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Abstract
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verge at the exponential rate of the sample size. We develop an iterative hard-thresholding
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simulation studies and a real data application from the Alzheimer’s Disease Neuroimaging
Initiative study is provided.
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1. Introduction

With the rapid growth of modern technology, many large-scale biomedical studies have
been conducted to collect massive datasets with large volumes of multi-modality imaging,
genetic, neurocognitive, and clinical information from increasingly large cohorts (Nathoo
et al., 2019). To motivate the proposed methodology, we consider a large database with
imaging, genetic, and clinical data from 735 subjects collected by the Alzheimer’s Disease
Neuroimaging Initiative study. Specifically, each subject has a hippocampal surface dataset
consisting of the left and right hippocampi, each of which is represented as a 100 × 150
matrix, and also has a large genetic dataset with genotyped and imputed genetic data. Our
primary problem of interest is to identify novel genetic markers on the local changes of
hippocampus structure. However, it is very challenging due to the heterogeneous effects of
genetic variants and the high-dimensionality of putative predictors.

Motivated by various data applications, research on matrix-valued data has gained con-
siderable interest in recent years. For example, Li et al. (2010), Leng and Tang (2012), Zhao
and Leng (2014), Zhou and Li (2014), Ding and Cook (2014), Fosdick and Hoff (2015) and
Hu et al. (2020b) considered the matrix covariates regression. There are also a few works
considering matrix response regression (Viroli, 2012; Ding, 2014; Ding and Cook, 2018; Hu
et al., 2020a), where all these methods focused on the case that the dimension of the vari-
ables is less than the sample size. However, in our real data application, the dimension of
the predictors can be much larger than the sample size, and these existing methods suffer
from computational expediency, statistical inaccuracy, and algorithm instability (Fan et al.,
2009). To address these issues, Kong et al. (2020) developed a low-rank linear regression
model to correlate a high-dimensional response matrix with a high dimensional vector of
predictors when coefficient matrices have low-rank structures. Their procedure contains
two-steps: a first-step sure independence screening procedure based on the spectral norm
of each coefficient matrix and a second-step estimation procedure based on the trace norm
regularization.

The prominent marginal screening method for variable selection was first proposed by
Fan and Lv (2008) for ultrahigh-dimensional linear regression models. The marginal screen-
ing method works via ranking the importance of variables according to their marginal cor-
relation with the response. Because of its good numerical performance and novel theoretical
properties, the sure independence screening idea has been extensively studied in the last
decades. Examples include Fan and Song (2010), Fan et al. (2011), Zhu et al. (2012), He
et al. (2013), Liu et al. (2014), Zhao and Li (2012), and so forth. Although the marginal
screening method and its variants can reduce the large-scale model size to a moderate one,
the performance of the screening methods built upon marginal correlation may be largely
discounted because of the complex structure and unprecedented large-scale of the predic-
tors. Since the method in Kong et al. (2020) is based on the sure independence screening,
it may overlook some important variables that are marginal uncorrelated with the response
variables but are significant. Besides, their method needs a second-step refined estimation
to achieve consistent parameter estimates.

To overcome all issues discussed above, we consider a novel variable screening method
to handle the matrix response linear model with ultra-high dimensional predictors. Such
a model can cover linear regression models with high-dimensional univariate and vector
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responses in the literature (Buhlmann and van de Geer, 2011; Yuan et al., 2007). One of
the main challenges extending from a univariate or vector response linear model to a matrix
response model is to allocate the computer memory for the massive dataset to accommodate
all coefficient matrices. The other challenge is to estimate the nonzero coefficient matrices
and select the important predictors simultaneously. The proposed method selects the rele-
vant variables via a Sparsity-Restricted Least Squares (SRLS) estimator. More precisely, we
treat each coefficient matrix as a group, and estimate the coefficient matrices by the least
squares method with a group sparse constraint. Then we select the important predictors
based on the derived estimates of the coefficient matrices. The proposed method shares the
same spirit with Fan et al. (2009), Wang (2009) and Xu and Chen (2014), for considering
the joint effects of the variables rather than the marginal correlation. However, our method
distinguishes from these methods in the following three perspectives: (i) the new method
considers both the structure between different groups inherent in the response matrix and
also the feature level sparsity; (ii) the proposed method not only screens out unimportant
variables, but also yields a consistent estimate of the coefficient matrix simultaneously; and
(iii) our estimate can achieve the optimal minimax rate. Therefore, the proposed method
is not an incremental extension of the existing methods.

For implementation, an iterative hard-thresholding (IHT) algorithm is developed for
matrix response linear regression models. We prove the convergence of the IHT algorithm,
and then show the sure screening property (Fan and Lv, 2008) of our screening procedure.
This guarantees that the true model is contained in a set of candidate models selected by
our SRLS procedure with overwhelming probability. To further choose the “best” candidate
from the candidate models generated by our screening procedure, we employ an extended
Bayesian information criterion (ebic) (Chen and Chen, 2012; Wang et al., 2009), and prove
that it enjoys the model selection consistency property.

The rest of the paper is organized as follows. Section 2 introduces the proposed approach
and the extended IHT algorithm. Section 3 presents the asymptotic theoretical results of
the proposed method. Extensive simulation studies with supportive evidence are reported in
Section 4. In Section 5, we perform an imaging genetics analysis using the ADNI dataset. All
technical proofs and the detailed information about the data are deferred to the Appendices.

2. Methods

In this section, we first describe the matrix linear regression model, and then introduce the
methods and an iterative algorithm.

2.1 Sparsity-restricted least squares

Let (Yi, Xi) (i = 1, . . . , n) be n independent and identically distributed observations, where
Yi = (Yi,sk) ∈ Rp×q is a matrix response variable and Xi = (xi1, . . . , xidn)> ∈ Rdn is a dn-
dimensional predictor variable. We consider the following matrix linear regression model
(Kong et al., 2020):

Yi = B0 +

dn∑
j=1

xijB
?
j + Ui, (1)
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where B?
j = (b?j,sk) ∈ Rp×q (j = 0, 1, . . . , dn) are unknown true coefficient matrices, and

Ui = (ei,sk) ∈ Rp×q is a matrix error term satisfying E(ei,sk | Xi) = 0 and the variance
var(ei,sk) = σ2

sk < ∞. Without loss of generality, we assume that the intercept term B0 is
zero. If p = q = 1, model (1) reduces to the classical linear regression model.

Let B = (B>1 , . . . , B
>
dn

)> ∈ R(pdn)×q, and B? = (B?>
1 , . . . , B?>

dn
)> ∈ R(pdn)×q. When

dn = d is fixed, the ordinary least squares (OLS) estimate of B is

B̂ = arg min
B

{
1

2n

n∑
i=1

‖Yi −
d∑
j=1

xijBj‖2F

}
,

where ‖·‖F denotes the Frobenius norm of a matrix. However, when the number of variables
dn is larger than the sample size n, the OLS method suffers from multicollinearity. In fact,
under this scenario, most of B?

j are often assumed to be zero matrices in literatures, see
Kong et al. (2020). Here a zero matrix denotes a matrix with every entry zero. We consider
the following optimization problem

min
B

{
1

2n

n∑
i=1

‖Yi −
dn∑
j=1

xijBj‖2F

}
subject to

dn∑
j=1

I(‖Bj‖F 6= 0) ≤ τ, (2)

where I(·) is an indicator function.
We propose an iterative algorithm to obtain an approximate solution to problem (2) in

Section 2.2. Since τ controls the sparse level, if τ < n, there are at least (dn− τ) coefficient
matrices forced to be zero. To determine the sparse level τ, we derive a solution path
for problem (2) motivated by Wang (2009). Specifically, let τ̃ be a pre-specified integer,
we compute problem (2) for each τ ∈ {1, . . . , τ̃}, and denote its corresponding minimizer
as B̂τ = (B̂>1τ , . . . , B̂

>
dnτ

)> and the corresponding selected model as M̂τ = {1 ≤ j ≤ dn :

‖B̂jτ‖F 6= 0}. Therefore, we get a total of τ̃ candidate models: {M̂1, . . . ,M̂τ̃}. One practical
problem of interest is how to choose τ̃ . First, the true model should be contained in one of
the candidate models. Denote the true active set as M?, that is, M? = {j : ‖B?

j ‖F 6= 0}.
Let τ? = card(M?), where card(A) denotes the cardinality of a set A. As guaranteed by
Theorem 2, when τ̃ ≥ τ?, M̂τ̃ can include the true model with overwhelming probability.
In particular, when τ̃ = τ?, M̂τ̃ = M? holds with probability approaching one under
certain regularity conditions. Thus, if choosing τ̃ ≥ τ?, one can always guarantee that M?

is contained in one of the candidate models {M̂1, . . . ,M̂τ̃}. On the other side, setting a
larger τ̃ brings heavy computational cost because it needs to search through a larger class
of candidate models. In other words, there is a tradeoff between computation and model
selection accuracy when choosing τ̃ . In practice, we set τ̃ = [n1/5 log(n)], where [a] denotes
the largest integer part of a. This empirical choice is analogous to the recommended τ̃ values
in Fan and Lv (2008) and Xu and Chen (2014), and it works well in both simulation studies
and the real data application.

Since the oracle sparse level τ? is unknown in practice, we propose an extended Bayesian
information criterion (Chen and Chen, 2012) to find the “best” fitting model among the τ̃
candidate models. Denote Y = (Y >1 , . . . , Y >n )> ∈ R(pn)×q, X̃ = (X1, . . . , Xn)> ∈ Rn×dn and
X = X̃ ⊗ Ip×p, where ⊗ denotes the Kronecker product. The ebic is defined as

ebic(M̂τ ) = log
{ 1

n
‖Y− XB̂τ‖2F

}
+ τ

cn log(n)

n
.
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We determine the sparse level τ by τ̂ = arg min1≤τ≤τ̃ ebic(M̂τ ), and denote the finally
selected model by M̂τ̂ . We will show in Theorem 3 that the ebic can consistently select
the true model.

The proposed procedure employs the joint effects of candidate variables, and is distin-
guished from the method of Kong et al. (2020), which screens candidate variables based
on marginal effects. Wang (2009) proposed a forward regression procedure, which shares
the same fashion. However, one main advantage of our method over theirs is that our τ̃
candidate models can always be guaranteed to include the true model with probability ap-
proaching one. If this is not guaranteed, likely, the ebic can only choose the best model
from all wrong candidate models.

2.2 Algorithm

In this section, we introduce an iterative algorithm to obtain an approximate solution to
problem (2). Note that model (1) can be rewritten as

Y = XB? + U,

where U = (U>1 , . . . , U
>
n )> ∈ R(pn)×q. Then problem (2) is given as follows:

min
B

g(B) subject to

dn∑
j=1

I(‖Bj‖F 6= 0) ≤ τ, (3)

where g(B) = ‖Y− XB‖2F /(2n). For problem (3), we borrow ideas from projected gradient
descent methods in first-order convex optimization problems (Nesterov, 2004). Specifically,
we consider the following quadratic approximation to g(B) at a generic D :

Qλ(B|D) =
1

2n
‖Y− XD‖2F −

1

n

〈
X>(Y− XD),B− D

〉
F

+
λ

2
‖B− D‖2F ,

where λ > 0 is a step size and 〈·, ·〉F denotes the Frobenius inner product. It can be shown
that g(D) = Qλ(D|D) and that Qλ(B|D) well approximates g(D) for B close to D. Based on
Qλ(B|D), an iterative algorithm (Bertsims et al., 2016; Xu and Chen, 2014) for problem (3)
is given by

B[l+1] = arg min
B
Qλ[l](B|B

[l]) subject to

dn∑
j=1

I(‖Bj‖F 6= 0) ≤ τ, (4)

where B[l] is the minimizer obtained at the lth iteration. Omitting constant terms, problem
(4) is equivalent to

B[l+1] = arg min
B

∥∥B− {B[l] + (nλ[l])−1X>(Y− XB[l])
}∥∥2

F
,

subject to

dn∑
j=1

I(‖Bj‖F 6= 0) ≤ τ.

This optimization problem can be solved using the result in the following proposition.
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Proposition 1 Let D = (D>1 , . . . , D
>
dn

)> ∈ R(pdn)×q be an arbitrary matrix. If B̂ =

(B̂>1 , . . . , B̂
>
dn

)> is an optimal solution to the following problem:

min
B
‖B− D‖2F subject to

dn∑
j=1

I(‖Bj‖F 6= 0) ≤ τ,

then B̂ has a closed form with the jth block defined as

B̂j = Hτ (Dj) ≡

{
Dj , if d∗j ≥ d∗(τ),

0, otherwise,
(5)

where d∗j = ‖Dj‖F , d∗(τ) is the τth largest component of d∗1, . . . , d
∗
dn
.

Proposition 1 extends the hard-thresholding operator in Bertsims et al. (2016) to the
matrix linear regression, which presents a closed form solution of B[l+1]. The updating rule
for B[l] is

B[l+1] = Hτ

{
B[l] + (nλ[l])−1X>(Y− XB[l])

}
, (6)

where Hτ (D) = (Hτ (D1)>, . . . ,Hτ (Ddn)>)>.
A good choice of the step size λ[l] in the updating rule (6) can greatly reduce the

cost of the proposed algorithm, and hence it is critical for the fast convergence of the
algorithm. One commonly uses a backtracking method to find λ[l] such that the loss function
monotonically decreases with steps. Specifically, the selected λ[l] satisfies

1

2n
‖Y− XB[l+1]‖2F ≤

1

2n
‖Y− XB[l]‖2F −

%λ[l]

2
‖B[l+1] − B[l]‖2F , (7)

where % ∈ (0, 1) is a fixed small constant. Let L be a pre-specified positive integer, and
ε be a tolerance parameter. Based on (4), (6) and (7), we summarize the iterative hard-
thresholding (IHT) algorithm for problem (3) in Algorithm 1.
Algorithm 1 (Iterative Hard-Thresholding Algorithm)

Step 1. Choose an initial value for B[0], such as B[0] = 0;
Step 2. For each l ∈ {0, 1, . . . , L},

Step 2.1. Choose an initial step size λ[l];

Step 2.2. Compute B[l+1] by equation (6);
Step 2.3. Stop Step 2 if the linear search criterion (7) is satisfied; otherwise, take the

step size to be 2λ[l], and return to Step 2.2;

Step 3. Stop the algorithm if ‖B[l+1] − B[l]‖F < ε‖B[l]‖F ; otherwise, increase l.

We set % = 10−3, ε = 10−3 and L = 1000 in Algorithm 1. The initial selection of λ[l] in
Step 2.1 is vital to the success of the iterative hard-thresholding algorithm. It balances the
non-increasing of ‖Y − XB‖2F after each iteration and the convergence rate. We choose an
initial λ[l] in Step 2.1 by adopting the Barzilai-Borwein rule (Barzilai and Borwein, 1988),
which uses a diagonal matrix diag{λ, . . . , λ} to approximate the Hessian matrix n−1X>X.
Specifically, the initial λ[l] is chosen as

λ[l] = arg min
λ
‖λw[l] − y[l]‖2F =

trace(w[l]>X>Xw[l])

n× trace(w[l]>w[l])
,

where w[l] = B[l] − B[l−1] and y[l] = n−1X>Xw[l].
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2.3 Convergence Analysis

To show the convergence of the proposed algorithm, we introduce a definition of the first-
order stationary point for problem (3), which can be viewed as a matrix version of the
ordinary first-order stationary point.
Definition 1 For a step size λ, B = (B>1 , . . . , B

>
dn

)> is called a first-order stationary point
of problem (3), if the following holds:

(i) B ∈ Hτ

{
B +

1

nλ
X>(Y− XB)

}
, and (ii)

dn∑
j=1

I(‖Bj‖F 6= 0) ≤ τ.

The convergence properties of the proposed Algorithm 1 are summarized in the following
theorem. Define φ as the maximum eigenvalue of X̃>X̃/n.
Theorem 1 Let {B[l]} be the sequence generated by Algorithm 1. If λ(l) ≥ φ/(1− %), then
we have

(i) All limit points of the sequence {B[l]} are first-order stationary points of problem (3).
(ii) The sequence {‖Y−XB[l]‖2F } is convergent as l→∞. In addition, after L iterations,

the sequence {B[l]} satisfies that

min
l=0,1,2,··· ,L

‖B[l+1] − B[l]‖2F ≤
1− %
%φnL

{
‖Y− XB[0]‖2F − ‖Y− XB̃‖2F

}
,

where B̃ satisfies that ‖Y− XB[l]‖2F → ‖Y− XB̃‖2F as l→∞.
Part (i) of Theorem 1 shows that the limiting point of the sequence {B[l]} is a first-order

stationary point. Part (ii) implies that if L = [1/ε2], the algorithm stops in a finite number
of steps via checking stopping criterion ‖B[l+1]−B[l]‖F ≤ O(ε). Furthermore, given the proof
of Theorem 1, we know that the monotone linear search criterion (7) is satisfied. Similar to
the arguments in Gong et al. (2013), we can show that for each l ≥ 0, λ[l] is bounded above
when criterion (7) holds, indicating the existence of λ[l] in Step 2.3.

Remark 1 Convergence to a first-order stationary point is a necessary but not sufficient
condition for convergence to a local optima. This is a typical complex optimization problem;
see Bunea et al. (2012) for variable selection under low rank constraint, He et al. (2018)
for a dimensionality reduction and variable selection, and Yun et al. (2011) for a coordinate
gradient descent method.

Remark 2 In all the simulations and real data application, we have checked that when we
adopt the Barzilai-Borwein rule to determine the initial λ[l] in Step 2.1 of Algorithm 1, the
selected λ[l] by Step 2.3 satisfies λ[l] ≥ φ/(1 − %) (% = 10−3) for all l. This guarantees the
convergence of the algorithm by Theorem 1, though a rigorous theoretical justification of why
the λ[l] derived by the Barzilai-Borwein rule satisfies λ[l] ≥ φ/(1 − %) is challenging work
and needs further investigation.

3. Theoretical Properties

This section first presents the theoretical variable selection properties, and then provides
the minimax rates of the estimate obtained by our algorithm.
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3.1 Variable Selection Properties

In this section, we study the variable selection properties of our method. Define M+
τ =

{M : M? ⊂ M, card(M) ≤ τ} as the collections of the over-fitted models. The follow-
ing conditions are required for establishing the sure screening property, all of which are
regularity conditions and commonly adopted in the analysis of high-dimensional data.

(C1) The coefficient matrix size satisfies log(pq) = o(nδ0) for some 0 < δ0 < 1.

(C2) The dimension of predictors satisfies log(dn) = o(nδ1) for some 0 < δ1 < 1.

(C3) τ? ≤ ω1n
δ2 for some positive constants ω1 and δ2.

(C4) There exist some positive constants ω3 and δ3 such that

min
j∈M?

[
(pq)−1/2‖B?

j ‖F
]
> ω2n

−δ3 .

(C5) For sufficiently large n, the smallest eigenvalue λmin

(
n−1X̃>MX̃M

)
is bounded away

from zero and the largest eigenvalue λmax

(
n−1X̃>MX̃M

)
is bounded away from infinity

for anyM∈M2τ
+ with τ? ≤ τ < ω1n

δ2 , where X̃M denotes the submatrix of X̃ whose
columns are indexed by M.

(C6) There exist positive constants η1 and η2 such that E{exp(η1|xij |)} < η2 for each
1 ≤ i ≤ n and 1 ≤ j ≤ dn.

(C7) (i)For each s = 1, . . . , p and k = 1, . . . , q, the random errors e1,sk, . . . , en,sk are inde-
pendent and identically distributed normal with mean 0 and variance σ2

sk. (ii) There
exists a constant σ such that 0 < σ−2 < mins,k{σ2

sk} ≤ maxs,k{σ2
sk} < σ2. Besides,

the covariance matrix Σe of the errors {ei,sk : s = 1, . . . , p, k = 1, . . . , q} is nonsingular.

Conditions (C1) and (C2) state that both the coefficient matrix size (pq) and the number
of predictors dn are allowed to grow at the exponential rate of the sample size n. Condition
(C3) assumes that the number of nonzero coefficients is less than the sample size n but can
diverge at the rate of O(nδ2). Condition (C4) indicates at what rate the minimum signal
strength can be identified by our procedure. That is, the correlations between the important
predictors and the matrix responses can be degenerate but not too fast, so that the signal is
detectable (He et al., 2013; Zhu et al., 2012). Condition (C5) requires that the 2τ -restricted
smallest eigenvalue is bounded away from zero, which is bigger than λmin

(
n−1X̃>X̃

)
; see

Xu and Chen (2014). Condition (C6) is much weaker than Condition (T4) in Xu and Chen
(2014), which allows that the predictor xij follows a sub-exponential distribution. A similar
condition can be found in Zhu et al. (2012) for example. Conditions (C5) and (C7) imply
that our method may break down under strong collinearity of the predictors or the matrix
response. The multivariate normal condition is also used in Condition (A10) in Kong et al.
(2020).
Theorem 2 Under Conditions (C1)-(C7), there exist some positive constants c1 and c2

such that

pr
(
M? ⊆ M̂τ

)
≥ 1− c2τpqd

τ
n exp(−c1n

1−δ2−2δ3−2υ)− c2ndn exp(−η1n
υ),
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where υ > 0 is some constant with (δ2 + δ3 + υ) < (1− δ0 − δ1)/2.
Theorem 2 states that our proposed method enjoys the sure screening property (Fan

and Lv, 2008) for τ̃ ≥ τ? when we choose υ > δ1. If τ̃ = τ?, then M̂τ̃ = M? holds with
probability going to one. Compared to that in Kong et al. (2020), this theorem guarantees
that the true model is contained in one of the candidate models {M̂1, . . . ,M̂τ̃} as long as
τ̃ ≥ τ?. Theorem 2 also indicates that the probability bound depends on the coefficient
matrix size (pq). In particular, the rate of sure screening property becomes slower as (pq)
increases. It turns out that the results in Xu and Chen (2014) is a special case of Theorem
2 with p = q = 1. Also, Theorem 2 states that with probability approaching one, the true
model M? can be included by the solution path within at most O(nδ2) steps, which is a
number much smaller than the sample size n under the condition (δ2+δ3+υ) < (1−δ0−δ1)/2.
Lastly, the success of the sure screening property in Kong et al. (2020) relies on the marginal
correlations between the predictors and response, which may miss some important predictors
that are marginally uncorrelated but jointly correlated with Yi.

Next, we prove the consistency property for the ebic procedure.
Theorem 3 Suppose that Conditions (C1)-(C7) hold with 2(δ2 + δ3 + υ) < (1 − δ0 − δ1).
If cn →∞ and cn log(n)/n1−δ2 → 0, then

pr
(
M? = M̂τ̂

)
→ 1 as n→∞.

Remark 3 Theorem 3 shows that the consistency of the ebic relies on the choice of cn.
Intuitively, a large cn-value leads to seriously under-fitted models, and vise versa. Note that
when cn = 1, the ebic reduces to the classical bic (Schwarz, 1978). Wang et al. (2009)
proposed to select cn = O(log{log(dn)}) when the number of variables diverges with the
sample size. Here we adopt cn = log{log(dn)}/3 in the simulation studies.

3.2 Minimax Rates of Estimation

In this subsection, we study the minimax rates of the estimate obtained by solving problem
(2). Here let X̃ be column-wisely normalized. Denote Bτ = {B :

∑dn
j=1 I(‖Bj‖F 6= 0) ≤ τ}.

The following technical assumption is needed to establish the lower and upper bounds for
estimation.

(A) There exist some constants 0 < κ1 < κ2 <∞ such that for any θ ∈ B2τ ,

κ1‖θ‖F <
1√
n
‖Xθ‖F < κ2‖θ‖F .

Assumption (A) is the sparse eigenvalue condition (Raskutti et al., 2011). This assump-
tion depends on the sparse level τ. The 2τ -restricted maximal eigenvalue κ2

2 can be much
smaller than the maximum eigenvalue of X̃>X̃/n.
Theorem 4 (Upper Bounds) Suppose that Condition (C7) and Assumption (A) hold. Then
for τ ≤ dn/2, there exist some positive constants c3, c4 and c5 such that

pr

{
inf
B̂τ

sup
B?∈Bτ

1√
(pq)
‖B̂τ − B?‖F ≤

c3σκ2

κ1

(τ log(dn/τ)

n

)1/2
}

≥ 1− c4pq exp{−c5τ log(dn/τ)}.
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In addition, if dn ≥ 4τ, then there exist some positive constants c6, c7 and c8 such that

pr

{
inf
B̂τ

sup
B?∈Bτ

1√
(npq)

‖X(B̂τ − B?)‖F ≤
c6σ

κ2

(τ log(dn/τ)

n

)1/2
}

≥ 1− c7pq exp
[
− c8τ log{dn/(2τ)}

]
.

Theorem 4 gives nonasymptotic error bounds for any fixed (n, dn, p, q). If Conditions
(C2) and (C3) are satisfied and pq = o{n1−(δ1+δ2)} with (δ1 + δ2) < 1, the estimate B̂τ is
consistent with probability going to one.
Theorem 5 (Lower Bounds) Suppose that Condition (C7) and Assumption (A) hold. If
τ ≤ dn/2, then there exist some positive constants c9 and c10 such that

inf
B̂τ

sup
B?∈Bτ

E
( 1√

(pq)
‖B̂τ − B?‖F

)
≥ c9σκ2

κ1

{τ log(dn/τ)

n

}1/2
,

and

inf
B̂τ

sup
B?∈Bτ

E
( 1√

(npq)
‖X(B̂τ − B?)‖F

)
≥ c10σ

κ2

{τ log(dn/τ)

n

}1/2
.

Theorem 5 establishes the lower error bounds for estimation and prediction, which
holds for the minimizer of problem (2). Theorems 4 and 5 identify the optimal minimax
rates up to a constant factor. In particular, the minimax Frobenius-norm rate scales as
{τ log(dn/τ)/n}1/2. When p = q = 1 or (pq) is fixed, the minimax lower bounds coincide
with Raskutti et al. (2011). Therefore, Theorem 5 generalizes their results to the matrix
linear regression model (1).
Theorem 6 Suppose that Assumption (A) and Conditions (C6)-(C7) hold and τ? ≤ τ.
If the initial value B[0] = 0, the iterative number l > [log2{(nφ)1/2‖B?‖F /‖X>U‖F }], and
φ < λ[l] ≤ κ1/(1− 1/

√
32), then

pr

{
1√
(pq)
‖B[l] − B?‖F ≤ c̃3σ

(τ log(dn/τ)

n

)1/2
}

≥ 1− c̃4

[
pqτ exp{−c̃5 log(dn/τ)n2υ}+ pqτ exp{−η1n

υ}
]
,

and

pr

{
1√

(npq)
‖X(B[l] − B?)‖F ≤ c̃6σ

(τ log(dn/τ)

n

)1/2
}

≥ 1− c̃7

[
pqτ exp{−c̃8 log(dn/τ)n1−2υ}+ nτ exp{−η1n

υ}
]
,

where c̃j (j = 3, . . . , 8) are some positive constants.
Theorem 6 states that the estimate generated by Algorithm 1 also enjoys the optimal

minimax rate {τ log(dn/τ)/n}1/2. Similarly to Theorem 4, the upper bound of ‖B[l]−B?‖F
is negligible under Conditions (C2) and (C3) and pq = o{n1−(δ1+δ2)} with (δ1 + δ2) < 1.
Hence, Theorem 6 guarantees the consistency of the estimate generated by Algorithm 1.
In addition, Theorems 1 and 6 imply that after a finite number of steps the estimator B[l]

would be consistent with probability going to one.

10
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4. Simulation Studies

We conduct simulation studies to examine the finite sample performance of the proposed
method. The error term Vec(Ui) is independently generated from the standard multivariate
normal distribution, where Vec(·) denotes the vectorization of a matrix. The total number of
predictors is dn = 1000. The sample sizes are n = 100 and 200. We consider (p, q) = (50, 50)
and (p, q) = (150, 150). The following three models are considered.

Example 1 Let M1 and M2 be the subset of {1, . . . , p} and {1, . . . , q}, respectively. Define
B[M1,M2] = {bsk : s ∈ M1, k ∈ M2} as the sub-matrix of B = (bsk) ∈ Rp×q. For the ith
subject, let Xi = (xij) ∈ Rdn follow a multivariate normal distribution with mean 0 and
covariance matrix (σkl)dn×dn . Let σkl = ϑ for k 6= l and k, l 6= 5, σ5l = σl5 = 0 for l 6= 5,
and σkl = 1 for k = l. We set ϑ = 0.1, 0.5 and 0.9. The responses Yi (i = 1, 2, . . . , n) are
generated by Yi = 2xi1B + 2xi2B + 2xi3B − 6ϑxi4B + 0.5xi5B + Ui, and the matrix B is
generated as follows. Set M1 = {1, . . . , 20} and M2 = {1, . . . , 20}. Then, let B[M1,M2] =
vv>, where the entries of v ∈ R20×5 follow the standard normal distribution. The other
entries of B are set as 0. The regression coefficients Bj are set as 0 for j ≥ 6. This example
is originally considered by Fan and Lv (2008). In this case, the marginal correlation between
xi4 and Yi is indeed zero. Moreover, xi5 is a relatively weak signal for the response, and
does not “borrow” strength from all other variables.

Example 2 We consider a challenging case, similar as the one in Wang (2009). For the ith
subject, we generate Xi = (xij) ∈ Rdn as follows: independently simulate Zi = (zij) ∈ Rdn
and Wi = (wij) ∈ Rdn from a standard multivariate normal distribution, and obtain xij
by xij = (zij + wij)/

√
2 for every 1 ≤ j ≤ 5, and xij = (zij +

∑5
j′=1 zij′)/2 for every

5 < j ≤ dn. The responses Yi = (Yi,sk) are generated by Yi =
∑5

j=1(jxijB) + Ui, where

B[M1k,M2k] = vku
>
k for k = 1, . . . , p/5, and the entries of vk ∈ R5×2 and uk ∈ R5×2 follow

from the standard normal distribution. We set M1k = M2k = {5k − 4, . . . , 5k}. The other
entries of B are set as 0. The coefficient matrices Bj (j > 5) are set to be 0. In this case,
it is very difficult to discover (for example) xi1 as a significant variable, because that the
correlation coefficient of xi1 and Yi is much smaller than that of xij and Yi for every j > 5.

Example 3 Let τ? = [
√
n], and p = q = 4[

√
n]. The variable Xi = (xij) ∈ Rdn follows

a multivariate normal distribution with mean 0 and covariance matrix (σkl)dn×dn, where
σkl = 0.5 for k 6= l, and σkl = 1 for k = l. Set M1 = M2 = {17, . . . , 24}. The regression
coefficients are Bj [M1,M2] =

∑3
k=1(akvku

>
k ), where the entries of vk ∈ R8×3 and uk ∈ R8×3

follow the standard normal distribution, and ak = 22−k log(n)n−1/2. The other entries of
Bj are set as 0. The coefficient matrices Bj (j > τ?) are set to be 0.

All simulation results are based on 100 Monte Carlo repetitions. Let B̂m be the estimate
realized in the mth simulation replication, and M̂τ̂ ,m be the corresponding selected model.
Let M?

c = {1 ≤ j ≤ dn : j /∈ M?}. We consider the following four criteria: (I) the
proportion of times when M̂τ̂ ,m contains xj (denoted by pj); (II) the average number of

true positives (TP) and false positives (FP), defined as 100−1
∑100

m=1 card(M̂τ̂ ,m ∩M?) and

100−1
∑100

m=1 card(M̂τ̂ ,m∩M?
c), respectively; (III) the proportion of times when M̂τ̂ =M?

(correct fitting rate, CF); and (IV) the average of the scaled mean squared errors, defined

11
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as 100−1
∑100

m=1{‖X(B̂m − B?)‖2F /(npq)} for prediction (Pred) and as 100−1
∑100

m=1{‖B̂m −
B?‖2F /(pq)} for estimation (Est). We summarize the results in Tables 1-4.

The simulation results show that the srls procedure performs well. Specifically, the
average of the number of true positives is close to the number of true active variables.
Besides, the average of the number of false positives is close to zero. These results are
consistent with Theorem 3 that the proposed method enjoys the model selection consistency.
The results of Examples 2 and 3 suggest that the proposed method can also handle the case
when the coefficient matrix size is larger than the sample size or diverges as the sample
size increases. Furthermore, the prediction results indicate that the srls method enjoys
estimation consistency. Moreover, Tables 1 and 2 show that the proposed method yields
robust results when the correlations between xj (j = 1, . . . , dn) increase, which suggests
that our method can handle the highly correlated variables. We also consider the settings
with the error term Vec(Ui) independently generated from t-distribution and chi-square
distribution. The results are provided in Tables S1-S4 of Appendix C. We observe that the
proposed method performs well for the sub-exponential distributions considered here.

We compare our method with three procedures: the method of Kong et al. (2020)
(kazz, for short), the sis* and isis*. The sis* and isis* methods for the matrix responses
are designed as follows. For the sis*, we first standardize {xij , i = 1, . . . , n} and {Yi,lk, i =
1, . . . , n} for any j = 1, . . . , dn, l = 1, . . . , p and k = 1, 2, . . . , q, denoted by {x̃ij , i = 1, . . . , n}
and {Ỹi,lk, i = 1, . . . , n}. Then we calculate n−1

∑n
i=1 x̃ij Ỹi, 1 ≤ j ≤ dn, where Ỹi = (Ỹi,lk).

Define the selected model as

M̂SIS
τ =

{
1 ≤ j ≤ dn : ‖n−1

n∑
i=1

x̃ij Ỹi‖F is among the first τ largest of all
}
, (8)

where 1 ≤ τ ≤ τ̃ . Based on M̂SIS
τ , we estimate the coefficient matrices using the OLS

method:

min
Bj

{
1

2n

n∑
i=1

‖Yi −
∑

j∈M̂SIS
τ

xijBj‖2F

}
.

Finally, we carry out this procedure for each τ ∈ {1, , . . . , τ̃}, and adopt the ebic to select
the ‘best’ fitting model among the τ̃ submodels. For the isis* method, let τ1 = [τ/2], and
τ2 = τ − τ1. In the first step, we select a submodel via (8), denoted by M̂SIS

1,τ1
. Then we

calculate the residuals by regressing the response Ỹi on (x̃ij : j ∈ M̂SIS
1,τ1

). In the next step,
we treat those residuals as the new responses and apply (8) again to the remaining dn − τ1

predictors, which results in a submodel M̂SIS
2,τ2

. Let M̂ISIS
τ = M̂SIS

1,τ1
∪ M̂SIS

2,τ2
. Based on

M̂ISIS
τ , we estimate the coefficient matrices by the OLS method. Finally, we carry out the

modified isis procedure for each τ ∈ {1, , . . . , τ̃}, and select the ‘best’ fitting model among
the τ̃ submodels by the ebic. For the kazz method, we choose the threshold the same way
as the sis* method for a fair comparison.

Tables 1 and 2 indicate that under the scenario of Example 1, the sis* fails to capture xi4
as the marginal correlation of xi4 and Yi is zero, and it fails to capture xi5 because the signal
of xi5 is weak. Besides, Tables 1-4 demonstrate that although the isis* outperforms the sis*
and kazz in terms of model selection, it is not stable when the correlations between xij ’s
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vary and gives large errors for the estimation and prediction than our proposed method.
Under the scenario of Example 2, the sis* and kazz procedures overlook some variables
such as xi1. The phenomenon makes sense because the correlation between xi1 and Yi is
much smaller than that of xij and Yi for every j > 5, and hence xi1 is not captured by the
marginal screening methods.

ϑ Method p1 p2 p3 p4 p5 TP FP CF Est Pred
(p, q) = (50, 50)

0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.05(0.00) 0.05(0.00)
SIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.00(0.00) 3.00(0.00) 0.07(0.33) 0.00(0.00) 0.64(0.16) 0.58(0.19)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.14) 4.98(0.14) 0.14(0.57) 0.92(0.27) 0.06(0.03) 0.05(0.02)
KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.03(0.17) 3.03(0.17) 0.10(0.48) 0.00(0.00) 0.74(0.22) 0.66(0.22)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.08(0.01) 0.05(0.00)
SIS* 0.94(0.24) 0.90(0.30) 0.96(0.20) 0.00(0.00) 0.00(0.00) 2.80(0.40) 0.26(0.56) 0.00(0.00) 12.3(3.77) 5.97(1.92)

ISIS* 0.97(0.17) 0.95(0.22) 0.98(0.14) 1.00(0.00) 0.44(0.50) 4.34(0.57) 1.77(1.90) 0.11(0.31) 0.85(1.85) 0.37(0.57)
KAZZ 0.95(0.22) 0.94(0.24) 0.93(0.26) 0.00(0.00) 0.00(0.00) 2.82(0.44) 0.24(0.53) 0.00(0.00) 12.6(4.46) 6.07(1.75)

0.9 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.18(0.36) 0.85(0.36) 0.38(0.11) 0.05(0.00)
SIS* 0.29(0.46) 0.23(0.42) 0.31(0.46) 0.04(0.20) 0.10(0.30) 0.97(0.69) 0.36(0.99) 0.00(0.00) 38.9(13.1) 3.92(1.50)

ISIS* 0.70(0.46) 0.66(0.48) 0.67(0.47) 1.00(0.00) 1.00(0.00) 4.03(0.73) 2.68(2.17) 0.08(0.27) 6.01(4.92) 0.43(0.30)
KAZZ 0.34(0.48) 0.23(0.42) 0.24(0.43) 0.05(0.22) 0.24(0.43) 1.10(0.81) 0.48(1.14) 0.00(0.00) 38.9(14.9) 3.78(1.52)

(p, q) = (150, 150)
0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.14) 0.92(0.27) 4.90(0.33) 0.00(0.00) 0.91(0.29) 0.06(0.00) 0.05(0.00)

SIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.02(0.14) 0.00(0.00) 0.11(0.02) 0.10(0.02)
ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.12(0.33) 0.13(0.34) 3.25(0.54) 0.07(0.26) 0.05(0.22) 0.10(0.02) 0.09(0.02)
KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.01(0.10) 0.00(0.00) 0.09(0.03) 0.08(0.02)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.85(0.36) 4.85(0.36) 0.00(0.00) 0.85(0.36) 0.08(0.01) 0.05(0.00)
SIS* 0.86(0.35) 0.89(0.31) 0.82(0.39) 0.00(0.00) 0.00(0.00) 2.57(0.50) 0.12(0.33) 0.00(0.00) 1.39(0.40) 0.67(0.20)

ISIS* 0.94(0.24) 0.95(0.22) 0.91(0.29) 0.96(0.20) 0.97(0.17) 4.73(0.53) 1.11(1.75) 0.50(0.50) 0.27(0.37) 0.12(0.13)
KAZZ 0.87(0.34) 0.87(0.34) 0.92(0.27) 0.00(0.00) 0.00(0.00) 2.66(0.50) 0.17(0.45) 0.00(0.00) 1.40(0.42) 0.68(0.23)

0.9 SRLS 0.98(0.14) 0.97(0.17) 0.98(0.14) 1.00(0.00) 1.00(0.00) 4.93(0.43) 0.34(0.65) 0.74(0.44) 0.40(0.28) 0.05(0.01)
SIS* 0.26(0.44) 0.28(0.45) 0.27(0.45) 0.04(0.20) 0.16(0.37) 1.01(0.67) 0.35(0.93) 0.00(0.00) 4.45(1.43) 0.46(0.16)

ISIS* 0.51(0.50) 0.51(0.50) 0.52(0.50) 1.00(0.00) 1.00(0.00) 3.54(0.77) 1.16(1.09) 0.07(0.26) 1.36(0.72) 0.12(0.04)
KAZZ 0.31(0.46) 0.19(0.39) 0.26(0.44) 0.04(0.20) 0.21(0.41) 1.01(0.86) 0.28(0.57) 0.00(0.00) 4.51(1.45) 0.44(0.15)

Table 1: The selection results and standard deviation (in parentheses) for Example 1 with
n = 100.

5. Alzheimer’s Disease Neuroimaging Initiative

We performed an imaging genetics analysis by exploring the relationship between the 2D
hippocampus surface imaging data and the genes on the 19th chromosome. We first prepro-
cessed the imaging and genetics data from the Alzheimer’s Disease Neuroimaging Initiative
study, and there were 735 subjects and 2000 SNPs retained after preprocessing. Each sub-
ject has left and right hippocampus shape representations, each of which is represented as
a 100 × 150 matrix. We provided the data usage agreement and the detailed data prepro-
cessing steps in Appendix B. We first fitted the matrix linear regression model (1) with
either left (or right) hippocampus shape representation from 735 subjects as 100× 150 ma-
trix responses, and age and gender as clinical variables. We also chose the first 5 principal
component scores based on the SNP data as variables to correct for population stratifi-
cation. We calculated the OLS estimates of coefficient matrices and then computed the
corresponding residual matrices for the left and right hippocampi after adjusting the effects
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ϑ Method p1 p2 p3 p4 p5 TP FP CF Est Pred
(p, q) = (50, 50)

0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.03(0.00)
SIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.09(0.81) 0.00(0.00) 0.71(0.20) 0.67(0.20)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.03(0.00)
KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.05(0.50) 0.00(0.00) 0.71(0.23) 0.65(0.22)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.04(0.00) 0.03(0.00)
SIS* 1.00(0.00) 1.00(0.00) 1.00(0.14) 0.00(0.00) 0.00(0.00) 3.00(0.00) 0.08(0.39) 0.00(0.00) 11.3(3.61) 5.93(1.98)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.65(0.48) 4.65(0.48) 1.97(2.71) 0.24(0.43) 0.15(0.12) 0.11(0.11)
KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.00(0.00) 3.00(0.00) 0.08(0.31) 0.00(0.00) 10.9(3.08) 5.72(1.81)

0.9 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.01(0.10) 0.99(0.10) 0.17(0.02) 0.03(0.00)
SIS* 0.43(0.50) 0.35(0.48) 0.39(0.49) 0.03(0.17) 0.21(0.41) 1.41(0.89) 0.10(0.72) 0.00(0.00) 38.9(13.7) 3.99(1.38)

ISIS* 0.97(0.17) 0.96(0.20) 0.95(0.22) 1.00(0.00) 1.00(0.00) 4.88(0.36) 1.93(2.66) 0.50(0.50) 0.89(1.94) 0.08(0.14)
KAZZ 0.40(0.49) 0.42(0.50) 0.31(0.46) 0.01(0.10) 0.22(0.42) 1.36(0.81) 0.06(0.37) 0.01(0.10) 42.1(13.9) 4.28(1.42)

(p, q) = (150, 150)
0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.04(0.00) 0.03(0.00)

SIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.00(0.10) 3.00(0.00) 0.00(0.00) 0.00(0.00) 0.09(0.03) 0.09(0.03)
ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.72(0.45) 0.85(0.36) 4.57(0.67) 0.23(0.65) 0.62(0.49) 0.04(0.02) 0.04(0.02)
KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.00(0.00) 3.00(0.00) 0.00(0.00) 0.00(0.00) 0.08(0.02) 0.07(0.02)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.04(0.00) 0.03(0.00)
SIS* 1.00(0.00) 1.00(0.00) 0.99(0.10) 0.00(0.00) 0.00(0.00) 2.99(0.10) 0.00(0.00) 0.00(0.00) 1.29(0.34) 0.68(0.18)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.04(0.00) 0.03(0.00)
KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.00(0.00) 3.00(0.00) 0.00(0.00) 0.00(0.00) 1.26(0.38) 0.66(0.21)

0.9 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.02(0.14) 0.98(0.14) 0.16(0.02) 0.02(0.00)
SIS* 0.38(0.49) 0.33(0.47) 0.30(0.46) 0.01(0.10) 0.10(0.30) 1.12(0.48) 0.04(0.32) 0.00(0.00) 4.36(1.44) 0.46(0.16)

ISIS* 0.93(0.26) 0.92(0.27) 0.88(0.33) 1.00(0.00) 1.00(0.00) 4.73(0.49) 0.59(1.29) 0.56(0.50) 0.34(0.31) 0.04(0.03)
KAZZ 0.30(0.46) 0.31(0.46) 0.41(0.49) 0.00(0.00) 0.18(0.39) 1.20(0.45) 0.00(0.00) 0.00(0.00) 4.38(1.07) 0.46(0.12)

Table 2: The selection results and standard deviation (in parentheses) for Example 1 with
n = 200.

n Matrix Size Method p1 p2 p3 p4 p5 TP FP CF Est Pred
100 p = q = 50 SRLS 1.00 1.00 1.00 1.00 1.00 5.00 0.00 1.00 0.05 0.05

SIS* 0.00 0.00 0.00 0.04 0.56 0.60 2.23 0.00 9.83 3.88
ISIS* 1.00 1.00 1.00 1.00 1.00 5.00 3.90 0.00 0.22 0.90
KAZZ 0.00 0.00 0.00 0.02 0.57 0.59 2.32 0.00 10.2 4.17

p = q = 150 SRLS 1.00 1.00 1.00 1.00 1.00 5.00 0.00 1.00 0.05 0.05
SIS* 0.00 0.00 0.00 0.02 0.57 0.59 2.46 0.00 3.34 1.32

ISIS* 0.99 1.00 1.00 1.00 1.00 4.99 3.81 0.00 0.22 0.09
KAZZ 0.00 0.00 0.00 0.02 0.50 0.52 2.16 0.00 3.65 1.44

200 p = q = 50 SRLS 1.00 1.00 1.00 1.00 1.00 5.00 0.00 1.00 0.03 0.03
SIS* 0.00 0.00 0.00 0.07 0.72 0.79 2.78 0.00 8.65 3.96

ISIS* 1.00 1.00 1.00 1.00 1.00 5.00 3.50 0.00 0.09 0.04
KAZZ 0.00 0.00 0.00 0.05 0.74 0.79 2.94 0.00 9.07 4.13

p = q = 150 SRLS 1.00 1.00 1.00 1.00 1.00 5.00 0.00 1.00 0.03 0.03
SIS* 0.00 0.00 0.00 0.04 0.76 0.80 2.38 0.00 2.80 1.31

ISIS* 1.00 1.00 1.00 1.00 1.00 5.00 3.38 0.00 0.09 0.04
KAZZ 0.00 0.00 0.00 0.04 0.78 0.82 2.84 0.00 2.86 1.34

Table 3: The selection results for Example 2.

of the clinical variables and the SNP principal component scores. This first step analysis is
to exclude the confounding factors age, gender and population stratification.

We applied the sis*, isis*, and the proposed methods to find the significant SNPs to
the left and right hippocampal surfaces, respectively. The selection results are reported in
Table 5. Our proposed method selects three SNPs: rs3119815, rs266875 and rs12610273
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n = 100 n = 200
Method TP FP CF Est Pred TP FP CF Est Pred
SRLS 9.99 0.00 0.99 0.20 0.10 13.6 0.00 0.70 0.14 0.07
SIS* 4.95 1.67 0.00 0.81 0.37 6.69 1.02 0.00 0.38 0.19

ISIS* 5.81 2.06 0.00 0.69 0.30 7.04 1.21 0.00 0.37 0.17
KAZZ 5.30 1.09 0.00 0.64 0.31 7.18 0.48 0.00 0.31 0.16

Table 4: The selection results for Example 3.

for the left hippocampal surface, and rs3119815, rs12974560 and rs11667541 for the right
hippocampal surface. Figure 1 shows the plots for the proposed estimates corresponding
to the 6 selected SNPs. The SNP rs3119815 on gene LSM14A is chosen both for the left
and right hippocampal surfaces by the proposed procedure. Chowriappa et al. (2013) found
that LSM14A is a co-expressed gene in the incipient Alzheimer’s disease samples since to
some extent, it could be responsible for the phenotypic differences through the progression
of Alzheimer’s disease. The SNP rs12974560 is on gene LAIR1 that is associated with the
left hippocampal surface by the proposed method. Wirz et al. (2013) found that LAIR1 is a
significant upregulated gene during the development of β-amyloid protein pathology. The β-
amyloid protein (Aβ) pathology plays one of the most important roles in Alzheimer’s disease
pathology and prevention (Sadigh-Eteghad et al., 2015). Therefore, LAIR1 may also be a
key in the progression of Alzheimer’s disease. The SNP rs12974560 on gene ARHGEF18 is
selected to be associated with the right hippocampal surface by the proposed procedure. It
is identified by Sánchez-Valle (2017) as a significantly differentially expressed gene in lung
cancer, malignant glioblastomas and Alzheimer’s disease, which are three diseases of the
most challenging public health conditions worldwide. However, the genes selected by the
sis* and isis* methods have no overlap with those selected by our method, the main reason
is that the sis* and isis* have excluded the significant SNPs at the first screening step.
This is in accordance with the simulation results, that is, the sis* and isis* may overlook
some important predictors.

Hippocampal surface SNP SRLS SIS* ISIS*

left rs8105522 X

rs3119815 X

rs8103479 X X

rs266875 X

rs12610273 X

right rs8105522 X

rs12974560 X

rs3119815 X

rs11667541 X

rs10415851 X X

Table 5: Real data analysis: the selected SNPs associated with the left and right hippocam-

pal surfaces, respectively.
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(a)

(b)

Figure 1: Alzheimer’s Disease Neuroimaging Initiative data: The panels (a) and (b) show

the plots for our proposed estimates corresponding to the 3 selected SNPs asso-

ciated with the left and right hippocampal surfaces, respectively.
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6. Smoothing estimator and subregions detection

Potentially there may exist intrinsic information among the entries of the matrix response,
e.g., multiple piecewise smooth regions with unknown edges and jumps. In addition, it
should be of interest to find out which areas of the matrix response would be mostly affected
by the predictors. In this section, we consider a smoothing estimator of B?

j and the support

recovery procedure for the matrix response. Let B̂ = (B̂>1 , . . . , B̂
>
dn

)> be the estimate

obtained by the SRLS procedure, and B̂j = (b̂j,sk). Define Nsk = {(s′, k′) : ‖(s′, k′) −
(s, k)‖2 < r} as a neighbourhood of point (s, k), where r denotes a radius. Note that B̂j
is a consistent estimate for B?

j . Borrowing the idea from Zhu et al. (2014), we obtain an
estimator of b?j,sk by

b̄j,sk = arg min
b

∑
(s′,k′)∈Nsk

K1(‖(s′, k′)− (s, k)‖2/r)K2(|b̂j,s′k′ − b̂j,sk|/h)
(
b̂j,s′k′ − b

)2
, (9)

where K1(z) and K2(z) are two smoothing functions, and h is a bandwidth. The functions
Kl(z) (l = 1, 2) decrease on [0,∞), and satisfy that 0 ≤ Kl(z) ≤ 1, Kl(0) = 1, and Kl(z)→ 0
as z →∞. It is worth noting that the role of K2(z) is used to measure the similarity between
bj,s′k′ and bj,sk. Precisely, K2(|bj,s′k′ − bj,sk|/h) ≈ 1 if bj,s′k′ is close to bj,sk; otherwise,
K2(|bj,s′k′ − bj,sk|/h) ≈ 0.

A direct calculation of (9) yields

b̄j,sk =
∑

(s′,k′)∈Nsk

w(b̂j,s′k′ , b̂j,sk; r, h)b̂j,s′k′ ,

where

w(v, u; r, h) =
K1(‖(s′, k′)− (s, k)‖2/r)K2(|v − u|/h)∑

s′k′∈Nsk K1(‖(s′, k′)− (s, k)‖2/r)Kh(|v − u|/h)
.

To determine the radius r, we propose an adaptive method (Zhu et al., 2014). Consider the
following sequence: rm = 1.2m (1 ≤ m ≤ M), where M is a prespecified positive integer.

Let N [m]
sk = {(s′, k′) : ‖(s′, k′)− (s, k)‖2 < rm}. For each j ∈ M̂τ̂ , we estimate B?

j as follows.

Algorithm 2 (Smoothing Estimator)

Step 1. Let m = 0, and input A, M0, M and the initial value B̄
[0]
j = (b̄

[0]
j,sk) with

b̄
[0]
j,sk = b̂j,sk, where A is a tolerance parameter and M0 is a positive integer.

Step 2. Calculate b̄
[m+1]
j by

b̄
[m+1]
j,sk =

∑
(s′,k′)∈N [m+1]

sk

w(b̄
[m]
j,s′k′ , b̄

[m]
j,sk; rm+1, h)b̂j,s′k′ .

Step 3. If m ≤M0, increase m to m+ 1, and return to Step 2. Otherwise, go to Step
4.

Step 4. If m < M and |b̄[m+1]
j,sk − b̄[M0+1]

j,sk | < A, increase m to m+ 1 and return to Step
2.

Otherwise, stop the iterative procedure, and set b̄j,sk = b̄
[m]
j,sk.
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Here we set M = 10, M0 = 5, A = 10−3, and h = $n−1/5 with $ = 1/2. More
discussions about the settings of these parameters can be found in Zhu et al. (2014). Denote
B̄j = (b̄j,sk) for each j ∈ M̂τ̂ .

In practice, it may be also of interest to find out which areas of the matrix response
would be mostly affected by the predictors, that is, the active entries of Yi. Here, we take
Yi,sk as an inactive entry of Yi if E(Yi,sk|Xi) = 0 almost surely. Let Ψ be the active set,
then the inactive set is Ψc = {(s, k) : E(Yi,sk|Xi) = 0 almost surely}. For the analysis,
we assume that the matrix response Yi is sparse, that is, Card(Ψ) � pq. Note that under
model (1), Ψ can also be denoted by

Ψ =

{
(s, k) : E

{(
τ?∑
j=1

xijb
?
j,sk

)2}
6= 0

}
.

Thus, we can estimate Ψ by

Ψ̄ς =

{
(s, k) :

1

n

n∑
i=1

Ȳ 2
i,sk > ς

}
,

where ς is a tuning parameter and Ȳi,sk =
∑τ̂

j=1 xij b̄j,sk. Define

ebicς =
1

n

n∑
i=1

∑
(s,k)∈Ψ̄ς

(Ȳi,sk − Yi,sk)2 + Card(Ψ̄ς)
c̃n log(n)

n
, (10)

where c̃n is chosen as log log(pq). We choose ς̂ to minimize ebicς , and let Ψ̄ = Ψ̄ς̂ . Since
this procedure depends on the smoothing estimate B̄j , we refer to it as S-SRLS.

We next consider simulation studies to evaluate the finite performance of the regularized
smoothing estimator. The total number of predictors is dn = 1000. We consider (p, q) =
(50, 50). Let Xi = (xij) ∈ Rdn follow a multivariate normal distribution with mean 0
and covariance matrix (σkl)dn×dn with σkl = 0.5|k−l|. The errors Vec(Ui) are independently
generated from a multivariate normal distribution with mean 0, and the correlations between
ei,sk and ei,s′k′ are 0.2|s−s

′|+|k−k′| for 1 ≤ s, s′, k, k′ ≤ 50. The responses Yi (i = 1, 2, . . . , n)
are generated by Yi = xi1B

?
1 + xi2B

?
2 + xi3B

?
3 + Ui, where B?

j (1 ≤ j ≤ 3) are depicted
in Figure 2 and B?

j are set as 0 for j > 3. The true values in Figure 2 are displayed
with navy blue, blue, green, orange and deep red colors representing 0, 0.2, 0.4, 0.6 and 0.8,
respectively. The support of Yi is given in Figure 3. The smoothing functions are set as
K1(z) = max{0, 1 − z} and K2(z) = exp(−z2). To evaluate the accuracy of the support
recovery, we employ the similarity measure:

S(Ψ̄,Ψ) =
Card(Ψ̄ ∩Ψ)√

Card(Ψ̄)Card(Ψ)
.

For comparison, we also consider a naive method (N-SRLS, for short):

Ψ̂ς =

{
(s, k) :

1

n

n∑
i=1

Ŷ 2
i,sk > ς

}
,
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Figure 2: The true coefficient matrices B?
j . The true values are displayed with navy blue,

blue, green, orange and deep red colors representing 0, 0.2, 0.4, 0.6 and 0.8, re-

spectively.

Figure 3: Heat maps of the nonzeros identified out of 100 replications. White indicates 100

1s identified out of 100 replications; black indicates 100 0s identified out of 100

replications.

where Ŷi,sk =
∑τ̂

j=1 xij b̂j,sk and ς is determined by the ebicς as in (10). The comparison
results reported in Table 6 are based on 100 replications with sample sizes n = 100 and 200.
We observe that the values of S(Ψ̄,Ψ) of the S-SRLS are close to 1 and outperform those of
the N-SRLS. To better illustrate the recovery performance, we depict in Figure 3 the heat
maps of the nonzeros identified out of 100 replications when n = 100. Figure 3 suggests
that when n = 100, the nonzero regions recovered by the S-SRLS are very close to those
of Yi, and the N-SRLS method tends to retain many zero entries of the matrix response in
Ψ̂ς̂ . For theoretical justification of the S-SRLS, it is beyond the scope of the paper and we
leave it for future research.
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n N-SRLS S-SRLS

100 0.76(0.01) 0.98(0.01)

200 0.94(0.01) 0.99(0.00)

Table 6: The support recovery results and standard deviations (in parentheses).
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The Appendices include all the technical proofs, the real data usage agreement, the detailed
data preprocessing steps and additional simulation studies.

Appendix A: Proofs of Theorems 1-6

Proof of Proposition 1. It suffices to consider ‖Dj‖F > 0 for all j = 1, · · · , dn. Let
M = {j : B̂j 6= 0}. The objective function is given by

∑
j /∈M ‖Dj‖2F +

∑
j∈M ‖B̂j −Dj‖2F .

Note that by selecting B̂j = Dj (j ∈ M), the objective function becomes
∑

j /∈M ‖Dj‖2F .
Thus, to minimize the objective function, M must correspond to the indices of the largest
τ values of ‖Dj‖2F .

Proof of Theorem 1. To prove part (i), we first show that the linear search criterion (7)
holds. By the definitions of Qλ(B|B[l]) and B[l+1], we have

Qλ[l](B
[l]|B[l]) =

1

2n
‖Y− XB[l]‖2F ≥ Qλ[l](B

[l+1]|B[l]).
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Thus,

1

2n
‖Y− XB[l]‖2F

≥ 1

2n
‖Y− XB[l]‖2F −

1

n

〈
X>(Y− XB[l]),B[l+1] − B[l]

〉
F

+
λ[l]

2
‖B[l+1] − B[l]‖2F

=
1

2n
‖Y− XB[l]‖2F −

1

n

〈
X>(Y− XB[l]),B[l+1] − B[l]

〉
F

+
λ[l](1− %)

2
‖B[l+1] − B[l]‖2F

+
λ[l]%

2
‖B[l+1] − B[l]‖2F

=Q(1−%)λ[l](B
[l+1]|B[l]) +

%λ[l]

2
‖B[l+1] − B[l]‖2F . (A.1)

It follows from λ[l] ≥ φ/(1− %) that

Q(1−%)λ[l](B
[l+1]|B[l]) ≥ 1

2n
‖Y− XB[l+1]‖2F . (A.2)

Using (A.1) and (A.2), we obtain

1

2n
‖Y− XB[l]‖2F −

1

2n
‖Y− XB[l+1]‖2F ≥

%λ[l]

2
‖B[l+1] − B[l]‖2F ≥ 0, (A.3)

which means that the linear search criterion (7) holds. Hence the non-increasing sequence
n−1‖Y− XB[l]‖2F is convergent and bounded from below.

We now show that B[l] is convergent. When λ[l] → ∞ as l → ∞, the result is trivial.
Next, we assume that {λ[l]} is bounded. Let λ∗ be a limit point of λ[l], that is, there
exists a subsequence L such that λ[l] → λ∗ for l ∈ L. For each l ∈ L, denote M[l] =

{j : ‖B[l]
j ‖F 6= 0} as the support of B[l]. By (A.3) and the fact that n−1‖Y − XB[l]‖2F is

convergent, we know that ‖B[l+1] − B[l]‖2F → 0 as l ∈ L → ∞, which implies that M[l] is
convergent. Also, M[l] is a discrete sequence, and hence there exists an l∗ ∈ L such that
M[l] = M[l∗] for all l ∈ L ≥ l∗. Thus, Algorithm 1 becomes a gradient descent algorithm
on the space M[l] for all l ∈ L ≥ l∗. Since a gradient descent algorithm for minimizing L2-
loss function over a closed convex set yields a sequence of iterates that converge (Nesterov,
2004), we conclude that the subsequence B[l] (l ∈ L) converges to a point B∗, that is,
B∗ ∈ Hτ

{
B∗ + (nλ∗)−1X>(Y− XB∗)

}
. This completes the proof.

Next we show part (ii). It follows from (A.3) that

1

2n

L∑
l=0

(
‖Y− XB[l]‖2F − ‖Y− XB[l+1]‖2F

)
≥

L∑
l=0

%λ[l]

2
‖B[l+1] − B[l]‖2F ,

which implies

1

2n
‖Y− XB[0]‖2F −

1

2n
‖Y− XB[L+1]‖2F ≥

L%φ

2(1− %)
min

l=0,1,··· ,L
‖B[l+1] − B[l]‖2F .
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That is,

min
l=0,1,··· ,L

‖B[l+1] − B[l]‖2F ≤
1− %
%φnL

(
‖Y− XB[0]‖2F − ‖Y− XB[L+1]‖2F

)
≤ 1− %
%φnL

(
‖Y− XB[0]‖2F − ‖Y− XB̃‖2F

)
.

This completes the proof.

Proof of Theorem 2. Let M−τ = {M : M? 6⊂ M, card(M) ≤ τ} be the collection
of under-fitted models. Define Qn(B) = n−1‖Y − XB‖2F , and Q(B) = E

(
n−1‖Y − XB‖2F

)
.

Denote ‖ · ‖2 as the standard Euclidean norm. Let Bsk = (b1,sk, . . . , bdn,sk)
> and BM,sk =

(bj,sk, j ∈ M)> be the subvector of Bsk with M ⊂ {1, . . . , dn}. To prove Theorem 2, we
need show that

pr
(

max
B∈M+

τ

Qn(B) ≥ min
B∈Mτ

−
Qn(B)

)
≤ c2τpqd

τ
n exp(−c1n

1−δ2−2δ3) + c2ndn exp(−η1n
υ).

Define M̃ = M∪M? ∈ M2τ
+ , where M ∈ Mτ

−. For any BM̃ such that ‖BM̃ − B?M̃‖F =
√

(pq)ω2n
−δ3 , we have

Qn(BM̃)−Qn(B?M̃) =
1

n

n∑
i=1

p∑
s=1

{ q∑
k=1

(Yi,sk −X>iM̃BM̃,sk)
2 − (Yi,sk −X>iM̃B?M̃,sk

)2
}

=
1

n

n∑
i=1

p∑
s=1

q∑
k=1

{
(BM̃,sk − B?M̃,sk

)>XiM̃X
>
iM̃(BM̃,sk − B?M̃,sk

)

− 2(Yi,sk −X>iM̃B?M̃,sk
)X>

iM̃(BM̃,sk − B?M̃,sk
)
}

≥λminω
2
1pqn

−2δ3 − 2

p∑
s=1

q∑
k=1

‖ 1

n

n∑
i=1

(Yi,sk −X>iM̃B?M̃,sk
)XiM̃‖2‖BM̃,sk − B?M̃,sk

‖2, (A.4)

where λmin denotes the smallest eigenvalue of n−1
∑n

i=1XiM̃X
>
iM̃. Since

∑p
s=1

∑q
k=1 ‖BM̃,sk−

B?M̃,sk
‖2 ≤ (pq)1/2‖BM̃ − B?M̃‖F , we obtain

pr
(
Qn(B) ≤ Qn(B?)

)
≤pr

(
λminω

2
2pqn

−2δ3 − 2ω2pqn
−δ3 max

p,q
‖ 1

n

n∑
i=1

(Yi,sk −X>iM̃B?M̃,sk
)XiM̃‖2 ≤ 0

)
=pr

(
max
p,q
‖ 1

n

n∑
i=1

(Yi,sk −X>iM̃B?M̃,sk
)X>

iM̃‖2 ≥
λmin

2
ω2n

−δ3
)

≤
p∑
s=1

q∑
k=1

∑
j∈M̃

pr
(∣∣ n∑

i=1

(Yi,sk −X>iM̃B?M̃,sk
)xij

∣∣ ≥ λminω2√
(8τ)

n1−δ3τ−1/2, |xij | < nv
)

+ dnnpr
(
|xij | ≥ nv

)
. (A.5)
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Then it follows from Conditions (C4) and (C5) and Lemma A.1 of Xu and Chen (2014)
that there exists a constant c1 > 0 such that

pr
(∣∣ n∑

i=1

(Yi,sk −X>iM̃B?
M̃,sk

)xij
∣∣ ≥ λminω2√

(8τ)
n1−δ3τ−1/2

)
≤2 exp(−c1n

1−δ2−2δ3−2υ)

on the event {|xij | < nυ, 1 ≤ i ≤ n, 1 ≤ j ≤ dn}. This, together with (A.5) and Condition
(C6), implies

pr
(

min
B∈Mτ

−
Qn(B) ≤ Qn(B?)

)
≤

∑
M∈Mτ

−

pr
(
Qn(B) ≤ Qn(B?)

)
≤ 2τdτnpq exp(−c1n

1−δ2−2δ3−2υ) + 2ndnη2 exp(−η1n
υ).

Since Qn(B) is convex, the result holds for ‖BM̃−B
?
M̃‖F ≥

√
(pq)ω2n

−δ3 . For anyM∈Mτ
−,

take BM̃ as the augmented matrix of BM with the component in M̃−M being zero. Then,
Condition (C4) implies that ‖BM̃ − B?M̃‖F ≥ ‖B

?
M?−M‖F ≥ w1n

−δ3(pq)1/2. Therefore, we
have that there exists c2 > 0 such that

pr
(

min
B∈Mτ

−
Qn(B) ≤ max

B∈M+
τ

Qn(B)
)
≤ pr

(
min

B∈Mτ
−
Qn(B) ≤ Qn(B?)

)
≤ c2τpqd

τ
n exp(−c1n

1−δ2−2δ3−2υ) + c2ndn exp(−η1n
υ).

This completes the proof.

Proof of Theorem 3. Denote γ = minj∈M?(pq)−1/2‖Bj‖F > 0. Let M ∈ Mτ
− be a

given under-fitted model, and define M̃ = M∪M? ∈ M2τ
+ . Without loss of generality,

we may assume ‖BM̃ − B?M̃‖F <
√

(pq)γ. Thus, ‖BM − B?M‖F >
√

(pq)γ and there exists

B̃ = (B̃>1 , . . . , B̃
>
dn

)> with ‖B̃M̃ − B?M̃‖F =
√

(pq)γ such that

n∑
i=1

(
‖Yi −

∑
j∈M

xijBj‖2F − ‖Yi −
∑
j∈M̃

xijB̃j‖2F
)
≥ 0

because of the convexity of the norm ‖B‖2F . This gives

n∑
i=1

(
‖Yi −

∑
j∈M

xijBj‖2F − ‖Yi −
∑
j∈M̃

xijBj‖2F
)

≥
n∑
i=1

(
‖Ui −

∑
j∈M̃

xij(B̃j −B?
j )‖2F − ‖Ui −

∑
j∈M̃

xij(Bj −B?
j )‖2F

)

≥λminn‖B̃M̃ − B?M̃‖
2
F − λmaxn‖BM̃ − B?M̃‖

2
F − 2

n∑
i=1

p∑
s=1

q∑
k=1

∑
j∈M̃

xij(b̃j,sk − b?j,sk)ei,sk

+ 2
n∑
i=1

p∑
s=1

q∑
k=1

∑
j∈M̃

xij(bj,sk − b?j,sk)ei,sk, (A.6)
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where λmax represents the largest eigenvalue of n−1
∑n

i=1XiM̃X
>
iM̃. Note that ‖B̃M̃ −

B?M̃‖
2
F > pqγ2/2 > 0. Therefore, the first term on the right hand side of (A.6) is pos-

itive and bounded away from zero uniformly over M ∈ Mτ
−. By arguments similar to

those in the proofs of (A.4) and (A.5), we can show that uniformly for all M̃ ∈ M2τ
+ ,

(pq)−1/2‖BM̃ − B?M̃‖F = Op(n
−δ3). In addition, using the Cauchy-Schwarz and Chebyshev

inequalities, we have that for any positive ε and υ,

pr
(∣∣∣ 1

npq

n∑
i=1

p∑
s=1

q∑
k=1

∑
j∈M̃

xij(b̃j,sk − b?j,sk)ei,sk
∣∣∣ > ε

)

≤pr
( 1

n1−υpq

n∑
i=1

p∑
s=1

q∑
k=1

∑
j∈M̃

|b̃j,sk − b?j,sk||ei,sk| > ε
)

+ η2 exp(−η1n
υ)

≤pr
( √(2τ)

n1−υpq
‖B̃M̃ − B?M̃‖F

n∑
i=1

‖Ui‖F > ε
)

+ η2 exp(−η1n
υ)

≤ 2τγ2

n1−2υε2

[ 1

npq

n∑
i=1

E
(
‖Ui‖2F

)]
+ η2 exp(−η1n

υ),

which converges to zero as n→∞ under Condition (C7) and τ = o(nδ2). That is, the third
term on the right hand side of (A.6) is op(npq). Similarly, we can show that the last term
on the right hand side of (A.6) is also op(npq). Thus, there exists a constant ν2 > 0 not
depending on M∈Mτ

− such that with probability tending to 1

n∑
i=1

(
‖Yi −

∑
j∈M

xijBj‖2F − ‖Yi −
∑
j∈M̃

xijBj‖2F
)
> 2ν2 > 0. (A.7)

Also, it can be checked that

∣∣∣∣∣ 1

npq

n∑
i=1

(
‖Yi −

∑
j∈M̃

xijBj‖2F − ‖Ui‖2F
)∣∣∣∣∣ = op(1).

Furthermore, under Condition (C7)(i), we obtain that n−1
∑n

i=1 e
2
i,sk →p σ

2
sk, and σ−2 <

E(e2
sk) < σ2 for some constant 0 < σ2 < ∞. Therefore, we have that with probability

tending to one,

1

npq

n∑
i=1

∥∥∥Yi −∑
j∈M̃

xijBj

∥∥∥2

F
< 2σ2. (A.8)
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It then follows from (A.7) and (A.8) that with probability approaching one,

min
M⊆M−

ebic(M)− ebic(M̃)

≥ min
M∈M−τ

log

(
1 +

∑n
i=1

{
‖Yi −

∑
j∈M xijBj‖2F − ‖Yi −

∑
j∈M̃ xijBj‖2F

}∑n
i=1 ‖Yi −

∑
j∈M̃ xijBj‖2F

)
+
cn log(n)

n

≥ min
M∈M−τ

min

{
log(2),

∑n
i=1

{
‖Yi −

∑
j∈M xijBj‖2F − ‖Yi −

∑
j∈M̃ xijBj‖2F

}
2
∑n

i=1 ‖Yi −
∑

j∈M̃ xijBj‖2F

}

− τ cn log(n)

n

≥min
{

log(2),
ν2

2σ2

}
− τ cn log(n)

n
> 0,

where the first inequality follows from log(1 + x) ≥ min{x/2, log(2)} for any x > 0, and
the last inequality follows from the assumption cn log(n)/n1−δ2 = o(1). This implies that
for any underfitted model M with size τ, there exists an overfitted model M̃ = M∪M?

such that ebic(M) > ebic(M′) with probability going to one as n → ∞. Thus, to prove
Theorem 3, it suffices to show

pr
{

min
M∈M+

τ

ebic(M) > ebic(M?)
}
→ 1. (A.9)

By arguments similar to those in the proofs of (A.4) and (A.5) in Theorem 3, we can also
show that there exists a positive constant ν1 such that with probability tending to one,

ν

4
n−2δ3 <

1

npq

n∑
i=1

{
‖Yi −

∑
j∈M̃

xijBj‖2F − ‖Yi −
∑
j∈M?

xijBj‖2F
}
≤ νn−2δ3 . (A.10)

Note that M+
τ =M? ∪ (M+

τ −M?) ⊆M2τ
+ . Hence (A.10) implies that

min
M∈M+

τ

ebic(M)− ebic(M?)

≥ min
M∈M+

τ

log

(
1 +

∑n
i=1

{
‖Yi −

∑
j∈M xijBj‖2F − ‖Yi −

∑
j∈M? xijBj‖2F

}∑n
i=1 ‖Yi −

∑
j∈M? xijBj‖2F

)
+
cn log(n)

n

≥ min
M∈M+

τ

min

{
log(2),

∑n
i=1

{
‖Yi −

∑
j∈M xijBj‖2F − ‖Yi −

∑
j∈M? xijBj‖2F

}∑n
i=1 ‖Yi −

∑
j∈M? xijBj‖2F

}

+
cn log(n)

n

≥min{log(2),
ν

4σ2
n−2δ3}+ cn

log(n)

n
> 0,

which implies that (A.9) holds, and hence completes the proof.

We next show the minimax risks of the estimate obtained by solving problem (2). We
first introduce some notations. Let B̂ = (B̂>1 , . . . , B̂

>
dn

)> with each B̂j = (b̂j,sk) ∈ Rp×q. De-

fine β̂sk = (b̂1,sk, . . . , b̂dn,sk)
> ∈ Rdn , β?sk = (b?1,sk . . . , b

?
dn,sk

)> ∈ Rdn , and ∆̂sk = β̂sk − β?sk.
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Further let ∆̂ = B̂− B?, Usk = (e1,sk, . . . , en,sk)
> ∈ Rn, and Ysk = (Y1,sk, . . . , Yn,sk)

> ∈ Rn.
Denote K(P,Q) as the Kullback-Leibler distance between the probability measures P
and Q. Let θ = (θ>1 , . . . , θ

>
dn

)> ∈ R(pdn)×q with each θj = (θj,sk) ∈ Rp×q, and θsk =

(θ1,sk, . . . , θdn,sk)
>. Lastly, for an arbitrary vector η = (η1, . . . , ηdn)>, and B = (B>1 , . . . , B

>
dn

)>,
define Mτ = {η : ηj 6= 0 if and only if ‖Bj‖F 6= 0 for B ∈ Bτ}. The following lemma is a
result of Raskutti et al. (2011), which will be used in the proof of Theorem 4.

Lemma 4 Suppose that Assumption (A) and Condition (C7)(i) hold. Then

(i) There exist some positive constants `1, `2 and `3 such that for any r > 0,

sup
θsk∈M2τ ,‖θsk‖≤r

1

n
|U>skX̃θsk| ≤ `1σskrκ2

(τ log(dn/τ)

n

)1/2

with probability greater than 1− `2 exp[−`3 min{n, τ log(dn/τ)}].
(ii) In addition, if dn > 4τ, then there exist some positive constants `4, `5 and `6 such

that

sup
θsk∈M2τ ,‖X̃θsk‖≤r

√
n

1

n
|U>skX̃θsk| ≤ `4σskr

(τ log(dn/τ)

n

)1/2

with probability greater than 1− `5 exp[−`6τ log{dn/(2τ)}].

Proof of Theorem 4. Note that B̂ is a minimizer of problem (2) and B? is also a feasible
point. Then ‖Y− XB̂‖2F ≤ ‖Y− XB?‖2F , which implies the following inequality:

1

n
‖X∆̂‖2F =

1

n

p∑
s=1

q∑
k=1

‖X̃∆̂sk‖22 ≤
2

n

p∑
s=1

q∑
k=1

|U>skX̃∆̂sk|. (A.11)

Define the event Ω1 as

Ω1 =

{
∃ θ ∈ B2τ :

1

n

∑
s,k

|U>skX̃θsk| ≥ `κ2σ
√

(pq)‖θ‖F
(τ log(dn/τ)

n

)1/2
}
,

where ` > 0 is a constant. Since

pr

(
1

n

p∑
s=1

q∑
k=1

|U>skX̃θsk| ≥ `κ2σ
√

(pq)‖θ‖F
(τ log(dn/τ)

n

)1/2
)

≤pr

(
1

n

p∑
s=1

q∑
k=1

|U>skX̃θsk| ≥ `κ2σ

p∑
s=1

q∑
k=1

‖θsk‖2
(τ log(dn/τ)

n

)1/2
)

≤
p∑
s=1

q∑
k=1

pr

(
1

n
|U>skX̃θsk| ≥ `κ2σsk‖θsk‖2

(τ log(dn/τ)

n

)1/2
)
,

the part (i) of Lemma 4 implies that for some positive constants c4 and c5,

pr(Ω1) ≤ pqc4 exp{−c5τ log(dn/τ)}.
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That is,

1

n

p∑
s=1

q∑
k=1

|U>skX̃θsk| ≤ `σκ2
√

(pq)‖θ‖F
(τ log(dn/τ)

n

)1/2

with probability greater than 1 − pqc4 exp{−c5τ log(dn/τ)}. Thus, it follows from (A.11)
and Assumption (A) that

1√
(pq)
‖∆̂‖F ≤ c3

κ2σ

κ1

(τ log(dn/τ)

n

)1/2

with the probability as claimed.
For the predictor error, we replace ‖θ‖F with n−1/2‖Xθ‖F in the right side of the in-

equality in the definition of event Ω1. Then by similar arguments as above and using the
part (ii) of Lemma 4, we can show that there exist some positive constants c6, c7 and c8

such that

pr

(
1√

(npq)
‖X∆̂‖F ≤ c6

κ2σ

κ1

(τ log(dn/τ)

n

)1/2
)
≥ 1− c7pq exp

[
− c8τ log{dn/(2τ)}

]
.

This completes the proof.

Proof of Theorem 5. Let Z and I denote two p× q matrices with all entries being 0 and
1, respectively. Define the set

Ω2 =
{
$ = ($>1 , . . . , $

>
dn)> ∈ R(pdn)×q : $j ∈ {Z, I}, $ ∈ Bτ

}
,

and its dilation

D(Ω2) =
{
`
$σ

κ2

( log(dn/τ)

n

)1/2
: $ ∈ Ω2

}
for a constant ` > 0. For any $ and $′ in Ω2, we have that ($ − $′) ∈ B2τ . Let B =
$(`σ/κ2){log(dn/τ)/n}1/2 and B′ = $′(`σ/κ2){log(dn/τ)/n}1/2. Then Assumption (A)
implies

1

n
‖X(B− B′)‖2F ≥

`2σ2κ2
1 log(dn/τ)

nκ2
2

dn∑
j=1

p∑
s=1

q∑
k=1

I($j,sk = $′j,sk)

=
`2σ2κ2

1 log(dn/τ)pq

nκ2
2

ξ($,$′), (A.12)

and

1

n
‖X(B− B′)‖2F ≤

`2σ2 log(dn/τ)pq

n
ξ($,$′), (A.13)

where ξ($,$′) =
∑dn

j=1 I($j 6= $′j) is the Hamming distance. Thus, Lemma 2.9 in

Tsybakov (2009) yields that there exists a subset B̄ = {$(0), . . . , $(M)} of Ω2 such that
$(0) = (Z>, . . . ,Z>)>, and for a constant ˜̀> 0,

log(M) ≥˜̀τ log(dn/τ),

and ξ($(j), $(k)) ≥τ/4, ∀ 0 ≤ j < k ≤M.
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This, together with (A.12), implies that for any B(l) and B(j) ∈ D(B̄) with l 6= j,

1

n
‖X(B(l) − B(j))‖2F ≥

`2σ2κ2
1 log(dn/τ)pq

nκ2
2

ξ($(l), $(j))

≥τ`
2σ2κ2

1 log(dn/τ)pq

4nκ2
2

.

Let$(l) = ($
(l)
j,sk) ∈ B̄, $

(l)
sk = ($

(l)
1,sk, . . . , $

(l)
dn,sk

)>, and B(l)
sk = $

(l)
sk (`σ/κ2){log(dn/τ)/n}1/2

for 1 ≤ l ≤M. Denote P
(l)
sk as the probability function of Ysk given X̃B(l)

sk . Then we have

p∑
s=1

q∑
k=1

K(P
(0)
sk , P

(l)
sk ) =

p∑
s=1

q∑
k=1

∫
log

dP
(0)
sk

dP
(l)
sk

dP
(0)
sk

=

p∑
s=1

q∑
k=1

1

2σ2
sk

‖X̃($
(l)
sk −$

(0)
sk )‖2

≤O(1)

p∑
s=1

q∑
k=1

1

2σ2
‖X̃($

(l)
sk −$

(0)
sk )‖2.

This, combining (A.13) and the fact $(l) ∈ Bτ , yields

1

M

M∑
l=1

p∑
s=1

q∑
k=1

K(P
(0)
sk , P

(l)
sk ) ≤`

2 log(dn/τ)pq

4n

[ 1

M

M∑
l=1

dn∑
j=1

I($
(l)
j = $

(0)
j )
]

≤τ`
2 log(dn/τ)pq

8n
. (A.14)

We then take a sufficiently small ` in (A.14) such that

1

M

M∑
l=1

p∑
s=1

q∑
k=1

K(P
(0)
sk , P

(l)
sk ) ≤ log(M)/16 = log[card{D(M̄)}]/16. (A.15)

In view of (A.15), an application of Theorem 2.7 in Tsybakov (2009) yields the lower bound
of the prediction error.

As similar arguments to (A.12) and (A.15), we have that for B and B′ ∈ D(Ω2), and
B 6= B′,

1√
(pq)
‖B− B′‖F = `

σ

κ2

( log(dn/τ)

n

)1/2
ξ1/2($,$′),

and that for any B(l) and B(j) ∈ D(B̄) with l 6= j,

1√
(pq)
‖B(l) − B(j)‖F ≥ `

τσ

4κ2

( log(dn/τ)

n

)1/2
.

Based on these facts and (A.15), Theorem 2.7 in Tsybakov (2009) yields the lower bound
of the estimation error.
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Proof of Theorem 6. We first show an upper bound for the estimation error ‖B[l]−B?‖F .
Note that ∥∥Hτ{B[l] + (nλ[l])−1X>(Y− XB[l])} −

[
B[l] + (nλ[l])−1X>(Y− XB[l])

]
+
[
B[l] + (nλ[l])−1X>(Y− XB[l])

]
− B?

∥∥
F

≤
∥∥Hτ{B[l] + (nλ[l])−1X>(Y− XB[l])} − [B[l] + (nλ[l])−1X>(Y− XB[l])]

∥∥
F

+
∥∥B[l] + (nλ[l])−1X>(Y− XB[l])− B?

∥∥
F
. (A.16)

Then, by Proposition 1 and condition τ? ≤ τ, we have∥∥Hτ{B[l] + (nλ[l])−1X>(Y− XB[l])} − [B[l] + (nλ[l])−1X>(Y− XB[l])]
∥∥
F

≤
∥∥B? − [B[l] + (nλ[l])−1X>(Y− XB[l])]

∥∥
F
.

This, together with (A.16), yields that

‖B[l+1] − B?‖F =‖Hτ{B[l] + (nλ[l])−1X>(Y− XB[l])} − B?‖F
≤2‖(B[l] − B?) + (nλ[l])−1X>(Y− XB[l])‖F
=2
∥∥[I− (nλ[l])−1X>X](B[l] − B?) + (nλ[l])−1X>U

∥∥
F
.

Then the triangle inequality, combining with φ < λ[l] ≤ κ1/(1− 1/
√

32), yields

‖B[l+1] − B?‖F ≤ 2‖[I− (nλ[l])−1X>X](B[l] − B?)‖F +
2

nλ[l]
‖X>U‖F ,

which implies

‖B[l+1] − B?‖F ≤ 2−1‖B[l] − B?‖F +
2

nφ
‖X>U‖F .

Iterating this relationship, we obtain

‖B[l] − B?‖F ≤ 2−l‖B[0] − B?‖F +
4

nφ
‖X>U‖F . (A.17)

DenoteM[l]
τ = {j : ‖B[l]‖F 6= 0} as the support of B[l] with sparse level τ, andMτ =M? ∪

M[l]
τ . Then (A.17), together with the conditions B[0] = 0 and l > [log2(nφ‖B?‖F /‖X>U‖F )],

leads to

‖B[l]
Mτ
− B?Mτ

‖F ≤
4

nφ
‖(X>U)Mτ ‖F .

Thus, it suffices to show

pr

(
1√

(pqn2)
‖(X>U)Mτ ‖F ≥ c̃3σ

(τ log(dn/τ)

n

)1/2
)

≤ c̃4pqτ exp
{
− c̃5 log(dn/τ)n2υ

}
+ c̃4nτ exp{−η1n

υ}.
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Note that

pr

(
‖(X>U)Mτ ‖F√

(pqn2)
≥ c̃3σ

(τ log(dn/τ)

n

)1/2
)

≤
p∑
s=1

q∑
k=1

∑
j∈Mτ

pr

(∣∣∣ 1
n

n∑
i=1

xijei,sk
σsk

∣∣∣ ≥ c̃3

2ω2

( log(dn/τ)

n

)1/2
)
.

It follows Lemma A.1 of Xu and Chen (2014) that on the event {|xij | < nυ : 1 ≤ i ≤ n, j ∈
Mτ},

pr

(∣∣∣ 1
n

n∑
i=1

xijei,sk
σsk

∣∣∣ ≥ c̃3

2ω2

( log(dn/τ)

n

)1/2
)
≤ pr

(∣∣∣ 1
n

n∑
i=1

xijei,sk
σsk

∣∣∣ ≥ c̃3

2ω2

( log(dn/τ)

n

)1/2
)

≤ c̃4 exp{−c̃5 log(dn/τ)n1−2υ}.

By Assumption (A) and Condition (C6), we have that there exist some positive constants
c̃6, c̃7 and c̃8 such that

pr

{
1√

(n2pq)
‖X(B[l] − B?)‖F ≥ c̃6σ

(τ log(dn/τ)

n

)1/2
}

≤ pr
{

1√
(pq)
‖B[l] − B?‖F ≥

c̃6

κ2
σ
(τ log(dn/τ)

n

)1/2
}

≤ c̃7τn exp{−η1n
υ}+ c̃7pqτ exp{−c̃8 log(dn/τ)n1−2υ}.

This completes the proof.

Appendix B. Additional Real Data Information

B.1 Data Usage Acknowledgement

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators
within the ADNI contributed to the design and implementation of ADNI and/or provided
data but did not participate in the analysis or writing of this report. A complete listing of
ADNI investigators can be found at:
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org.

Data collection and sharing for this project was funded by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and
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DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded
by the National Institute on Aging, the National Institute of Biomedical Imaging and Bio-
engineering, and through generous contributions from the following: AbbVie, Alzheimer’s
Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.;
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Phar-
maceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and
its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen
Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharma-
ceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale
Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and
Transition Therapeutics. The Canadian Institutes of Health Research is providing funds
to support ADNI clinical sites in Canada. Private sector contributions are facilitated by
the Foundation for the National Institutes of Health (www.fnih.org). The grantee orga-
nization is the Northern California Institute for Research and Education, and the study is
coordinated by the Alzheimer’s Therapeutic Research Institute at the University of South-
ern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the
University of Southern California.

B.2 Imaging and Genetic Preprocessing

The MRI data, collected across a variety of 1.5 Tesla MRI scanners with protocols individu-
alized for each scanner, includes standard T1-weighted images obtained by using volumetric
3-dimensional sagittal MPRAGE or equivalent protocols with varying resolutions. The typ-
ical protocol includes: inversion time (TI) = 1000 ms, flip angle = 8o, repetition time (TR)
= 2400 ms, and field of view (FOV) = 24 cm with a 256 × 256 × 170 acquisition matrix
in the x−, y−, and z−dimensions yielding a voxel size of 1.25 × 1.26 × 1.2 mm3. We
adopted a surface fluid registration based hippocampal subregional analysis package (Shi
et al, 2014), which uses isothermal coordinates and fluid registration to generate one-to-one
hippocampal surface registration for surface statistics computation. It introduced two cuts
on a hippocampal surface to convert it into a genus zero surface with two open boundaries.
The locations of the two cuts were at the front and back of the hippocampal surface. By
using conformal parameterization, it essentially converts a 3D surface registration problem
into a two-dimensional (2D) image registration problem. The flow induced in the parame-
ter domain establishes high-order correspondences between 3D surfaces. Finally, the radial
distance was computed on the registered surface. This software package and associated
image processing methods have been adopted and described by various studies. Although
there are several competing methods, such as spherical harmonics representation, our fluid
registration method has several unique features (Wang, 2011; Shi et al, 2014; Monje et al,
2013; Colom et al, 2013; Luders et al, 2013). After preprocessing, we obtained left and right
hippocampus shape representations as 100× 150 matrices.

We applied the following preprocessing technique to the genetic data. The first line
quality control steps include (i) call rate check per subject and per SNP marker, (ii) gender
check, (iii) sibling pair identification, (iv) the Hardy-Weinberg equilibrium test, (v) marker
removal by the minor allele frequency, and (vi) population stratification. The second line
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preprocessing steps include removal of SNPs with (i) more than 5% missing values, (ii)
minor allele frequency (MAF) smaller than10%, and (iii) Hardy-Weinberg equilibrium p-
value < 10−6. 503,892 SNPs obtained from 22 chromosomes were included in for further
processing. MACH-Admix software (http://www.unc.edu/ yunmli/MaCH-Admix/; Liu et
al, 2013) is applied on the 756 Caucasian subjects to perform genotype imputation, using
1000G Phase I Integrated Release Version 3 haplotypes (http://www.1000genomes.org).
The 1000 Genomes Project Consortium (2015) was used as a reference panel. Quality
control was also conducted after imputation, excluding markers with (i) low imputation
accuracy (based on imputation output R2) (ii) Hardy-Weinberg equilibrium p-value 10−6

(iii) minor allele frequency (MAF) < 5%. There were 6, 087, 205 bi-allelic markers (including
SNPs and indels) of 756 subjects retained in the data analysis. Among these 756 subjects,
we deleted those subjects that do not have hippocampus shape representations data, and
finally, we included 735 subjects in the study. Moreover, for the illustration of our proposed
method, we mainly explored the relationship between the AD and the genes on the 19th
chromosome. Specifically, there are 134712 SNPs on 735 patients. Motivated by Huang
et al (2008), we first selected 10000 SNPs from all the genes with the largest variance in
expression value. Then we chose the top 2000 SNPs whose expression value has the largest
Frobenius norm of the marginal correlation with the response.

Appendix C. Simulation studies

In this section, we conduct more simulation studies to examine the finite sample performance
of the proposed method. The noises Vec(Ui) are generated as follows. Let Wi ∈ Rpq be
independently generated from t(4)/

√
2 and {χ2(5)−5}/

√
10, where t(4) and χ2(5) denote the

t-distribution and the chi-square distribution with degrees of freedom 4 and 5, respectively.

Then, let Vec(Ui) = Σ
1/2
e Wi, where Σe = {0.2|[j]p−[k]q |+|j̃−k̃| : 1 ≤ j, k ≤ (pq)}. That is,

the correlations between ei,js and ei,j′s′ are ρ|j−j
′|+|s−s′|(1 ≤ j, j′, s, s′ ≤ pq). Here for any

positive integer a, [a]p = [(a − 1)/p] + 1, ã = a − p([a]p − 1), and [x] denotes the integer
part of x > 0. The total number of predictors is dn = 1000. The sample sizes are n = 100
and 200. The matrix size (p, q) is set as (50, 50). Other settings are the same as in Section
4 of the main text. All simulation results reported in Tables S1-S4 are based on 100 Monte
Carlo repetitions.
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ϑ Method p1 p2 p3 p4 p5 TP FP CF Est Pred

t(4)/
√

2

0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.05(0.00) 0.05(0.00)

SIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.21(0.66) 0.00(0.00) 0.67(0.19) 0.60(0.18)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.99(0.10) 0.99(0.10) 4.99(0.20) 0.25(0.91) 0.90(0.30) 0.07(0.09) 0.06(0.09)

KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.02(0.14) 3.02(0.14) 0.02(0.14) 0.00(0.00) 0.73(0.22) 0.66(0.21)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.08(0.01) 0.04(0.00)

SIS* 0.83(0.38) 0.79(0.41) 0.86(0.35) 0.00(0.00) 0.00(0.00) 2.48(0.67) 1.34(1.71) 0.00(0.00) 14.0(4.41) 6.47(2.09)

ISIS* 0.87(0.34) 0.84(0.37) 0.87(0.34) 1.00(0.00) 0.11(0.31) 3.69(0.71) 2.57(2.56) 0.00(0.00) 2.67(3.51) 0.93(0.95)

KAZZ 0.91(0.29) 0.94(0.24) 0.94(0.24) 0.00(0.00) 0.00(0.00) 2.79(0.43) 0.23(0.55) 0.00(0.00) 12.0(4.27) 5.77(2.09)

0.9 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.22(0.50) 0.82(0.39) 0.39(0.12) 0.05(0.01)

SIS* 0.28(0.45) 0.28(0.45) 0.26(0.44) 0.05(0.22) 0.23(0.42) 1.10(0.86) 0.47(1.22) 0.00(0.00) 39.9(16.9) 4.05(1.78)

ISIS* 0.65(0.48) 0.64(0.48) 0.62(0.49) 1.00(0.00) 0.83(0.38) 3.74(0.86) 3.01(2.09) 0.07(0.26) 7.16(6.94) 0.54(0.43)

KAZZ 0.27(0.45) 0.28(0.45) 0.31(0.46) 0.03(0.17) 0.16(0.37) 1.05(0.72) 0.31(0.72) 0.00(0.00) 38.0(11.3) 3.84(1.38)

(χ2(5)− 5)/
√

10

0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.05(0.00) 0.04(0.00)

SIS* 1.00(0.00) 0.99(0.10) 0.99(0.10) 0.01(0.10) 0.02(0.14) 3.01(0.22) 0.46(1.34) 0.00(0.00) 0.78(0.46) 0.69(0.26)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.98(0.14) 0.98(0.14) 4.96(0.28) 0.26(0.79) 0.87(0.34) 0.07(0.06) 0.06(0.05)

KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.09(0.45) 0.00(0.00) 0.75(0.24) 0.67(0.22)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.08(0.01) 0.05(0.00)

SIS* 0.96(0.20) 0.96(0.20) 0.93(0.26) 0.00(0.00) 0.00(0.00) 2.85(0.36) 0.25(0.67) 0.00(0.00) 11.3(3.36) 5.47(1.73)

ISIS* 0.86(0.35) 0.86(0.35) 0.89(0.31) 1.00(0.00) 0.16(0.37) 3.77(0.62) 2.50(2.16) 0.01(0.10) 2.59(3.43) 0.98(1.04)

KAZZ 0.95(0.22) 0.96(0.20) 0.93(0.26) 0.00(0.00) 0.00(0.00) 2.84(0.37) 0.26(0.76) 0.00(0.00) 11.5(3.38) 5.49(1.73)

0.9 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.19(0.46) 0.84(0.37) 0.38(0.11) 0.05(0.01)

SIS* 0.22(0.42) 0.33(0.47) 0.22(0.42) 0.02(0.14) 0.22(0.42) 1.01(0.85) 0.30(0.46) 0.01(0.10) 39.0(13.2) 3.75(1.36)

ISIS* 0.73(0.45) 0.64(0.48) 0.57(0.50) 1.00(0.00) 0.78(0.41) 3.72(0.89) 3.49(2.22) 0.02(0.14) 7.09(6.03) 0.52(0.35)

KAZZ 0.23(0.42) 0.31(0.46) 0.21(0.40) 0.02(0.14) 0.21(0.41) 0.98(0.79) 0.31(0.49) 0.01(0.10) 39.1(13.2) 3.76(1.35)

Table S1: The selection results and standard deviation (in parentheses) for Example 1

with n = 100.
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ϑ Method p1 p2 p3 p4 p5 TP FP CF Est Pred

t(4)/
√

2

0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.03(0.00)

SIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.11(1.10) 0.00(0.00) 0.68(0.22) 0.65(0.21)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.03(0.00)

KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.05(0.22) 3.05(0.22) 0.22(1.17) 0.00(0.00) 0.66(0.22) 0.61(0.20)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.04(0.00) 0.03(0.00)

SIS* 1.00(0.00) 0.99(0.10) 1.00(0.00) 0.00(0.00) 0.00(0.00) 2.99(0.10) 0.42(0.83) 0.00(0.00) 11.5(3.56) 5.98(1.96)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.29(0.46) 4.29(0.46) 1.34(2.49) 0.06(0.24) 0.24(0.13) 0.20(0.12)

KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.10) 0.00(0.00) 3.00(0.00) 0.08(0.37) 0.00(0.00) 10.9(3.46) 5.55(1.90)

0.9 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.02(0.14) 0.98(0.14) 0.17(0.03) 0.03(0.00)

SIS* 0.42(0.50) 0.37(0.49) 0.31(0.46) 0.01(0.10) 0.21(0.41) 1.32(0.71) 0.11(0.47) 0.00(0.00) 39.6(13.3) 4.11(1.45)

ISIS* 0.93(0.26) 0.93(0.26) 0.94(0.24) 1.00(0.00) 0.96(0.20) 4.76(0.45) 1.82(2.08) 0.39(0.49) 1.29(2.22) 0.13(0.18)

KAZZ 0.39(0.49) 0.37(0.49) 0.36(0.48) 0.00(0.00) 0.17(0.38) 1.29(0.77) 0.05(0.22) 0.00(0.00) 43.0(13.3) 4.38(1.42)

(χ2(5)− 5)/
√

10

0.1 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.03(0.00)

SIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.03(0.17) 3.03(0.17) 0.18(1.07) 0.00(0.00) 0.69(0.20) 0.64(0.20)

ISIS* 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.03(0.00)

KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.01(0.10) 3.01(0.10) 0.03(0.30) 0.00(0.00) 0.68(0.22) 0.63(0.21)

0.5 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.04(0.01) 0.03(0.00)

SIS* 0.99(0.10) 0.99(0.10) 1.00(0.00) 0.00(0.00) 0.00(0.00) 2.98(0.14) 0.33(0.87) 0.00(0.00) 12.5(3.88) 6.53(2.05)

ISIS* 0.99(0.10) 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.30(0.46) 4.29(0.46) 1.62(2.59) 0.05(0.22) 0.31(0.52) 0.24(0.21)

KAZZ 1.00(0.00) 1.00(0.00) 1.00(0.00) 0.00(0.00) 0.00(0.00) 3.00(0.00) 0.12(0.66) 0.00(0.00) 11.7(3.40) 6.14(2.04)

0.9 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.17(0.02) 0.03(0.00)

SIS* 0.31(0.46) 0.42(0.50) 0.40(0.49) 0.00(0.00) 0.16(0.37) 1.29(0.76) 0.02(0.20) 0.00(0.00) 39.3(13.1) 4.04(1.40)

ISIS* 0.97(0.17) 0.96(0.20) 0.90(0.30) 1.00(0.00) 0.96(0.20) 4.79(0.46) 2.45(3.22) 0.40(0.49) 1.17(2.23) 0.11(0.17)

KAZZ 0.31(0.46) 0.43(0.50) 0.36(0.48) 0.00(0.00) 0.16(0.37) 1.26(0.69) 0.02(0.20) 0.00(0.00) 39.3(13.1) 4.04(1.41)

Table S2: The selection results and standard deviation (in parentheses) for Example 1

with n = 200.

n Method p1 p2 p3 p4 p5 TP FP CF Est Pred

t(4)/
√

2

100 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.05(0.00) 0.05(0.00)

SIS* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.20) 0.58(0.50) 0.63(0.54) 2.34(1.25) 0.00(0.00) 9.70(3.66) 3.91(1.35)

ISIS* 0.04(0.20) 0.16(0.37) 0.72(0.45) 0.98(0.14) 1.00(0.00) 2.90(0.63) 3.42(1.47) 0.00(0.00) 2.19(1.65) 0.90(0.50)

KAZZ 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.06(0.24) 0.59(0.49) 0.65(0.54) 2.31(1.13) 0.00(0.00) 10.2(4.06) 4.11(1.46)

200 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.03(0.00)

SIS* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.22) 0.83(0.38) 0.88(0.46) 2.84(1.32) 0.00(0.00) 7.72(2.75) 3.65(1.23)

ISIS* 0.23(0.42) 0.31(0.46) 0.95(0.22) 1.00(0.00) 1.00(0.00) 3.49(0.74) 3.65(1.10) 0.00(0.00) 1.11(0.68) 0.59(0.33)

KAZZ 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.22) 0.84(0.37) 0.89(0.45) 3.22(2.02) 0.00(0.00) 8.00(2.81) 3.76(1.25)

(χ2(5)− 5)/
√

10

100 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.05(0.00) 0.05(0.00)

SIS* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.06(0.24) 0.61(0.49) 0.67(0.57) 2.16(1.06) 0.00(0.00) 9.48(3.72) 3.99(1.62)

ISIS* 0.01(0.10) 0.12(0.33) 0.79(0.41) 0.99(0.10) 1.00(0.00) 2.91(0.53) 3.42(1.53) 0.00(0.00) 2.02(1.49) 0.82(0.43)

KAZZ 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.05(0.20) 0.58(0.50) 0.63(0.56) 2.29(1.16) 0.00(0.00) 10.2(3.91) 4.26(1.70)

200 SRLS 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 1.00(0.00) 5.00(0.00) 0.00(0.00) 1.00(0.00) 0.03(0.00) 0.02(0.00)

SIS* 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.03(0.17) 0.83(0.38) 0.86(0.40) 3.11(2.21) 0.00(0.00) 7.86(3.15) 3.60(1.27)

ISIS* 0.20(0.40) 0.25(0.44) 0.96(0.20) 1.00(0.00) 1.00(0.00) 3.41(0.59) 3.42(0.78) 0.00(0.00) 1.10(0.56) 0.60(0.28)

KAZZ 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.02(0.14) 0.80(0.40) 0.82(0.41) 2.68(1.04) 0.00(0.00) 8.40(3.28) 3.85(1.35)

Table S3: The selection results and standard deviation (in parentheses) for Example 2.
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t(4)/
√

2 (χ2(5)− 5)/
√

10

n Method TP FP CF Est Pred TP FP CF Est Pred

100 SRLS 10.0(0.00) 0.00(0.00) 1.00(0.00) 0.20(0.01) 0.10(0.00) 9.99(0.10) 0.01(0.10) 0.98(0.14) 0.20(0.01) 0.10(0.00)

SIS* 4.75(1.27) 1.79(1.62) 0.00(0.00) 0.84(0.19) 0.38(0.09) 4.84(1.39) 1.92(1.65) 0.00(0.00) 0.82(0.20) 0.37(0.09)

ISIS* 5.45(1.40) 1.96(1.62) 0.00(0.00) 0.74(0.19) 0.33(0.08) 5.31(1.30) 2.05(1.67) 0.00(0.00) 0.74(0.19) 0.33(0.08)

KAZZ 5.42(1.48) 1.18(1.34) 0.00(0.00) 0.64(0.24) 0.30(0.12) 5.00(1.66) 1.15(1.37) 0.00(0.00) 0.67(0.25) 0.32(0.12)

200 SRLS 13.3(0.85) 0.00(0.00) 0.52(0.50) 0.15(0.01) 0.07(0.00) 13.39(0.80) 0.01(0.10) 0.56(0.49) 0.15(0.01) 0.07(0.00)

SIS* 6.36(1.73) 0.99(1.10) 0.00(0.00) 0.39(0.07) 0.19(0.04) 6.56(1.79) 0.86(1.15) 0.00(0.00) 0.39(0.07) 0.19(0.04)

ISIS* 7.29(1.79) 1.30(1.42) 0.00(0.00) 0.36(0.07) 0.17(0.03) 7.11(1.86) 1.37(1.32) 0.00(0.00) 0.36(0.07) 0.17(0.04)

KAZZ 7.33(2.26) 0.55(1.01) 0.00(0.00) 0.30(0.11) 0.15(0.05) 7.13(1.75) 0.43(0.90) 0.00(0.00) 0.30(0.08) 0.15(0.04)

Table S4: The selection results and standard deviation (in parentheses) for Example 3.
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