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Abstract
Alzheimer’s disease (AD) is an irreversible, progressive, and ultimately fatal brain degenerative disorder, no effective

cures for it till now. Despite that, the available treatments can delay its progress. So, early detection of AD plays a crucial

role in preventing and controlling its progress. Hippocampus (HC) is among the first impacted brain regions by AD. Its

shape and volume are measured using a structural magnetic resonance image (MRI) to help AD diagnosis. Therefore, brain

hippocampus segmentation is the building block for AD detection. This study’s main objective is to propose a deep

learning Alzheimer’s disease hippocampus segmentation framework (DL-AHS) for automatic left and right hippocampus

segmentation to detect and identify AD. The proposed DL-AHS framework is based on the U-Net architecture and

estimated on the baseline coronal T1-weighted structural MRI data obtained from Alzheimer’s disease neuroimaging

initiative (ADNI) and neuroimaging tools and resources collaboratory (NITRIC) datasets. The dataset is processed using

the Medical Image Processing, Analysis, and Visualization (MIPAV) program. Besides, it is augmented using a deep

convolutional generative adversarial network (DC-GAN). For left and right HC segmentation from other brain sub-regions,

two architectures are proposed. The first utilizes simple hyperparameters tuning in the U-Net (SHPT-Net). The second

employs a transfer learning technique in which the ResNet blocks are used in the U-Net (RESU-Net). The empirical results

confirmed that the proposed framework achieves high performance, 94.34% accuracy, and 93.5% Dice similarity coeffi-

cient for SHPT-Net. Also, 97% accuracy and 94% Dice similarity coefficient are achieved for RESU-Net.

Keywords Alzheimer’s disease � Deep learning � Fully convolutional neural networks � MRI semantic segmentation �
Transfer learning � U-Net architecture

1 Introduction

Alzheimer’s disease (AD) refers to a neurodegenerative

disorder that chronically progressively attacks the brain

tissues, including b-amyloid peptide (Ab), neurofibrillary

tangles, and neuronal degeneration [1, 2]. It also impacts

both mental and memory functions [3, 4]. Until now, no

effective medicines are available to cure AD, and the

current drugs only hinder or delay its progress. As a result,

the awareness of AD at its early stage is vital for control-

ling and preventing its development. For AD treatment and

biomarkers diagnostic, several genes and pathways play

critical roles [5]. The most significantly changed gene is

PDHA1 which serves as a target gene in AD treatment [6].

Ventricles size, hippocampus shape, cortical thickness,

and brain volume are the main AD-related variations of

anatomical brain structures handled for early and accurate

AD diagnosis [7]. Hippocampus is a small medial sub-

cortical brain structure relevant to long and short-term
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memory [8–10]. Many pathologies such as the neurode-

generation associated with AD can affect its shape and

volume [11], in which the hippocampus shape changes in

time, as well as different rates of volume loss. Therefore,

hippocampus shape and volume are vital factors for

detecting Alzheimer’s disease and distinguishing Alzhei-

mer’s patients from healthy persons [12, 13].

Image segmentation is a digital image clustering process

that divides the image into several coherent sub-regions or

segments according to the extracted features[14, 15]. It is

the primary diagnosis, treatment, planning, monitoring, and

pathology characterization in many medical applications

[16, 17]. It helps a specialist derive different volumetric

and morphological pointers. It supports the quantitative

analysis and characterization of numerous neurological

diseases and their development. Also, it supports experts’

focus on specific regions in the medical image [18]. The

accuracy of diagnosing AD can be improved by MRI

segmentation of the brain structure because MRI is dis-

tinguished by high spatial resolution, high availability, and

ability to contrast soft tissue [19, 20]. Besides, compared to

positron emission tomography (PET) and computed

tomography (CT) modalities, MRI is correlating with fewer

health risks [21].

Machine learning and artificial algorithms have enabled

radiologists to segment medical images, such as mammo-

grams of breast cancer, brain tumors, brain lesions, and

identifying lung nodules [18]. Deep learning-based medical

imaging applications have exceeded the performance of

traditional methods in complicated tasks [22]. It offers

significant methodologies in segmentation [23], detection,

and image pattern classification with great success [24–26].

Applying deep learning algorithms for medical image

segmentation requires solving domain-specific difficulties

associated with the quantity and quality of data and

annotations [27].

To this end, the segmentation of natural images using

deep convolutional neural networks (CNN) has achieved

high performance [28]. This progress is mainly because of

the paradigm shift from manual to automatic extraction of

features provided by deep learning networks and the high

significant computational power improvements [29]. The

advancement of CNN has led to U-Net’s creation with a

modified U-shaped structure, which can segment biomed-

ical images. U-Net joins the convolutional network with a

de-convolutional network. The main benefit is that it per-

forms the demanded tasks with fewer training images and

gives more precise segmentation using a GPU. It is also

proved that the U-Net architecture achieves high perfor-

mance than several biomedical segmentation applications

for medical imaging [30].

The main contribution in the proposed work is to solve

and manipulate some of the MRI medical image

segmentation problems. These issues revolve around the

scarcity of medical images dataset, low anatomical struc-

ture contrast for T1, T2, and FLAIR modalities. Further-

more, manual segmentation for brain MRI is time-

consuming and needs expert knowledge of brain anatomy.

Besides, transfer learning, multi-task, or multi-module

learning and the scalability of deep learning approaches are

applied. Therefore, a clinical validation tool is proposed

which manipulates the above-listed issues. Also, it gives

support in analyzing the prognosis, the variation of HC

region, and finding of AD.

In this study, the DL-AHS framework is proposed for

automatic left and right hippocampus segmentation to

detect and identify Alzheimer’s disease. The proposed

framework is based on the U-Net architecture and evalu-

ated based on coronal T1-weighted structural MRI data

obtained from ADNI and NITRIC datasets. The dataset is

segmented and processed using the MIPAV program, and it

is augmented using the DC-GAN. For medical MRI binary

semantic-wise segmentation, two architectures are pro-

posed. The first architecture is SHPT-Net which utilizes

simple hyperparameters tuning. The second is RESU-Net

that applies a transfer learning technique in which the

ResNet block is used for feature extraction and contraction

processes in the U-Net architecture. The empirical results

confirmed that the proposed framework achieves high

performance over other state-of-the-art techniques.

This paper is coordinated throughout the following way:

in Sect. 2, the relevant works are reviewed. Section 3

outlines the major issues and the aims of this study. In

Sect. 4, the techniques and materials are discussed. In

Sect. 5, the experiments and the results are assessed. Sec-

tion 6 summarizes the paper.

2 Related work

The hippocampus (HC) is among the first impacted regions

in the brain by AD among all brain regions of interest

(ROI). So, it is an imperative anatomical region in the AD

etiology. The volume and shape attributes from the bilat-

eral hippocampus are highly considered in MRI research

for AD diagnosis. For subcortical structure segmentation,

Dolz et al. [31] suggested 3D FCNNs where 3D and fully

CNN for subcortical MRI brain structure segmentation was

applied. That method was robust but required high com-

putational power and memory due to the use of 3D

architecture.

Allioui et al. [32] suggested a computer-aided diagnosis

(CAD) framework. The proposed framework was the first

2.5D MRI system analysis based on U-Net architecture.

The network was trained from scratch. It could segment

images of the brain, detect mental disorders, and identify
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AD. The system exploited the 3D MRI benefits. Besides,

the complexity and computational costs are reduced.

Jingwen et al. [33] proposed a 3D CNN based on V-Net for

segmenting bilateral hippocampus from 3D brain MRI

scans and diagnosing AD progression states. The V-Net

convolutional blocks were replaced with a bottleneck

architecture to compress the model. That network had

higher robustness and accuracy. But it was applied to a

small dataset.

Automatic hippocampus segmentation and AD classifi-

cation were combined in a multi-task model by Manhua

et al. [34]. That framework was based on CNN and eval-

uated on structural MRI data. The features of the 3D pat-

ches extracted based on the hippocampus segmentation

results were learned using 3D densely connected convo-

lutional networks (3D DenseNet). Then, it merged with the

learned features from the multi-task CNN to detect AD.

The framework gave promising performance but suffered

from complexity. By several optimization techniques such

as genetic algorithm (GA), lion optimization algorithm

(LOA), artificial bee colony (ABC), BAT algorithm, and

particle swarm optimization (PSO), the HC region is seg-

mented by Chitradevi et al. [35]. After comparing these

optimization techniques, LOA gave better performance

than others due to its characteristics of escaping from local

optima.

Carmo et al. [9] proposed a deep learning U-net method

for hippocampus segmentation. It uses an extended 2D

multi-orientation approach. Also, a public Alzheimer’s

disease hippocampus segmentation (HarP) dataset was

used for developing and validating that method. The

methodology gave a good performance but suffered from a

low standard deviation between overall Dice and left/right

Dice. Furthermore, a robust automatic atlas CNN-based

hippocampus segmentation tool called DeepHarp for hip-

pocampus delineation was developed by Sammaneh et al.

[36]. The method was trained from scratch and evaluated

by the ADNI harmonized hippocampal protocol (HarP).

Table 1 describes the comparison among the relevant

works listed above.

The proposed framework avoids the point of weaknesses

listed before for Dolz et al. [31], Allioui et al. [32], Jingwen

et al. [33]. It depends on the 2D architecture for medical

images MRI and 2D layers in the proposed U-Net archi-

tectures. Therefore, the complexity represented in high

computational power and high memory requirements is

avoided. Moreover, Jingwen et al. [33] network is applied

to a small dataset due to medical image scarcity. As a

result, the proposed framework employs the DCGAN

technique to increase the dataset size.

3 Problem statement and solution plan

Recently, biomedical MRI segmentation and classification

using deep learning have been widely studied. However, it

involves several issues and challenges such as (i) Medical

images dataset scarcity, (ii) low anatomical structure con-

trast for T1, T2, and FLAIR modalities, (iii) manual seg-

mentation for brain MRI which is time-consuming and

need expert knowledge of brain anatomy, (iv) applying

transfer learning, multi-task, or multi-module learning, and

(v) the scalability of deep learning approaches [21]. Also,

numerous architectures that can accommodate AD detec-

tion have been proposed in the literature, as seen in Sect. 2.

However, most of them lack in manipulation the biomed-

ical MRI segmentation and classification challenges listed

above. So, according to other state-of-the-art techniques

reviewed in Sect. 2, and to manipulate and solve some of

the MRI segmentation challenges listed, the novelty of this

study is organized as follows:

• As manual segmentation is time-consuming and needs

proficient knowledge, a deep learning Alzheimer’s

disease automatic left and right hippocampus segmen-

tation framework (DL-AHS) is proposed.

• Due to medical dataset scarcity, T1-weighted MRI

dataset is collected from ADNI and NITRIC datasets

and then segmented, denoised, and reconstructed.

• Due to low anatomical structure contrast for T1

modalities, the MIPAV program is used to segment,

process, denoise, and prepare the dataset (bilateral filter

and Inhomogeneity N3 correction algorithms are used).

• Due to the small dataset size, MRI dataset augmentation

techniques are applied using the DC-GAN.

• Medical MRI binary semantic-wise segmentation is

proposed using two new architectures based on U-Net

architecture called SHPT-Net and RESU-Net.

• The SHPT-Net architecture employs simple hyperpa-

rameters tuning on U-Net architecture.

• The RESU-Net architecture uses the transfer learning

concept in which the pre-trained model (ResNet) is used

in the encoder and decoder layers of the U-Net

architecture.

• The proposed architectures achieve high performance

according to four performance metrics (Dice similarity

coefficient, accuracy, sensitivity, and specificity)

4 Methods and materials

The Hippocampus (HC) segmentation is the primary factor

for diagnosing AD [37]. Our goal is to propose a DL-AHS

framework to segment the left and right hippocampus to
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detect and identify Alzheimer’s disease. There will be a

comprehensive explanation of the proposed DL-AHS

framework workflow, the preprocessing algorithms, and

the techniques for medical image segmentation in the next

subsections. U-Net and transfer learning will also be

described.

4.1 Proposed framework

The proposed DL-AHS framework comprises five steps.

The full pipeline of the framework, shown in Fig. 1, is as

follows:

Step 1—The data acquisition step: for medical image

segmentation, needs the MRI scans and the ground truth

masks for the input dataset. Due to the scarcity and

curation of the medical dataset, a dataset is prepared by

Table 1 A comparison among recent related work

Dataset Technique Advantages Disadvantages

Dolz et al.

[31]

(ABIDE,

ISBR)

3D FCNNs 1. The method is robust to various

acquisition protocols,

demographics, and clinical factors

2. The network has few parameters

and, thus, is less prone to

overfitting

1. High computational

complexity

2. High memory

requirements

Allioui

et al. [32]

OASIS U-Net architecture for each view of the

2.5D brain MRI after parsing them into

transversal views

1. It takes advantage of the benefits

of 3D architecture

2. It reduces complexity and

computational costs

The network was trained

from scratch and not

benefits from transfer

learning concepts

Jingwen

et al. [33]

ADNI 3D convolutional neural network based

on V-Net

1. That model had good robustness

in the three-category classification

task of pathological brain states

2. Accurately segment bilateral

hippocampus

1. Applied to small dataset

2. Computational

complexity when dealing

with 3D images

3. Sample numbers of three-

category with AD

progression states are

unbalanced

Manhua

et al. [34]

ADNI Multi-model deep CNNs for jointly

learning hippocampus segmentation

and disease classification evaluated on

structural MRI data

1. The empirical results

demonstrated that it achieved

promising performance

2. The framework output the

disease status and provided the

hippocampus segmentation result

Computational complexity

Chitradevi

et al. [35]

Hospital

images

HC region is segmented by different

optimization techniques, namely GA,

ABC, BAT, PSO, and LOA

1. The system does not include

highly complex computations and

hardware implementations

2. The LOA method showed the

best classification accuracy

compared to all other methods

The system is not applied for

MCI, which allows the

doctor to examine AD in an

early stage

Carmo

et al. [9]

HarP A deep learning U-net based CNN’s

method for hippocampus segmentation

Achieves state-of-the-art

performance on the public HarP

hippocampus segmentation

benchmark

1. Low standard deviation

between overall Dice and

left/right Dice

2. That method was not ready

to deal with hippocampus

resection due to epilepsy

treatment

Sammaneh

et al. [36]

ADNI

harmonized

hippocampal

protocol

(HarP)

CNN-based hippocampus segmentation

tool for MRI data called DeepHarp

This method gave high accuracy

and robustness, which can aid

atrophy measurements in a variety

of pathologies

The CNN architecture was

built from scratch and did

not use the transfer learning

concept
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collecting coronal, 2D, T1-weighted MRI slices in

DICOM, hdr and IMG formats from the ADNI (https://

www.loni.ucla.edu/ADNI) and NITRIC (https://www.

nitrc.org/) datasets. Sixty-four patients with MRI his-

torical scans representing various AD stages are

collected.

Step 2—Preprocessing step: The MIPAV program is

used for processing, segmenting the left and right

hippocampus regions, denoising the dataset by bilateral

filter algorithm, and shading correction of images by

inhomogeneity N3 correction. Also, the dataset is

normalized and registered in a suitable format. Thus,

by the MIPAV program, manual segmentations have

Fig. 1 The full pipeline of the proposed DL-AHS framework
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been used for preparing the ground truth in both

segmentation model training and for final segmentation

performance evaluation.

For each slice of the 64 patients slices collected, we

segment the left and right HC in two slices using polygon

volume of interest (VOI) and binary mask options. So,

the dataset’s size becomes 64 MRI slices for the original

images, 64 for the left HC, 64 for the right HC. The

samples of the original MRI images and their ground

truth masks are shown in Fig. 2.

Step 3—Data augmentation step: due to the small dataset

amount, data augmentation techniques are applied to

maximize the dataset size and prevent the overfitting

problem. The DCGAN is used to augment the data. The

real and fake training samples we get after 5000 epochs

of training the DCGAN are shown in Fig. 3. After

applying DCGAN and other simple augmentation tech-

niques, the dataset’s size becomes 1500 MRI slices, 500

for the original slices, 500 for the left HC slices, and 500

for the right HC.

Step 4—Segmentation step: in this step, two proposed

architectures are applied based on U-Net, which are

called SHPT-Net and RESU-Net. The SHPT-Net utilizes

simple hyperparameters tuning on U-Net architecture.

Fig. 2 Samples of MRI input data and the corresponding ground truth masks

Fig. 3 The real and fake training samples after 5000 epochs of training the DCGAN
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The default U-Net architecture [30] and the proposed

SHPT-Net architecture are described in Figs. 4 and 5.

The RESU-Net architecture uses the transfer learning

technique where the ResNet pre-trained model is used.

The ResNet blocks are used in encoder and decoder

layers in the U-Net architecture.

Step 5—Evaluation step: in this step, we monitor and

review the model’s performance to ensure effective

results and accurate performance by following the DL-

AHS algorithm steps. The acronyms used in the algo-

rithm are shown in Table 2.

4.2 Preprocessing algorithms

4.2.1 Shading correction by inhomogeneity N3 correction

Inhomogeneity N3 correction algorithm is a robust,

accurate, and fully automatic algorithm used to correct

shading artifacts often seen in MRI. It roughly calculates

both distributions of true tissue intensities and

multiplicative bias field. So, it is an iterative algorithm.

Also, it makes no assumptions about the kind of anatomy

present in a scan referred to as nonparametric intensity

non-uniformity normalization (N3). For MRI segmenta-

tion, it is vital to apply shading correction for MRI images

for highly and efficient results.

The determination of the model is a joint problem with

tissue intensity model-based methods. In the N3 correction

algorithm, the modeling assumption that the data histogram

is blurred by non-uniformity. Therefore, it can be observed,

measured, and deleted. This non-uniformity blurring dis-

tribution is referred to as the blurring kernel. The basis of

the N3 approach is in Eq. 1.

v xð Þ ¼ u xð Þ � f xð Þ þ n xð Þ ð1Þ

where n is white, Gaussian noise assumed to be indepen-

dent of the true signal emitted by the tissue u. f is an

unknown smoothly varying bias field, and the measured

signal is v this at location x. The bias field f multiplies by

signal u to corrupt it. Then, the noise n is added to get the

output signal v.

Fig. 4 The default U-Net architecture [30]
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4.2.2 Image registration

Registration is used in image and data compilation and

analysis. It converts various sets of data such as many

images data from different times, sensors, depths, or

viewpoints into one coordinate system. Therefore, to

compare data acquired from several measurements such as

our dataset collected from ADNI and NITRIC datasets in

various formats, it is essential to do image registration.

4.2.3 Bilateral filter

The bilateral filter is a highly effective, nonlinear, edge-

preserving, and noise-reducing smoothing filter for images.

However, its operation is slower than other filters because

the intensity of each pixel is substituted by the weighted

average of intensity from the nearby pixels. The MRI

medical image before and after applying the bilateral filter

is shown in Fig. 6. The bilateral filter is specified as in

Eqs. 2, 3.

Ifiltered xð Þ ¼ 1

wp

X

xi2X
I xið Þfr I xið Þ � I xð Þj jj jð Þgs xi � xj jj jð Þ;

ð2Þ

And normalization term wp is defined as

wp ¼
X

xi2X
fr I xið Þ � I xð Þj jj jð Þgs xi � xj jj jð Þ ð3Þ

where Ifiltered is the filtered image; I is the original input

image to be filtered; x are the coordinates of the current

pixel to be filtered; X is the window centered in x, so

xi 2 X is another pixel. fr is the range kernel for smoothing

differences in intensities (this function can be a Gaussian

function); gs is the spatial (or domain) kernel for smoothing

differences in coordinates (this function can be a Gaussian

function).

4.2.4 MRI normalization

Normalization is a process of converting the MRI data to a

comprehensive anatomic template. It maps the data

acquired from discrete subject space to a reference space

containing a template and a source image. The main

advantages of normalization are: it facilitates comparing

brain MRI images and interprets them onto a common
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shape and size [38]. It removes some variations in the data,

such as different subject pose or differences in image

contrast, to simplify the detection of subtle differences.

There are several types of normalization, such as intensity

normalization (IN), spatial normalization (SN), Z-score

normalization (ZN), and numerical normalization (NNM).

4.3 Medical image segmentation types
and techniques

Image segmentation before deep learning is applied by

several techniques such as (i) thresholding, (ii) clustering

methods, (iii) histogram-based methods, (iv) edge detec-

tion, (v) region-growing methods, (vi) graph-based

approaches, (vii) watershed transformations, and (vii)

feature-based techniques. Deep learning techniques give

efficient and high-performance results [15]. Additionally,

deep learning approaches utilize several applications

behind image segmentation, such as classification, object

detection, genotype detection, speech recognition [39].

Stacked auto-encoders, deep neural networks, CNN, and

deep Boltzmann machines are popular deep learning

algorithms [17].

Using the CNN architecture, several segmentation

methods include cascaded, multi-modality, single-modal-

ity, patch-wise, and semantic-wise. In our work, we depend

on semantic-wise segmentation because of its benefits over

other methods. Semantic-wise segmentation links each

pixel of the input image with its class label; it is also called

the dense prediction process because every pixel is

Fig. 5 The proposed SHPT-Net architecture

Table 2 Acronyms used in DL-

AHS algorithm
Acronyms Description

Ad ADNI dataset

Nd NITRIC dataset

d
0
train

Dataset for training

dval Dataset for validation

dtest Dataset for testing

dp Preprocessed MRI images

hl Left hippocampus mask

hr Right hippocampus mask

d The dataset that includes of numbers of features and the ground truth (hr ? hlÞ
hs Left and right hippocampus segmented image (output)
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predicted from the whole input image [40]. Its main

advantages are that it minimizes the loss function and

generates segmentation maps for any image size, and its

computational complexity is lower than other methods

[21, 41].

4.4 Deep convolutional generative adversarial
networks (DCGAN)

DCGAN is a deep-learning-based generative model. The

primary usage of it is for data augmentation, in which new

plausible artificial examples from the input data are created

[42]. In image data, applying techniques such as flips,

crops, zooms, or other simple transformations on the

existing images of the training dataset refer to primitive

augmentation techniques. Thus, we also apply DCGAN, a

perfect choice for accurate and high-efficiency model

results.

GAN consists of two parts; the first part is the generator

that learns to generate new plausible artificial training

examples, which become negative examples for the dis-

criminator’s second part. The discriminator learns to dif-

ferentiate the faked generated data from the real one

[32, 43, 44]. The workflow for generator and discriminator

processes is shown in Fig. 7, and the general structure of

the applied DCGAN is shown in Fig. 8. Figure 9 shows the

generator and discriminator loss during training through

5000 training epochs.

4.5 U-Net

U-Net is a convolutional network with a modified

U-shaped structure, used in biomedical image segmenta-

tion due to its excellent performance in the ImageNet. Its

structure consists of a fully convolutional network with a

de-convolutional network or an encoder for feature

extraction or image contraction and a decoder for image

expansion and segmentation. Its key advantage is that it

performs the tasks demanded with fewer training images

and gives high precise segmentation results using a GPU.

The proposed SHPT-Net architecture is applied based

on the default U-Net architecture. It consists of three sec-

tions: (i) a down-sampling or encoding section, (ii) an up-

sampling or decoding section, and (iii) the bottleneck

section, as shown in Fig. 5. The encoding section has four

contraction or encoding blocks. Each block has input with

two convolutional layers, kernel size (3 9 3), Relu acti-

vation function, stride equal to 1, kernel initializer tech-

nique used is ‘‘ he_normal.’’ The padding is ‘‘same’’

followed by the dropout layer and max-pooling layer with

the kernel (2 9 2), where the number of feature maps gets

double at each block.

The up-sampling or decoding has four expansion blocks;

each block has de-convolutional layers with kernel size

(2 9 2), the stride is (2 9 2), and padding ‘‘same’’. This is

followed by two convolutional layers as in the encoding

path with Relu activation function, the stride is 1, kernel

initializer technique is ‘‘he_normal’’ and padding is

‘‘same’’. Then, it is followed by the dropout layer. The

number of output filters for the four contraction or

encoding blocks’ convolution layers is (16, 32, 64, 128).

The bottleneck section consists of two convolutional layers

with filter numbers equal to 256 with a dropout layer. The

two convolutional layers reduce the number of feature

maps from the concatenation of de-convolutional feature

maps with feature maps from the encoding path. We use a

convolutional layer with kernel 1 9 1 and a sigmoid acti-

vation function for our binary segmentation process for the

output layer.

4.6 Transfer learning

Transfer learning is a pre-training and fine-tuning concept

[45] that initializes networks with pre-trained parameters

rather than randomly set parameters. Its advantages can

speed up the learning process and increase the general-

ization capability. It is also very common in models based

on CNNs [34]. As a result, the proposed RESU-Net

architecture uses ResNet pre-trained model blocks for

encoder and decoder layers.

Fig. 6 Original MRI image and bilateral filter image
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4.6.1 ResNet pre-trained model

ResNet is a short name for a residual network which used

as an image classification model. ResNet is based on CNN

architecture and consists of residual block series (Res-

Block) identified with skip connections that separate the

ResNet network from other CNNs. It is pre-trained on the

large classification ImageNet dataset that includes over

Fig. 7 The workflow for generator and discriminator processes

Fig. 8 The general structure of the applied DCGAN
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100,000 images belonging to 200 classes. Therefore, it is

fine-tuned and used its blocks as encoder and decoder in

the U-Net architecture for feature extraction and contrac-

tion processes to get the advantages of pre-trained weights.

Each ResBlock has two connections from its input

called identity, cross or skip connections, in which the first

connection from a series of convolutions and a batch nor-

malization with linear functions. The other connection is

skipping over that the series of convolutions and functions.

The outputs of both connections are added together, as

shown in Fig. 10.

Figure 11 describes the proposed RESU-Net architec-

ture. The encoding section has an input block that contains

a convolutional layer with kernel size (3 9 3), stride equal

to 1, and padding is ‘‘same’’. Also, it contains Conv-block

and convolutional layer with kernel size (1 9 1), stride 1,

and ‘‘same’’ padding with Relu activation function fol-

lowed by batch normalization layer. Four residual blocks

follow the input block. Each residual block consists of two

Conv-block with kernel size 3 9 3 and a convolutional

layer with kernel 1 9 1, all with stride equal to 1 and

padding ‘‘same’’ ended by batch normalization layer. The

bottleneck section has two Conv-block. The decoder sec-

tion has four blocks, and each block consists of an up-

sampling concatenation layer with the kernel (2 9 2) and a

residual block. The output block is a convolutional layer

with kernel size (1 9 1) and a sigmoid activation function

for the binary segmentation process. The Conv-block has

only a convolutional layer and a batch normalization layer.

5 Experimental results and evaluation

5.1 Performance metrics

5.1.1 Dice similarity coefficient (DSC)

DSC is a statistical indicator that measures the similarity of

two samples [46]. If the Dice coefficient equals 1, it sig-

nifies that the two samples we compare are exactly equal.

Thus, the closer it to 1, is better. DSC is calculated by

Eq. 4.

DSC ¼ 2TP

2TPþ FPþ FN
ð4Þ

5.1.2 The accuracy (ACC)

ACC is the number of correct predictions to the total

number of predictions. ACC is calculated by Eq. (5).

ACC ¼ TP þ TN

TP þ TN þ FP þ FN
ð5Þ

Fig. 9 The loss of the generator and discriminator during 5000 epochs of training

Fig. 10 The building block of the ResNet (ResBlock)
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5.1.3 True positive rate (sensitivity)

It is similar to the recall metric. It represents positive data-

point proportion, which is correctly considered positive to

all positive data points and calculated using Eq. (6).

Sensitivity ¼ TP

TPþ FN
ð6Þ

5.1.4 False positive rate (1-specificity)

It is a negative data-point proportion incorrectly considered

positive to all negative data points. It can be calculated

using Eq. (7).

False Positive Rate ¼ FP

FPþ TN
;

Specificity ¼ TN

FPþ TN

ð7Þ

TP, FP, FN, and TN indicate true positives, false posi-

tives, false negatives, and true negatives.

5.1.5 The receiver operating curve (ROC) and area
under the curve (AUC)

It picks a good cut-off threshold for the model from plot-

ting true positive rate (TPR) against false positive rate

(FPR) for different threshold values in the range of [0, 1].

5.2 Experimental results

The proposed framework will be assessed by comparing its

performance with the other state-of-the-art models. The

evaluation is based on four performance metrics accuracy

(ACC), Dice similarity coefficient (DSC), sensitivity, and

specificity, as shown in Table 3.

Fig. 11 The proposed RESU-Net architecture
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Table 3 shows that the proposed RESU-Net architecture

achieved the highest accuracy of 97%, better than other

methods. LOA [35] obtained the second-highest accuracy

of 95%. The authors used several optimization techniques

such as GA, PSO, BAT, ABC but LOA gives high

performance due to its characteristics of escaping from

local optima. The proposed SHPT-Net achieved the third-

highest accuracy of 94.34%. Quick fuzzy C means (FFCM)

[19] gets the lowest accuracy of 55.83%, which depended

on the contour-based brain segmentation method (CBSM)

to remove the hug regions. Also, it is the lowest value in

terms of sensitivity and specificity.

In terms of sensitivity, the proposed RESU-Net achieved

the highest value of 95%. The 2.5 D MRI method [32]

achieved the second-highest sensitivity of 94.43%, which

utilizes 2.5D MRI depended on the deep learning U-Net

architecture. The third value of sensitivity was achieved by

Chitradevi et al. [35] of 94%. In terms of specificity, also

the highest value for the proposed RESU-Net is 94.7%.

The second value of specificity is achieved by LOA [35] of

value 93%. The proposed SHPT-Net of 92% achieves the

third-highest value of specificity.

In terms of DSC, the first and second-highest values for

the two proposed methods are 94% for the RESU-Net and

93.5% for the SHPT-Net. The third value of the DSC is

achieved by J. Dolz, C et al. [31] of 92%. The lowest value

of DSC is 87.0% from the multi-task model [34], which

combined hippocampal segmentation and AD classification

in a model. According to the four performance metrics, the

proposed RESU-Net architecture is the best. It depends on

the deep learning U-Net architecture merged with applying

the transfer learning concept.

Figure 12 presents a graphical description of the pro-

posed architectures (SHPT-Net, RESU-Net) with each

other. Also, when evaluating the RESU-Net by ROC curve

metric, it gives a promising result, as shown in Fig. 13.

Figure 14 gives a graphical comparison among the

proposed architectures (RESU-Net, SHPT-Net) and other

states of the art results.

The proposed framework has been tested by various

MRI images for real patients uploaded and stored in the

Table 3 The comparison of our

proposed architectures to other

states of the art results

Performance metrics Accuracy Sensitivity Specificity DSC (Dice similarity coefficient)

Shaken et al. [16] N/A N/A N/A 89%

Hosseini et al. [7] 90.31% 91.18% 90.51% N/A

Dong et al. [14] 89.75% 85.85% 87.34% N/A

Kalavathi et al. [19] 55.83% 56.28% 51.11% N/A

Dolz et al. [31] N/A N/A N/A 92%

Alliouiet al. [32] 92.71% 94.43% 91.59% N/A

Jingwenet al. [33] N/A N/A N/A 0.9162 ± 0.023

Manhua et al. [34] 88.9% N/A N/A 87.0%

Chitradevi et al. [35] 95% 94% 93% N/A

Carmo et al. [9] N/A N/A N/A 0.9

Sammaneh et al. [36] N/A N/A N/A .88

Proposed SHPT-Net 94.34% 91.5% 92% 93.5%

Proposed RESU-Net 97% 95% 94.7% 94%

Fig. 12 A comparison between the proposed architectures (SHPT-Net

and RESU-Net)

Fig. 13 The ROC curve for the RESU-Net model
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Fig. 14 The comparison of our

proposed architectures to other

states of the art results

Fig. 15 Input image, the left and right semantic hippocampus segmentation output mask, and the ground truth mask overlay the input MRI image
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ADNI dataset in the evaluation and testing step. The MRI

input image, the left as well as the right hippocampus

segmentation output image, and furthermore the left and

right hippocampus segmentation that overlaid the input

images are shown in Fig. 15.

6 Conclusion

The structural variations have been observed in the HC

region, which assists in recognizing AD. Therefore, there is

a necessity to analyze the microstructural variations, which

is a very vital task. In this study, the DL-AHS framework

for automatic left and right hippocampus segmentation and

AD detection is proposed. The DL-AHS framework is

based on the U-Net architecture and evaluated by coronal

T1-weighted structural MRI data obtained from ADNI and

NITRIC datasets. The dataset is processed using the

MIPAV program and augmented by DCGAN. SHPT-Net

and RESU-Net models are proposed. The empirical results

prove that the proposed models are robust and accurate.

They achieve high performance in accuracy, sensitivity,

specificity, and Dice similarity coefficient over other state-

of-the-art models. Also, the proposed framework is con-

sidered a clinical validation tool that analyzes the prog-

nosis, the variation of the HC region, and the finding of

AD. Then, it would be useful to identify and track the

progress of mental impairment. The source code and the

dataset are available at https://github.com/hadeerhelaly/

hippocampus-segmentation (will be publicly opened after

the acceptance of the manuscript).

7 Discussion

The current study uses the transfer learning concept that

applies the ResNet blocks in the encoder and decoder

layers of the U-net architecture. It is planned that applying

other pre-trained models such as sufficient net and check

the performance. Also, the dataset is augmented by a

DCGAN. It is expected that using another type of GAN

will give high performance. In addition, we aim to apply

the same proposed models for multi-segmentation of MRI

brain features of Alzheimer’s disease.
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