lL L W W W W W X  

where 
p

W and 
s

W denote the learnable parameters for the patch- and subject-level subnet, sL is the 

binary cross entropy, and the pL is defined as: 

( , , y ) ( | | ,{ , , }, y ) 

                           + ( | ,{ , },{ , },{ , })

                           + ( , , , )

p TVS DVS SVS a c s

p i i TVS l l l l

DVS SVS a c a s s c

DVS l l l l l

SVS a c s

SVS l l l

L L

L

L

W X W W W x x  x

W W x x x x x x

W  x x x

 

where
TVSL ,

DVSL , and
SVSL denote the binary cross entropy of TVS, DVS and SVS, respectively. 
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2.4 Instance declined pruning (IDP) algorithm for adaptive localization 

Based on the resulting diagnostic/classification scores on the training set for each local patch and global 

subject sub-networks, we further refine the initial CvHF-net by using instance declined pruning (IDP) algo-

rithm to remove uninformative patches. The advantages of IDP algorithm is: 1) providing a reversible 

pruning way during the iterative process; 2) selecting discriminative patches in an adaptive manner. In 

IDP, we look at all patches of one subject as a bag, and each patch is an instance in the bag. The number 

of instances used to represent the bag is gradually tapered during iterative process, and all instances can 

be backtracked for each pruning. In addition, IDP uses instance-wise cross-entropy loss instead of accu-

racy (commonly used in MIL) as a pruning criteria, in which the instances with a small loss are consid-

ered to be discriminative patches. Specifically, for the j-th iteration, the instances with top j × k loss (k = 

4 for AD vs. NC and 3 for sMCI vs. pMCI) are pruned. Then, the remaining instances are used to continue 

training the network. Subsequently, all instances (including pruned and remaining instances) with top (j 

+1) × k loss are pruned at the (j +1)-th iteration. The process stops until the score at a certain iteration 

consistently outperforms those at subsequent 3 iterations or the number of iteration reaches to a given 

number (the given number is set to 9 in our experiments).  

3. Experiments and Results 

In this section, we first introduce the experiment settings, including competing methods and evalu-

ation strategy. Subsequently, the experimental results are presented, including predictive performance of 

all comparison methods, effectiveness of each part by ablation experiments, and the influence of param-

eters.  

3.1 Experiment settings 

To verify the efficiency of our proposed framework, we first conduct comparison experiments with 

several state-of-the-art methods, including 1) ROI-based method [40], 2) VBM-based method [37], 3) 

multi-view convolutional network (denoted as Mv-net) [30], 4) landmark-based deep multi-instance con-

volutional network (denoted as LDMI-net) [27].  

1) ROI-based method [40]. After skull and cerebellum removing, each sMRI was first segmented 

into three tissue types, i.e., gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF), by 

using aBEAT package [41]. Then, following previous studies [40], the anatomical automatic labeling (AAL) 

atlas [42], with 90 pre-defined ROIs in the cerebrum, was aligned to each subject. Finally, the features of GM 

volumes in the 90 ROIs were extracted to train linear SVM classifiers.  

2) VBM-based method [37]. In line with [37], all sMRI data were spatially normalized to the Colin27 

template to extract local GM density in a voxel-wise manner. After that, a statistical group comparison 

based on t-test was performed to extract voxel-level feature representations for SVM-based classification. 

3) Mv-net [30]. The Mv-net performed prediction by using several views extracted from the 3D 

patches. Specifically, nine views were first extracted from each candidate 3D patch as the input of Mv-

net. Following [30], the architecture of Mv-net includes nine channels to extract features for each view, 

and each channel contains three convolutional layers, three max-pooling layers as well as one fully-

connected layer. The deep features generated by each channel were concatenated for patch-level predic-

tion using two fully connected layers. Finally, a naïve ensemble strategy (i.e., averaging the predicted 

probability of patches from the same subject) was used for subject-level classification. In our experiments, 

the batch size and epoch size were set to 64 and 80, respectively.  

4) LDMI-net [27]. The LDMI-net performed classification for AD diagnosis by learning the local-  
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Table 2: The comparison results with other methods for AD classification and MCI conversion prediction tasks in 

terms of four metrics, including accuracy (ACC), sensitivity (SEN), specificity (SPE), as well as the area under the 

curve of receiver operating characteristic (AUC), which are reported as mean ± Standard deviation (Std). 

Task Metrics 
Methods 

ROI-based VBM-based MV-net LDMI-net Ours 

AD vs. NC 

ACC 

 

0.760±0.059 0.787±0.088 0.847±0.029 0.911±0.030 0.937±0.014 

SEN 0.707±0.120 0.753±0.068 0.878±0.099 0.900±0.046 0.889±0.039 

SPE 0.808±0.024 0.819±114 0.820±0.076 0.920±0.057 0.980±0.027 

AUC 0.840±0.057 0.881±0.093 0.899±0.040 0.948±0.035 0.951±0.034 

pMCI vs. sMCI 

ACC 0.625±0.047 0.605±0.057 0.740±0.042 0.770±0.041 0.800±0.035 

SEN 0.253±0.040 0.318±0.129 0.613±0.162 0.613±0.143 0.650±0.130 

SPE 0.868±0.090 0.794±0.118 0.825±0.080 0.875±0.083 0.900±0.048 

AUC 0.584±0.067 0.606±0.053 0.696±0.068 0.761±0.040 0.745±0.059 

Time(h) - - 0.22 1.62 1.07 

Para - - 307K 33M 2.5M 

to-global structural information in an end-to-end way. Specifically, the LDMI-net consists of several 

channels (equal to the number of 3D patches). Each channel contains six convolutional layers with the 

kernel size of 3 × 3 × 3, three 2 × 2 × 2 “max” pooling layers (each one is placed after every two convo-

lutional layers), and two FC layers for generating local representations. By concatenating these local 

level representations as global-level representations, three fully-connected layers are further used to per-

form final prediction. In our experiments, the batch size and epoch size were set to 4 and 40, respectively. 

We use Python3.7 to implement all experiments and evaluations and Tensorflow to build all deep 

learning networks. All computationally intensive calculations are offloaded to a 12 GB NVIDIA Pascal 

Titan X GPU. All comparison experiments are conducted on the same data partition of 5-fold hold-out 

strategy. The average predictive performance of all methods is assessed by four metrics, including accu-

racy (ACC), sensitivity (SEN), specificity (SPE), as well as the area under the curve of receiver operating 

characteristic (AUC), which are defined as ACC =  
TP+TN

TP+TN+FP+FN
 , SEN =  

TP

TP+FN
  and SPE =  

TN

TN+FP
 , 

where TP, TN, FP, and FN denote the true positive, true negative, false positive, and false negative values, 

respectively. The AUC is calculated based on all possible pairs of SEN and SPE obtained by changing 

the thresholds performed on the classification scores yielded by the trained networks. 

3.2 Comparison results 

The comparison results are listed in Table 2. From Table 2, we can observe that: 1) For both diag-

nosis tasks, the CvHF-net outperforms other three methods (i.e., the ROI, VBM, and Mv-net methods) 

with relatively large margin, demonstrating that our proposed hierarchical fusion network can learn more 

discriminative features which are beneficial for AD and MCI classification tasks. 2) Compared with the state-

of-the-art LDMI-net, our proposed CvHF-net method also has competitive performance in the tasks of AD 

and MCI classification. Specifically, our method yields better results on ACC and SPE. The LDMI-net out-

performs our CvHF-net for SEN and AUC, especially in pMCI vs. sMCI classification task. It is perhaps 

due to the reason that we construct shared CNNs for all extracted patches, this approach is help for 

obtaining the light-weight network, but may loss a few specific information for classification. 3) Com-

pared with LDMI-net, the CvHF-net shows the advantage of light-weight. The number of parameters of 

CvHF-net is far fewer than LDMI-net (2.5M/33M), and it takes less time to train CvHF-net than LDMI-

net (1.07/1.62 hours). It suggests that our proposed model can obtain state-of-the-art results with less 

computational cost.  
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Table 3. The results of ablation study for AD classification and MCI conversion prediction tasks in terms of four 

metrics, including accuracy (ACC), sensitivity (SEN), specificity (SPE), as well as the area under the curve of re-

ceiver operating characteristic (AUC), which are reported as mean ± Standard deviation (Std). 

SVS √ √ √ √ √ 

DVS × × √ × √ 

TSV × × × √ √ 

subject -net × √ √ √ √ 

AD vs NC  

ACC 0.858±0.040 0.874±0.051 0.884±0.030 0.884±0.040 0.895±0.037 

SEN 0.811±0.101 0.844±0.072 0.867±0.091 0.867±0.063 0.867±0.101 

SPE 0.900±0.079 0.900±0.079 0.900±0.084 0.900±0.071 0.920±0.057 

AUC 0.893±0.046 0.917±0.042 0.917±0.032 0.915±0.037 0.916±0.036 

pMCI vs sMCI  

ACC 0.740±0.034 0.750±0.031 0.755±0.045 0.765±0.045 0.765±0.038 

SEN 0.613±0.195 0.588±0.114 0.575±0.149 0.600±0.034 0.588±0.175 

SPE 0.825±0.095 0.858±0.048 0.875±0.051 0.875±0.066 0.883±0.054 

AUC 0.702±0.072 0.717±0.051 0.719±0.051 0.715±0.051 0.721±0.075 

Table 4. The performance (ACC) of CvHF-net during iteration process (‘Iter k’ denotes the k-th iteration, and the 

top and bottom is for AD classification and MCI conversion prediction task, respectively). 

 Iter0 Iter1 Iter2 Iter3 Iter4 Iter5 Iter6 Iter7 Iter8 

Fold1 0.842 0.842 0.842 0.868 0.868 0.842 0.868 0.895 0.921 

Fold2 0.921 0.895 0.895 0.921 0.921 0.921 0.921 0.947 0.895 

Fold3 0.921 0.868 0.921 0.868 0.895 0.895 0.921 0.947 0.921 

Fold4 0.921 0.921 0.921 0.947 0.947 0.947 0.895 0.921 0.842 

Fold5 0.868 0.868 0.868 0.921 0.868 0.895 0.868 - - 

Fold1 0.750 0.775 0.675 0.700 0.725 - - - - 

Fold2 0.825 0.825 0.800 0.850 0.800 0.800 0.800 - - 

Fold3 0.750 0.750 0.725 0.700 0.750 0.750 0.675 0.775 0.750 

Fold4 0.725 0.725 0.775 0.725 0.750 0.750 - - - 

Fold5 0.775 0.800 0.775 0.750 0.800 0.825 0.775 0.800 0.775 

3.3 Ablation Study 

We conducted a series of ablation experiments to investigate the effectiveness of each component 

in the proposed method. 

3.3.1 Effectiveness of hierarchical fusion strategy 

In this experiment, we consider SVS as the backbone of the network (i.e., baseline model). The 

ablation study compares five models and all of them are trained without the IDP strategy. Notably, a 

naïve ensemble strategy is used to perform subject-level prediction when global subject subnet is not 

available. As Table 3 shown, we can observe that: 1) The model with subject subnet (the 2-rd row) 

obtains better results than the baseline model almost on all metrics, which owes to local-to-global fusion 

strategy. 2) Integrating either DVS or TVS into the model with subject subnet can further improve the 

performance (such as ACC and SEN for AD classification task, and ACC and SPE for MCI conversion 

prediction task). A potential explanation is that DVS and TVS can explore inner characteristics exits in 

any two views and three views, respectively. 3) Utilizing local patch and global subject subnets, the 

proposed architecture achieves the best results almost on all metrics, which benefits from local patch 
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Figure 5: The comparison results of CvHF-net with and without IDP in terms of four metrics, including accuracy 

(ACC), sensitivity (SEN), specificity (SPE), as well as the area under the curve of receiver operating characteristic 

(AUC), for AD classification (a) and MCI conversion prediction (b), respectively.  

subnet for efficiently representing 3D patches in a novel divide-and-conquer manner and global patch 

subnet for fusing local-to-global representations. 

3.3.2 Effectiveness of IDP algorithm 

As introduced in Section 2.4, a key component of our proposed method is the IDP strategy to itera-

tively prune uninformative patch-level subnetworks, and ultimately boosting the diagnostic performance.  

To validate the effectiveness of IDP algorithm, we first have an insight into the performance of 

network during iteration processing. As Table 4 shown, we can observe that the ACC of CvHF-net fluc-

tuates during the iteration process before falling into the optimal solution (the ACC outperforms those at 

subsequent 3 iterations or the number of iteration reaches to 9). We tail after the distribution of the re-

maining instances after each pruning, and find that some instances are reappear for current optimal net-

work, even though they were pruned at previous certain pruning process, which indicates that reversible 

pruning is crucial for discriminative region identification. On the other hand, the selected regions (re-

gardless of number and location) are different for AD classification and MCI conversion prediction task, 

which is practically reasonable due to distribution discrepancy of pathology regions for these two tasks. 

Also, it demonstrates that localizing these specific and discriminative regions in a task-driven and adap-

tive manner is significantly meaningful for AD/MCI diagnosis. We further compare the performance of 

CvHF-net with- and without-IDP. In Figure 5, we can see that CvHF-net with IDP outperforms the 

CvHF-net without IDP with significant improvement for AD classification (improved 5.3%, 12.0% and 

2.2% in ACC, SPE and AUC, respectively) for MCI conversion prediction (improved 3.5%, 6.2%, 1.7% 

and 2.4% in ACC, SEN, SPE and AUC, respectively). Overall, IDP can efficiently and adaptively locate 

disease-related regions in a task-driven manner and boost the performance of CvHF-net based on the 

prior knowledge that derived from the former iteration.  

3.4 Influence of the number of candidate patches 

In the previous experiments, we use the candidate patches with the fixed number (i.e., 36 and 30 for 

AD classification and MCI conversion prediction task, respectively) to train CvHF-net. To investigate 

the influence of the number of the candidate patches, we compare a set of parameter settings (i.e. 20, 26, 

28, 30, 36, 44) based on the same partition of dataset. The experimental results are shown in Figure 6. 

The results indicate that CvHF-net achieves a relatively stable performance for AD classification task 

(ACC ranges from 0.921 to 0.937; AUC ranges from 0.943 to 0.957). But the performance is fluctuating 

(ACC ranges from 0.755 to 0.800; AUC ranges from 0.728 to 0.759) for MCI conversion prediction task.  
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Figure 6: Influence of the number of candidate patches to the proposed CvHF-net in terms of accuracy (ACC) and 

the area under the curve of receiver operating characteristic (AUC) for AD classification (a) and MCI conversion 

prediction (b), respectively.  
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Figure 7: Influence of the size of image patches on the performance of the proposed CvHF-net in terms of four 

metrics, including accuracy (ACC), sensitivity (SEN), specificity (SPE), as well as the area under the curve of re-

ceiver operating characteristic (AUC) for AD vs NC classification (a) and pMCI vs sMCI classification (b), respec-

tively.  

A possible reason is that the structural difference on MR images for pMCI vs. sMCI task is much subtler 

than those for AD vs. NC task, which indicates that the MCI conversion prediction task is more difficult 

than AD classification task [27]. 

3.5 Influence of the size of patches 

In the previous experiments, the size of patches is fixed as 32 × 32 × 32. We set a group of parameters 

to study the influence of the patch size, varying the size of 24 × 24 × 24, 32 × 32 × 32, 40 × 40 × 40, and 

48 × 48 × 48. The results are showed in Figure 7, from which we can observe that the CvHF-net with the 

patch size of 32 × 32 × 32 achieves the optimal performance for both of AD classification and MCI 

conversion prediction tasks. By contrast, the CvHF-net using patches with relatively larger sizes (i.e., 40 

× 40 × 40, and 48 × 48 × 48) obtains slightly inferior performance, as more redundant information is 

included in the large patch and affects the subtle brain changes identification [37]. On the other hand, the 

performance of CvHF-net using small patch (i.e., 24 × 24 × 24) is also decreased. It may due to less 

information contained in a small patch. 
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4. Discussion 

4.1 Compare with previous work 

Different from conventional brain morphometric analysis methods [9-14, 43] using manually-engi-

neered imaging features, the proposed CVHF-Net can automatically learn high-nonlinear features, which 

can be seamlessly integrated for classifier construction. Also, different from the existing patch-level meth-

ods [22, 25, 27-29] which adopted 3D patches as input, the proposed CVHF-Net utilizes multiple 2D 

views from 3D patches to capture the local-to-global representation. Specifically, the local patch subnet 

first utilizes multiple 2D views to represent 3D patches using the attention-aware hierarchical fusion 

structure in a divide-and-conquer manner. Since different local regions are with various abilities in AD 

identification, the global subject-net is developed to bias the allocation of available resources towards 

the most informative parts among these local regions to obtain global information for AD identification. 

In addition, since not all candidate patches extracted from an MR image are significantly affected by 

Alzheimer’s disease so that hampers the diagnostic performance, the IDP algorithm is introduced to train 

the proposed CvHF-net for adaptively localizing discriminant regions in a task-driven manner and re-

moving the uninformative patches, resulting in reducing the computation consumption. 

1 2 3 4 1 2 1 2

1

2

3
4 1 2 1

2

Axial SagitalCoronal

 

Figure 8. Discriminative disease-related regions identified by our proposed method in the task of AD diagnosis. The first to third 

rows correspond to the identified location yielded by the proposed CVHF-Net, the image patches and the corresponding p-value 

map, respectively. 

4.2 Discriminative Disease-Associated Regions 

The proposed CVHF-Net have the potential capacity in identifying features with diagnostic power 

by adopting the IDP algorithm in the training stage, upon which the uninformative patches with respect 

to the top instance-wise cross-entropy loss were pruned iteratively and the remaining patches were fed 

into local patch subnet and global subject-net for AD/MCI diagnosis. In Figure 8, we visually present the 

identified discriminative AD-related region by the proposed methods in the task of AD diagnosis, upon 

which the first to third rows correspond to the identified location yielded by the proposed CVHF-Net, 

the image patches and the corresponding p-value map, respectively. From the first row of Figure 8, we 

can observe that the proposed method revealed the discriminative regions with diagnostic power in tem-

poral lobes and insula, which is in line with the previous work [29, 37], suggesting the rationality of the 

IDP algorithm. In another, from the second and third row of Figure 8, we can observe that, regardless of 

the information deficiency in extracting multiple 2D views for AD/MCI diagnosis, the proposed CVHF-

Net still can explore the discriminative disease-associated regions effectively.  
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4.3 Limitations 

Although our proposed CvHF-Net achieves promising results in both AD classification and MCI 

conversion prediction, there are several technical issues to be addressed in the future. First, preliminary 

landmark detection is conducted according to the p-value map computed by group comparison, which is 

a standalone task and achieves consistent localization. However, pathological and anatomical atrophy of 

the brain varies greatly among patients, which may lead to sub-optimal learning performance. Future 

works will try to integrate the process of landmark detection and the training of classification models 

into a unified framework to avoid uncertainty caused by the discrepancy of brain atrophy lesion. Second, 

in the present IDP strategy, the correlation among landmarks, which relates to the topological information 

of brain structure may be neglected. As such, topological learning can be embedded in IDP in the future. 

Third, we could extend our proposed model for the prediction of brain disease progression, a more chal-

lenging task compared with disease diagnosis. Furthermore, our work only considers the problem of AD 

diagnosis via the proposed CvHF-net based on the baseline MRI data. It is interesting to develop a deep-

learning framework for predicting the longitudinal progression of AD. 

5. Conclusion 

    In this paper, a light-weight cross-view hierarchical fusion network (CvHF-net), consisting of local 

patch and global subject subnets, is proposed to perform adaptive localization and identification with 

instance-declined pruning (IDP) for AD diagnosis and MCI conversion prediction. Experimental results 

on the ADNI dataset demonstrate the effectiveness of our proposed model on joint discriminative local-

ization and disease diagnosis. In the future, we will extend our proposed model for brain disease pro-

gression prediction using longitudinal data.  
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