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ABSTRACT Dynamic positron emission tomography (PET) imaging usually suffers from high statistical
noise due to low counts of the short frames. This study aims to improve the image quality of the short frames
by utilizing information from other modality. We develop a deep learning-based joint filtering framework for
simultaneously incorporating information from longer acquisition PET frames and high-resolution magnetic
resonance (MR) images into the short frames. The network inputs are noisy PET images and corresponding
MR images while the outputs are linear coefficients of spatially variant linear representation model. The
composite of all dynamic frames is used as training label in each sample, and it is down-sampled to
1/10th of counts as the training input. L1-norm combined with two gradient-based regularizations constitute
the loss function during training. Ten realistic dynamic PET/MR phantoms based on BrainWeb are used
for pre-training and eleven clinical subjects from Alzheimer’s Disease Neuroimaging Initiative further
for fine-tuning. Simulation results show that the proposed method can reduce the statistical noise while
preserving image details and achieve quantitative enhancements compared with Gaussian, guided filter, and
convolutional neural network trained with the mean squared error. The clinical results perform better than
others in terms of the mean activity and standard deviation. All of the results indicate that the proposed deep
learning-based joint filtering framework is of great potential for dynamic PET image denoising.

INDEX TERMS Positron emission tomography, convolution neural network, denoising, spatially variant
linear representation model, joint filtering.

I. INTRODUCTION

Positron emission tomography (PET) is an in vivo functional
imaging modality reflecting the metabolism in a living body
by injecting target-specific PET tracers. Though the physi-
cal characteristics are continuing to develop, dynamic PET
imaging still suffers from high statistic noise due to low
counts of the short frames [1]. To improve the quality of
PET images, high-dose tracer injection to tissue is generally
administered in clinical practice, which increases the risk of
radiation exposure to patients and technicians undoubtedly.
Therefore, it’s necessary to improve the quality of low-count
PET images.
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Independent-frame 3D image reconstruction is commonly
accomplished by using statistical image reconstruction meth-
ods, such as maximum likelihood expectation-maximization
(MLEM) methods. However, MLEM exhibits high vari-
ance with increasing iteration at low counts [2]. This
low-count is further accentuated with increased temporal
sampling. Reconstruction based method commonly take
this ill-posedness inherent in PET using Bayesian methods
through the introduction of prior model [3]-[5]. On the other
hand, post-reconstruction methods also attracted more atten-
tion considering their direct application to the clinic [6]-[8].

Among the post-reconstruction method, the Gaussian
filter is most commonly applied for PET image filtering,
which reduces the noise with edge blurring. The edge-
preserving bilateral filter (BF) [9] allows both increasing
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the signal-to-noise ratio (SNR) of clinical PET image and
preventing smoothing-induced underestimation of maximum
standardized uptake value in small lesions [10]. However,
the BF may suffer from ““gradient reversal” artifacts, which
finally results in the unwanted profiles exhibit around edges.
The guided filter [11] proposed by He et al. can be used as an
edge-preserving smoothing operator and avoids the ‘““gradient
reversal” artifacts. For the guided filter, the guided images
are very critical during the filter process. Lu et al. proposed
the composite image guided filter technology for dynamic
PET images denoising [12], where the composite image was
the sum of dynamic frames. F. Hashimoto et al. presented
a sinogram-based dynamic image guided filtering (SDIGF)
algorithm for PET denoising, where the guided image was the
normalized static PET sinogram [13]. Furthermore, anatom-
ical information derived from magnetic resonance (MR)
images or computed tomography (CT) images have also been
incorporated as the guided image. Yan et al. proposed an
MR-guided brain PET image filter and then incorporated par-
tial volume effects into the model, which showed good results
in terms of visual inspection and quantitative metrics [14].
However, the methods incorporated the anatomical images
may introduce irrelevant information into PET images due
to the mismatch of the structures. Recently, Pan et al. [15]
proposed a new joint filter based on the spatially variant linear
representation model (SVLRM) which is an improvement of
the guided filter. It shows that the joint filter can transfer
the meaningful structural details of the guided images and
input images to the target image. The detailed description is
presented in Section II (A).

Deep neural networks (DNNs) have been widely and
successfully used in computer vision tasks, such as object
tracking [16], image segmentation [17], and image classifi-
cation [18]. Inspired by this, many studies have investigated
PET images denoising by using DNNSs, superior perfor-
mance and faster speed have been achieved compared
to conventional methods [19]-[21]. However, there are
three following problems in denoising PET images with
DNN .

o Lack of high-quality PET images as the training label.
In the clinic, high-quality PET images are usually
obtained by high-dose tracer injection which is harmful
to human health. Cui ef al. proposed an unsupervised
deep learning method using the noisy PET image itself
as the training label and CT/MR images as input [19].

« Lack of enough clinical data to train the network well.
The networks are likely to overfit the training datasets
and obtain poor testing results when using insufficient
training data. Hashimoto ez al. proposed the PET image
denoising method based on the deep image prior, which
only used a single data pair for training [21].

o Mean squared error (MSE) based loss function which
is commonly used usually results in blurry outputs.
Kaplan ef al. combined the gradient and total varia-
tion as the specific characteristics with MSE to reduce
blurry [22]. Gong et al. used the perceptual loss which
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comparing image feature maps extracted from the pre-
trained network instead of pixel intensities [23].

In this work, we proposed a deep learning-based joint
filtering framework to improve the image quality of low-
count dynamic PET scanning. The main contributions of this
work are as follows.

o The high-quality training label images were derived
from the composited of all dynamic frames, and down-
sampled to obtain the network training inputs. This
method of data acquisition only needs a single dynamic
scanning of each patient.

o The network was pre-trained with simulated data and
then the last two convolution layers were fine-tuned
with clinical data. A similar idea was presented in [23],
where they used clinical data to fine-tune the last two
convolution layers and the last residual block.

o The loss function was combined the L1-norm with
the edge-preserving and structure-preserving features.
Through minimizing the Manhattan distance and the
gradient difference between labels and outputs, and
maximizing the gradient of the result images, noise
reduction and structural details preservation were
achieved.

Il. METHODS

A. GUIDED FILTER AND SVLRM

The key assumption of guided filter is a local linear model
between the output image Q; and the guided image G; in a
window wy centered at the voxel k:

Qi =arGi+ by, View, (D

where a; and by are linear coefficients that mapping G; to Q;
in wy. This local linear model ensures that the structures of
the guidance image G; are directly transferred to the output
image Q;. Image noise n; is defined as the difference between
the output image Q; and the input image I;:

n; = Ql' — Il'. (2)

In order to minimize the noise at voxel i, the cost function E
can be obtained while satisfying the constraint of (1) in the
local window wy:

E(ae, b)) =Y (@Gi+b — 1) +eap),  (3)
i€Ewg

where a; and b, assume to be constant in the local window
wg, € is the regularization coefficient to penalize constraint
a,%. The voxel i in the output image is obtained by averaging
the overlapping windows in which included the voxel i and is

given by:

1 _ —
0; = ol Z (axG; + by) =a;G; + b;, 4

where |w| i 1s the number of wmdows including voxel i,

a; = |w‘ Z ay and b; = |w| > by are the average
kew; kew;
coefficients of all the local windows including the voxel i.

kewi
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FIGURE 1. Schematic of the proposed deep learning-based joint filtering framework.

Although the guided filter has been proved effective in many
applications. There exist two problems as follows.

e Due to the average operation in (4), high-frequency
information in the local image patch will be suppressed.

o« VO; =~ a;VG; makes the structures of guided image
transfer into the output image, which may introduce
extraneous details.

To address the problem, Pan et al. [15] proposed a new
joint filter based on the spatially variant linear representation
model (SVLRM):

0i = a(G;, 1)G + B(Gj, 1)), )

where a(G;, I;) and B(G;, I;) are the spatially variant linear
representation coefficients, which are determined by the
guided image G and input image /. Then a convolutional neu-
ral network (CNN) was developed to estimate the spatially
variant linear representation coefficients. Inspired by this,
we proposed a deep learning-based joint filtering framework
to reduce the noise in the simulated and real PET images
while preserving edges and introducing the meaningful struc-
ture from the MR images and PET noisy images to the target
images.

B. NETWORK ARCHITECTURE

Based on the SVLRM, we used the CNN with 12 convolu-
tion layers to denoise the PET noisy image. The schematic
diagram of the CNN architecture is shown in Fig. 1. The
inputs of CNN are PET noisy image /" and corresponding
MR image G", and the label is high-count PET image F,, ;.
{1, G", F l';b el}ﬁ:’:l indicates a set of N training samples. The
outputs of CNN are the linear coefficients Fg, (G", I") and
Fou(G", I") of the SVLRM, where Oy and O are network
parameters respectively. The denoised PET image is defined
as:

Fo(G" I") = Fo, (G", I")G" + Fo,(G", 1").  (6)

The loss between the denoised PET image and the training
label was calculated, and then backpropagation of loss to the
network, using optimization algorithms to update network
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parameters. The size of the convolution kernel in each layer
is 3 x 3 pixels, and the stride value is 1. To ensure that the
image size is unchanged after network processing, we added
one zero-padding to the inputs of each layer. In this situation,
our network can process images of any size. The number of
features at the first 11 convolution layers is set to be 64. The
input dimension of the network is 64 x 64 x 2 x 10, where
the patch size is 64 x 64 and the batch size is 10. Flip and
rotate randomization was used in image patches to amplify
data. The activation function ReLU was used following each
convolution layer except for the final convolution layer. Pool-
ing and batch normalization (BN) layers were not included.

C. LOSS FUNCTION

As a frequently used loss function, MSE quantifying the
error between the training label F}, , and network output
Feo, but it has been reported that MSE usually results in
blurry outputs. Therefore, we proposed to use L.1-norm and
gradient-based regularizations as the loss function in the
training process, which is defined as:

L(}—G)a Fleel)

1 i 1 i )
= = |Fo = Flpall, = wi(= Y IVFal3)
N n=1 et N

n=1

1< i
+wa(y 2 IVFo = V). ™

n=1

The first term is the L1-norm, which is minimized to ensure
the label image and network output are similar in values.
Since the Ll-norm is nondifferentiable, the Charbonnier
penalty function p(x) = +/x2 + §2 was used to approximate
it. The second term is the edge-preserving feature, based on
the total variation of network outputs, which is maximized
in loss function to preserve the structure details The third
term is the structure-preserving feature, which is minimized
to induce the structural components of the network output
patches are as similar as possible to those of the label image
patches. The loss function aims to reduce the statistic noise
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(b)
FIGURE 2. Transaxial slices based on BrainWeb used for simulation from
the same subject. (a) the discrete MR image from slice 34; (b) the
T1-weight MR image from slice 34; (c) The ground-truth PET image from

the 24t frame of slice 34 which was simulated from the corresponding
discrete MR image as Fig. 2(a).

while preserving structural details and edges in the network
output.

D. FINE-TUNING

CNN requires large training datasets to work well. Due to
the limited number of clinical datasets, we combined the
simulated brain data with real data to train the network in this
study. As the structure of the simulated data is similar to those
of the clinical data, we considered that the low-level features
trained from simulated data are similar to those from clinical
data. During the training, we pre-trained the entire network
with simulated datasets, followed by fine-tuning the last two
convolution layers only with clinical data. The fine-tune area
is shown in the pink shadow region in Fig. 1.

Ill. EXPERIMENT DESIGN

A. SIMULATION STUDY

1) MR SIMULATION

For MR simulation, we simulated T1-weighted MR images
and the discrete images based on the BrainWeb database [24].
Each discrete image consists of 11 individual regions of
the brain (gray matter, white matter, fat, muscle/skin, skull,
vessels, connective, dura matter, bone marrow, cerebrospinal
fluid and background). The matrix dimensions of the dis-
crete MR images were 362 x 434 x 362 and that of the
T1-weighted MR images were 256 x 256 x 181 with 1-mm
isotropic voxel size [25]. Through image cropping, linear
transformation, and partial slices extraction, the dimensions
of discrete MR images were equal to the T1-weighted MR
images while the structures of these were roughly matched,
as shown in Fig. 2 (a) and (b).

2) PET SIMULATION

PET images were obtained by extracting gray matter and
white matter from the MR discrete brain images and assign-
ing the activity values. The regional time-activity curves
of gray matter and white matter, based on the glucose
metabolism of '8F-fluorodeoxyglucose (‘*F-FDG), were
consistent with those used in [26], as shown in Fig. 3. The
scanning schedule including 24-time frames for 60 min: 4 x
205s,4 x 40s,4 x 60s,4 x 180 s, and 8 x 300 s. The 24th
frame of the PET image is shown in Fig. 2 (c). We performed
realistic analytic simulation for the geometry of the GE
Discovery ST PET/CT scanner of which the system matrix

VOLUME 9, 2021

35
—8— gray matter
30F —6— white matter |
background
25
3
EaZO
2
=
3 15
<
10 4
5
0 : : : : : }
0 10 20 30 40 50 60

Time (min)

FIGURE 3. Regional time-activity curves of gray matter and white matter
used in the simulation studies.

was shaped by the parallel strip line integration method. The
matrix dimensions of the PET images were 256 x 256 x
181 and the cubic voxel sizes of 1.25 x 1.25 x 1.25 mm>.
Noise-free projection data which consisted of 256 bins,
192 angles, and 181 slicers were generated by forward pro-
jecting the dynamic PET images. To simulate the partial
volume effect of the PET images, we used the Gaussian filter
with full-width-half-maximum (FWHM) equal to 3.5 pixels
to blur the noise-free sinogram. The expected total number
of events over 60 min was 100 M. We added uniform random
events that value equal to 20% of simulated counts to simulate
background events. The attenuation and object-dependent
scatter were not included. Finally, we generated a set of 10
noisy realizations by introducing random Poisson noise to the
sinogram. PET images were reconstructed using the MLEM
with 120 iterations. The simulated method of system matrix
and reconstruction were referred the image reconstruction
toolbox (IRT) which proposed by Fessler and his group [27].

3) TRAINING AND TESTING DATA

Ten 3D brain phantoms were used in the simulation, where
nine phantoms were used for training and one for testing.
After discarding axial slices at the two ends with low activity,
the matrix dimensions of PET and MR images were 256 x
256 x 75. To reduce the computational costs and increase the
data for training, we extracted the patches from the training
input and label at the same positions with 64 x 64 pix-
els randomly. A total of 6750 training pairs were used for
network training, including 9 (number of phantoms) x 75
(number of axial slices extracted from each phantom) x 10
(number of patches extracted from each slice). To obtained
the training label, we summed the entire dynamic PET data
into one static frame and reconstructed it. The corresponding
noisy input was obtained by downsampling the label data
randomly to 1/10th of counts and reconstructing. Fig. 4 shows
three training input and label image pairs from different brain
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Phantom 2 Phantom 3

Phantom 1

Training input

Training label

FIGURE 4. Three training image pairs from slice 34 of different simulated
brain phantoms. Each column represents the same phantom. The images
at the top row are the training inputs while at the bottom row are the
corresponding labels.

phantoms. For testing, the last frame of dynamic PET images
and the corresponding MR images both with 256 x 256 pixels
were used as the network inputs in the simulation study.

4) FIGURES OF MERIT
To compare the images enhanced from the different algo-
rithms described in the previous section, we used quantitative
evaluation criteria involving ensemble variance and means
squared bias. The ensemble variance was defined as
130 n Oof = %)’
Vars = R 5 —
2 j=1 (™)
where N is the total number of voxels, R is the number of
noise realizations. X; = % Zle x; represents the ensemble
mean of the denoised images at voxel j, x}r“e denotes the
ground truth PET image value at voxel j, xj’ denotes the
denoised PET image value at voxel j in the rth noise real-
ization. The ensemble mean squared bias was defined as

ZJN:I (YJ _ x}rue)Z
ZjV: 1 (x}rue)2
where the variables were defined as those in (8). We also
computed the contrast recovery coefficient (CRC) of the

region of interest (ROI) versus standard deviation (STD) in
the background. The CRC was defined as

®)

Bias? =

&)

I i Flrue
CRC = — — —1 — 1), 10
= ;g_cg )/()_Cgue ) (10)

where X/, denotes the mean activity from ROI in realization
r and X, denotes the mean activity from the background
in realization r. X' and x;® denotes the mean activity
from ROI and background of the ground truth PET image

respectively. The background STD was defined as

Ny 1 R r,j_yi 2

1 T 2=l X )

STDZ—Z R—-1 r 1' b b ) (11)
Np =1 %,
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Here x,” denotes the activity value of the background in
denoised PET image at voxel j in the rth noise realiza-
tion. 7}; represents the mean activity of background at voxel
j over 10 realizations, and N, is the number of voxels
from the background. The gray matter was the ROI and
the white matter was chosen as the background in this
work. Furthermore, the root means squared error (RMSE)
and structural similarity (SSIM) also be used as evaluation
metrics.

B. PATIENT STUDY

After pre-training the network using digital phantoms, we
fine-tuned the last two convolution layers using real brain
data. The dataset contains 11 subjects, each subject including
PET and T1-weighted MR images. Ten subjects were used
for the fine-tuning, and one subject was reserved for test-
ing. The cross-validation was performed that one of eleven
subjects take a turn as the test dataset and the rest ten for
training. All data were obtained from the healthy normal
controls of the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database [28]. The MR images were acquired
with T1-weighted MP-RAGE sequence. The matrix size was
256 x 256 x 170, and the voxel size was 0.94 x 0.94 x
1.2 mm?. Dynamic PET scanning was performed for 60 min
scan after the injection of '8F-FDG at a dose of 5 + 0.5 mCi.
The dynamic PET data consisted of 33-time frames for
60min: 1 x 10s, 12 x 55,2 x 10s,3 x 30s,3 x 60s,
2 x 120 s, and 10 x 300 s. The PET matrix size was 128 x
128 x 63, and the voxel size was 2.1 x 2.1 x 2.4 mm3. Each
MR image was registered with the corresponding PET image
using 3D slicer [29]. After discarding axial slicers at the two
ends with low activity, the PET and MR image array size
was 128 x 128 x 36. Due to the clinical sinogram was not
available, we roughly simulated the system matrix and further
calculated the sinogram with Fessler’s IRT toolbox according
to the data description from ADNI.

In the fine-tuning procedure, images reconstructed using
the entire dynamic PET data were treated as the training
labels, and images reconstructed using 1/10th of counts were
treated as noisy input. For clinical testing, the last frame
of dynamic PET images and the corresponding MR images
both with 128 x 128 pixels were used as the network inputs.
Like the simulated experiment, the image patches with 64 x
64 pixels were randomly extracted from the PET image
and the MR image at the same positions for fine-tuning.
A total of 3600 training pairs were used for network fine-
tune, including 10 (number of subjects) x 36 (number of axial
slices extracted from each subject) x 10 (number of patches
extracted from each slice).

To evaluate the performance of the proposed method,
we randomly selected twenty square ROIs with the size of
12 x 12 mm? in each denoised image. Since the true activity
values of the clinical image are unknown, the bias cannot be
calculated. Instead, the mean activity of ROIs and the mean
STD of these ROIs were calculated, where the STD of each
ROI was similar to (11).
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FIGURE 5. Heatmap of the mean value of RMSE for all test data
processed by the image guided filter.

IV. RESULTS

We evaluated the proposed method in comparison with post-
filtering with Gaussian filter and guided filter, and the CNN
trained with MSE as loss function (CNN-MSE). The overall
performance of all the test data was evaluated and then two
slices were selected for visual comparison. For one slice,
the ensemble variance versus ensemble means squared bias
and CRC vs. STD curves over the 10 noise realizations were
compared by varying the number of reconstruction iterations
and parameters of methods, respectively.

A. SIMULATION STUDY

1) PARAMETER OPTIMIZATION

The performance of filter methods (including Gaussian filter,
guided filter, CNN-MSE, proposed method) strongly depends
on the parameters. First, the radius r of the local window
and the regularization parameter ¢ in the guided filter were
optimized using RMSE for all slices as shown in Fig. 5. The
radius r ranged from 1 to 5, and the regularization parameter
& ranged from 10! to 1073, Fig. 5 shows that the optimized
parameters can be found in the dark red region (with the
minimum RMSE), where the value of r is ranged from 2 to
3, and the value of ¢ is 1072, The radius r and the regu-
larization parameter & were set to 2 and 102, The FWHM
of the Gaussian filter was set to 2.5 voxels empirically, and
the number of training iteration was set to 200 epochs in
both CNN-MSE and the proposed method. All images were
reconstructed using MLEM with 120 iterations.

The proposed convolutional neural network was imple-
mented using Caffe, which is a deep learning platform made
with expression, modularity, and speed. The training opti-
mizer was the Adam algorithm with parameters §; = 0.9,
B> = 0.999, and n = 10~*. The learning rate was initialized
as 107 and trained 200 epochs with simulated data. For fine-
tuning, the learning rate was initialized as 107 and trained
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TABLE 1. Quantitative evaluations on the all simulated test dataset in
terms of the average RMSEs and average SSIMs.

Avg. RMSEs Avg. SSIMs
Input 0.322 +0.040 0.510£0.070
Gaussian 0.185+0.024 0.677 +0.060
Guided Filter 0.149+0.014 0.741 £ 0.041
CNN-MSE 0.150£0.016 0.774 £ 0.037
Proposed 0.138 £0.016 0.805 +£0.034

Values are expressed as means =+ standard deviations.

50 epochs with clinical data. The batch size was set to be 10 in
all training.

The selection of proper parameters (wi, w», §) can be
critical for the cost function. In this work, we utilized a simple
yet practical approach named the control variable. We set the
value range of each parameter empirically and optimized one
parameter with average RMSEs and average SSIMs on the
simulated test data while others were fixed [22]. For exam-
ple, the w; was ranged from 0.000005 to 0.05 and w, was
0.075 and § was 1075, When w; was 0.0005, the proposed
method has the lowest average RMSE and the highest average
SSIM, as shown in Fig. 6. Thus, 0.0005 was chosen as the
wp value. A similar strategy was adopted in the w, and &
optimization. The optimal w, value was 0.075 when w; was
0.0005 and & was 107, as shown in Fig. 7. In Fig. 8, the pro-
posed method can achieve the same lowest RMSE value when
8 was 107° and 1075, but the highest SSIM was achieved
by 1076. Thus, we chose 107 as the optimal §. However,
no matter the parameter changed, the proposed method can
keep the lowest average RMSE and the highest average SSIM
compared with the noisy input, Gaussian, guided filter, and
the CNN-MSE, as shown in Fig. 6-8.

2) PERFORMANCE COMPARISON

To provide the overall performance evaluation, as shown
in TABLE 1, we calculated the average RMSEs and aver-
age SSIMs of the test dataset, it can be seen that the pro-
posed method obtained the lowest RMSE and highest SSIM
where the RMSE was reduced by 56.8% and the SSIM
was increased by 57.5% compared with the input images.
Fig. 9 shows the quantitative evaluation of each test image,
and it can be seen that the proposed method also has favorable
performance against the compared methods in each testing
image. To provide a visual evaluation, Fig. 10 shows the
transverse view of slice 1 and slice 34 from the test phan-
tom and image processed by different filter methods. The
proposed method can simultaneously preserve the edge and
reduce statistical noise compared to other methods. This can
be clearly seen in the rectangular red box. The guided filter
introduces the extraneous structures, which can be seen at the
red arrow in Fig. 10.
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FIGURE 8. Plots of the average RMSEs (left) and average SSIMs (right) on the simulation test data by changing the

parameter 5 with 10-4, 10-5, 10~6, 10-7, 10~8 when the w; was set to be 0.0005, the w, was 0.075. The parameter
§ chosen in the manuscript was marked by .

To further quantify the performance of denoising methods.

96, and 120, the CRC of gray matter versus STD in white
By increasing the MLEM iteration number with 24, 48, 72,

matter curves of slice 34 were plotted in Fig. 11. Compared
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FIGURE 9. The RMSE and SSIM of each test resulting image (a total of 75 images) using different denoising algorithms
(Gaussian filter, guided filter, CNN-MSE, and the proposed method).

MR Image Ground Truth Input

Gaussian

Guided Filter CNN-MSE Proposed

FIGURE 10. The transverse view of the slice 1 (up) and slice 34 (bottom) from test phantom processed by Gaussian filter, guided filter, CNN
trained using MSE loss, and the proposed method. Two cortex regions from the transverse view are zoomed in for easier visual comparison.

with other methods, the proposed method performs the high-
est CRC at any matched STD level. The overall ensemble
variance versus means squared bias curves by varying the
MLEM iteration number were also plotted in Fig. 12. Results
show that the proposed method can achieve less bias at a fixed
variance than number were also plotted in Fig. 12. Results
show that the proposed method can achieve less bias at a fixed
variance than others while the ensemble variance keeps low.

Then, we compared the performance of each method
by varying the corresponding parameters. The guided filter
changed the radius r ranged from 1 to 5 and the regularization

VOLUME 9, 2021

parameter ¢ was fixed to 1072, The Gaussian filter changed
the FWHM ranged from 1.5 pixels to 5.5 pixels, and the CNN
denoising methods changed the number of training iterations
with 20 epochs, 60 epochs, 100 epochs, 150 epochs, and
200 epochs. The number of MLEM reconstruction iterations
was fixed at 120. The noisy input was generated by MLEM
changed the reconstruction iterations with 24, 48, 72, 96, and
120. The CRC of gray matter versus STD in white matter
curves of slice 34 by varying the corresponding parameters
were plotted in Fig. 13. The proposed method can achieve the
highest CRC level at any matched STD than other denoising
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FIGURE 11. Plot of the CRC versus STD trade-off curves of slice 34
(generated with increasing MLEM iterations of 24, 48, 72, 96, and 120)
obtained using: (i) Input. (ii) Gaussian, (iii) Guided Filter, (iv) CNN-MSE,
and (v) Proposed.
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FIGURE 12. Plot of the ensemble variance versus ensemble means
squared bias trade-off curves of slice 34 (generated with increasing
MLEM iterations of 24, 48, 72, 96, and 120) obtained by using: (i) Input.
(ii) Gaussian, (jii) Guided Filter, (iv) CNN-MSE, and (v) Proposed.

methods while the STD keeps low. With the increasing radius
of the filter window, the guided filter can obtain slightly
less background noise than the proposed method, but the
contrast between gray matter and the white matter is inferior.
Fig. 14 shows the ensemble variance versus means squared
bias curves, which indicates that the proposed method can
achieve less bias at a fixed variance than others while the
ensemble variance keeps low.

To provide a visual evaluation, Fig. 15 shows the images
with matching CRC level labeled by star markers in Fig. 13.
It is clearly seen that the proposed method can reduce the
noise level than others. The RMSE of the input image, images
processed by Gaussian filter, guided filter, CNN-MSE, and
the proposed method are 0.321, 0.262, 0.188, 0.165, and
0.159 respectively.
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FIGURE 13. The CRC between the gray matter and the white matter
versus the STD in white matter curves of slice 34 by varying the main
parameters of each method, for (i) Input (increasing iterations), (i)
Gaussian (increasing FWHM), (iii) Guided Filter (increasing windows size),
(iv) CNN-MSE (increasing trained iterations), and (v) Proposed (increasing
trained iterations). The point with similar CRC value labeled by star
markers will be used for visual evaluation in Fig. 15.
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FIGURE 14. Plot of the ensemble variance versus ensemble means
squared bias trade-off curves of slice 34 by varying the main parameters
of each method, for (i) Input (increasing iterations), (ii) Gaussian
(increasing FWHM), (iii) Guided Filter (increasing windows size),

(iv) CNN-MSE (increasing trained iterations), and (v) Proposed (increasing
trained iterations).

B. PATIENT STUDY

Following extensive simulation experiments and evaluations,
we further confirmed the effectiveness of the proposed
method on the clinical dataset. Due to the true activities
values of clinical data are unknown, we cannot adjust the
parameters of methods based on the evaluated metrics as
used in simulated experiments. To balance the contrast and
noise in the denoised image, we empirically set the window
radius and the regularization parameter in the guided filter
to 1 and 1072, respectively, while the FWHM of the Gaus-
sian filter was set to 1.5 pixels. Fig. 16 shows the images
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Input RMSE=0.321

Gaussian RMSE=0.262

FIGURE 15. The denoised images using different methods with different parameters
(Gaussian: FWHM = 1.5 pixels; Guided Filter: window radius = 1 pixel; input: iteration =
120; CNN-MSE: 20 epochs; proposed: 60 epochs). The images were selected by matching

the CRC level approximately (see Fig. 13).

MR image Input

Guided Filter

CNN-MSE

Gaussian

0.8

0.6

0.4

0.2

FIGURE 16. The transverse views of slice 16 of clinical brain test data denoising with different
methods. The parameters was chosen to balance the noise and contrast (Gaussian: FWHM =
1.5 pixels; Guided Filter: r = 1, ¢ = 10~2; CNN-MSE and Proposed: 50 epochs).

for visual evaluation processed by Gaussian filter, guided
filter, CNN-MSE, and the proposed method. We can see that
all methods can effectively reduce noise, but the Gaussian
filter and guided filter result more blurry than CNN and
proposed methods. To provide the quantitative comparison
of the denoised images, we randomly selected twenty square
ROIs with the size of 12 x 12 mm?2, and then calculated the
mean activity and STD in ROIs, respectively. Fig. 17 shows
the regional noise versus mean activity curves generated by
increasing the iteration number of MLEM. We can see that
the proposed method can achieve lower STD with matched
mean activity compared with Gaussian filter. The CNN-MSE
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and guided filter reduce the STD at the expense of increasing
mean activity bias.

We further compared the mean activity versus STD curves
of the twenty square ROIs with the size of 12 x 12 mm?
(Fig. 17) with the curves of more ROIs (Fig. 18) and the
larger ROIs (Fig. 19). The more ROIs were generated by
randomly adding ten ROIs with the size of 12 x 12 mm?
based on the twenty ROIs in Fig. 17. The larger ROIs were
generated by enlarging the ROI size from 12 x 12 mm? to
14 x 14 mm? while the positions and number were consistent
with the ROI in Fig. 17. It is known that MLEM with Poisson
likelihood is asymptotically unbiased. Thus, the bias of the
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FIGURE 17. Plot of the STD versus Mean Activity trade-off curves of slice
16 of clinical brain test data changing with the iteration number
(increasing iteration of 24, 48, 72, 96, and 120) obtained using: (i) Input,
(ii) Gaussian, (iii) Guided Filter, (iv) CNN-MSE, and (v) Proposed. Twenty
ROIs with the size of 12 x 12 mm?2 were randomly selected.
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FIGURE 18. Plot of the STD versus Mean Activity trade-off curves of slice
16 of clinical brain test data changing with the iteration number. Thirty
square ROIs with the size of 12 x 12 mm?2 were selected, as generated by
adding ten ROIs randomly based on the twenty ROIs from Fig. 17.

denoised method can be evaluated roughly combined with the
mean activity of MLEM (Input, labeled with the blue curves).
As canbe seen in Fig.17-18, the proposed method can achieve
the lowest STD at the matched mean activity than others and
the bias keep low whether the more ROIs or the larger ROIs
were selected.

V. DISCUSSION

A. SELECTION OF THE LOSS FUNCTION

The loss function is very critical for the network, while
the commonly used loss function MSE usually results in
blurred outputs. Several solutions have been proposed to
reduce the blurry, such as adding gradient terms [22], [30],
using perceptual loss [23], SSIM loss [31], and L1 loss [15].
Gong et al. proposed perceptual loss based on L2 norm which
compared feature maps instead of pixel intensities [23]. The
loss function needs the additional network and the assumption
that low-level features trained with natural images are also
present in medical images is worth explaining. Nie et al.
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FIGURE 19. Plot of the STD versus Mean Activity trade-off curves of slice
16 of clinical brain test data changing with the iteration number. Twenty
square ROIs with the size of 14 x 14 mm? were selected, as generated by
enlarging the size of ROIs from Fig. 17 while the positions and number
were fixed.

proposed loss function includes MSE, binary cross-entropy
loss, and image gradient loss which is consistent with the
third term of our proposed loss function [30]. Kaplan et al.
proposed to add gradient and total variation with the L2 norm
loss which are the same as the second and third terms of
our proposed [22]. The above approaches can reduce the
blurry from MSE loss but cannot avoid it. The cost function
of the guided filter is based on MSE which may be one
of the reasons for the blurry outputs, as shown in Fig. 10.
Moreover, the use of MSE as the loss function is under the
assumption that the outputs are corrupted by additive white
Gaussian noise, which is not applicable for low-count PET
images that suffer from the complex noise model. In this
work, we used the L1-norm and gradient terms instead of the
MSE, as shown in Fig. 11 and Fig. 15, the proposed loss has
better noise reduction at matching contrast level no matter
changed the iteration number or the parameters. This proves
that the proposed loss is more suitable for low-count PET
denoising than MSE. Due to the gradient terms, our proposed
can preserve the image edge and keep the details close to the
label image as shown in the rectangular red box of Fig. 10.

B. SELECTION OF THE NETWORK ARCHITECTURE

Our proposed network consists of a cascade of convolution
layers and ReLLU except for the final convolution layer, with-
out any pooling and BN layers. The main reason is that pool-
ing operations down-sampling the dimension of feature maps
are usually used in classification and recognition tasks but
not suitable for pixel-wise tasks like PET image denoising.
The BN layers which using the statistic of the training dataset
during testing are more likely to introduce artifacts and limit
the generalization ability. Recently, abundant advanced net-
works were used for PET denoising. The 2D cycle Wasser-
stein regression adversarial networks (CycleWGANSs) [20]
and the 3D conditional regression adversarial networks (3D
c-GANSs) [32] were proposed to boost low-dose PET image
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TABLE 2. Quantitative evaluations on proposed method with different
number of layers. The average RMSEs and average SSIMs were calculated
on the test dataset.

Avg. RMSEs Avg. SSIMs
12 layers 0.138+0.016 0.805 +0.034
11 layers 0.139+0.016 0.804+0.034
10 layers 0.139+0.016 0.803+0.034
9 layers 0.141+0.016 0.803+0.034
8 layers 0.140+0.016 0.802+0.034

Values are expressed as means =+ standard deviations.

quality, where the generators include block residual mod-
ules and 3D U-Net-like network respectively. The encoder-
decoder CNN with U-Net structure was proposed to reduce
the image noise from ultra-low-dose PET data [33]. However,
the frameworks with skip connection were applied to end-to-
end studies well as mentioned above, which learn the directed
mapping between low-count and high-count PET images.

In this work, we learned the linear representation coeffi-
cients of SVLRM instead of the end-to-end trainable net-
work to generate high-quality PET images. The proposed
deep learning-based joint filter introduced the MR images
as the prior information. By the supervision of the image
label, the linear representation coefficients can determine
well whether the structures of the MR image should be
transferred to the denoised PET image. Moreover, with the
pixel-wise learning of the linear coefficients in the proposed
method instead of the average operation on overlapping win-
dows in the guided filter, high-frequency information can be
preserved better.

To further prove the simplicity and effectiveness of the
network’s structure in this work, we compared the denoised
performance of the proposed method with the different num-
ber of layers, as shown in TABLE 2. We can see that the CNN
with 12 layers has the lowest average RMSE and the highest
average SSIM than with fewer layers. Thus, the structure
of the network proposed here is minimalist and can achieve
the lowest complexity for a level of efficiency and quality
output. Moreover, the patch size also affects the denoising
performance of network, which should be larger than the
receptive field. In this work, we used the CNN with 12 layers,
of which the convolution kernel is 3 x 3 pixels and the
stride value is 1. Thus, the receptive field of our network is
25 and the patch size of 64 x 64 was reasonable. We further
compared the training losses with different patch sizes (32 x
32,64 x 64, and 96 x 96), as shown in Fig. 20. We can see
that the smaller patch size can acquire less loss at the end of
training and learn the finer image detail. However, as shown
in TABLE 3, the patch size of 64 x 64 can achieve the lowest
average RMSE on the simulated test data than others. It can
be explained that the appropriate larger patch size is necessary
to require more contextual information when the input image
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TABLE 3. Denoising performance (in average RMSE) on the simulated
test data for different sizes of training input patches, keeping all other
parameters constants. The testing inputs were the whole PET and MR
images.

Training patch size 32x32 64 x 64 96 x 96

Avg. RMSEs 0.146 £0.015  0.138+0.016 0.142+0.015

Values are expressed as means + standard deviations.
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FIGURE 20. Plot of the training losses generated with changing the
number of training epochs of 20, 60, 100, 150, and 200 with different
patch sizes (32 x 32, 64 x 64, and 96 x 96).

with higher noise level. Thus, we used the path size of 64 x
64 during training.

C. SELECTION OF THE EXPERIMENT DATASET

The purpose of our work is to denoising the last frame
of dynamic PET image through a supervised framework,
i.e., estimating the high-quality standard-count PET (HPET)
image from low-quality low-count PET (LPET) image.
We combined the long-scanned PET data to generate the
HPET and down-sampling it to obtain LPET. The data
acquisitions of [32] and [34] were both conducted twice
(short and long periods) to obtain the LPET and HPET data,
which would cause unnecessary harm to patients undoubt-
edly. Zhou et al. obtained the LPET image by down-sampling
the HPET raw data randomly, which is similar to ours but
they need a large number of patients for training [20]. In this
work, only a single dynamic scan is demanded for each
patient which avoids additional harm. Due to fine-tuning, vast
clinical data are not required for training.

The ideal PET system without any attenuation and object-
dependent scatter was assumed in this work [21]. We further
compared the quantitative results including attenuation or not.
The attenuation map (Fig. 21 (b)) was generated using
the discrete MR images (Fig. 21 (a)) by assigning a value
of 0 ecm~! in air, 0.146 cm™! in bone, and 0.096 cm™!
in other tissues. The attenuation map was incorporated
into the forward projection to generate the realistic sim-
ulation PET sinogram data and also incorporated into

42009



IEEE Access

Y. He et al.: Dynamic PET Image Denoising With Deep Learning-Based Joint Filtering

TABLE 4. Quantitative evaluation of all simulated test datasets which including attenuation or not in terms of the average RMSEs and average SSIMs.

Avg. RMSE: (ot temuation) Avg. SSTM (it temuation)
Input 0.322 £ 0.040 0.322+0.037 0.510+0.070 0.540+0.07
Gaussian 0.185+0.024 0.189+0.023 0.677 £ 0.060 0.699+0.52
Guided Filter 0.149+£0.014 0.152+0.015 0.741 £0.041 0.723+0.042
CNN-MSE 0.150+0.016 0.158+0.016 0.774 £ 0.037 0.748+0.039
Proposed 0.138 £0.016 0.148+0.016 0.805 £ 0.034 0.772+0.036

Values are expressed as means + standard deviations.

(b)

FIGURE 21. Transaxial slices based on BrainWeb used for simulation from
the same subject. (a) the discrete MR image; (b) the attenuation map;

(c) PET noisy input without attenuation; (d) PET noisy input with
attenuation.

maximum-likelihood expectation-maximization (MLEM)
reconstruction. The PET noisy image with attenuation was
shown in the Fig. 21 (c). We compared the average RMSEs
and average SSIMs of the all simulated test dataset including
attenuation or not, as shown in TABLE 4. It can be seen that
the proposed method has the lowest average RMSE and the
highest average SSIM no matter include attenuation or not.
The attenuation affects the PET noisy input, but have little
effect on the trend of comparison results denoised by different
post-filters. The scatter was difficult for analytic simulation
which was not evaluated. As the object-dependent scatter
only increases the noise level, it may similar to attenuation
and will have little effect on the trend of comparison results
denoised by different post-filters.

The last frame of the dynamic PET image was used
as testing input, instead of the down-sampled PET image,
to prove the generalization performance of the proposed. It’s
worth mentioning that our network can also denoise the static
images, of which noise level is similar to the testing inputs.
Besides, other frames of dynamic PET data can be denoised
with the same framework by changing the down-sampled
degree of training input data.

D. LIMITATION AND FURTHER WORK

The proposed method can reduce noise while preserving the
structures in Fig. 10, but this is not very clear by visual evalu-
ation in the results of clinical experiments as shown in Fig. 16.
The possible reasons are as follows. 1) The label images
are blurred in training. The label generated by summing the
entire dynamic PET data into one frame usually lost image
details though reduced noise. 2) Poor registration of clinical
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PET/MR images. In the simulation study, the structures of
the PET image are consistent with the MR image for the
same brain phantom, thus the structures can be preserved
when the MR image was used as guidance. As the clinical
PET/MR data were acquired from different machines at dif-
ferent months, the slice thickness and image array in PET
images and MR images are different. The data acquired from
integrated PET/MR systems or finer registration methods
may improve the quality of the resulting image. Neverthe-
less, the proposed method can obtain the lowest noise level
compared with other methods for a matched activity value in
Fig. 17-19. It confirms the superiority of the proposed method
in the clinical study. Due to the technique that pre-training
with simulated data followed by fine-tuning only the last two
layers with clinical data, the network will be quickly and
effectively trained when the fine registered PET/MR images
were obtained in the future.

In our network, 2D convolution was used, thus the axial
information was not extracted. We will extend the network
to 3D convolution in the future. The clinical dataset acquired
from integrated PET/MR scanners is expected to validate the
performance of our method further, and more evaluations for
clinical data will be explored in our future work.

VI. CONCLUSION

In this study, we proposed a deep learning-based joint fil-
tering to improve the image quality of the last frame in
dynamic PET scanning. The L1-norm was combined with
edge-preserving and structure-preserving features as the loss
function in training. We pre-trained the network using digital
phantoms and then fine-tuned the last two convolution layers
of the network using real brain data. The simulation and
clinical experiments show that the result images processed
by the proposed method can reduce noise better than the
Gaussian, guided filter, and the CNN trained using MSE loss
function.
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