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Individuals with mild cognitive impairment and Alzheimer’s disease clinical diagnoses can display significant phenotypic heterogeneity.

This variability likely reflects underlying genetic, environmental and neuropathological differences. Characterizing this heterogeneity is

important for precision diagnostics, personalized predictions, and recruitment of relatively homogeneous sets of patients into clinical

trials. In this study, we apply state-of-the-art semi-supervised machine learning methods to the Alzheimer’s disease Neuroimaging cohort

(ADNI) to elucidate the heterogeneity of neuroanatomical differences between subjects with mild cognitive impairment (n = 530) and

Alzheimer’s disease (n = 314) and cognitively normal individuals (n = 399), thereby adding to an increasing literature aiming to establish

neuroanatomical and neuropathological (e.g. amyloid and tau deposition) dimensions in Alzheimer’s disease and its prodromal stages.

These dimensional approaches aim to provide surrogate measures of heterogeneous underlying pathologic processes leading to cognitive

impairment. We relate these neuroimaging patterns to cerebrospinal fluid biomarkers, white matter hyperintensities, cognitive and clinical

measures, and longitudinal trajectories. We identified four such atrophy patterns: (i) individuals with largely normal neuroanatomical

profiles, who also turned out to have the least abnormal cognitive and cerebrospinal fluid biomarker profiles and the slowest clinical

progression during follow-up; (ii) individuals with classical Alzheimer’s disease neuroanatomical, cognitive, cerebrospinal fluid bio-

markers and clinical profile, who presented the fastest clinical progression; (iii) individuals with a diffuse pattern of atrophy with

relatively less pronounced involvement of the medial temporal lobe, abnormal cerebrospinal fluid amyloid-b1-42 values, and proportion-

ally greater executive impairment; and (iv) individuals with notably focal involvement of the medial temporal lobe and a slow steady

progression, likely representing in early Alzheimer’s disease stages. These four atrophy patterns effectively define a 4-dimensional

categorization of neuroanatomical alterations in mild cognitive impairment and Alzheimer’s disease that can complement existing

dimensional approaches for staging Alzheimer’s disease using a variety of biomarkers, which offer the potential for enabling precision

diagnostics and prognostics, as well as targeted patient recruitment of relatively homogeneous subgroups of subjects for clinical trials.
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Introduction
Dementia is a prevalent disorder leading to substantial

healthcare, financial, and caregiver burden (Hurd et al.,

2013). Although Alzheimer’s disease is the most common

cause of dementia, several coincident pathologies, mainly

vascular lesions, limbic TAR-DNA binding protein-43

(TDP-43, encoded by TARDBP) and Lewy body-related

pathology, also account for the cognitive symptoms of de-

mentia subjects (Zanetti et al., 2006; Schneider et al., 2007;

Toledo et al., 2013a, b, 2016; Wilson et al., 2013). The

presence of different brain pathological lesions and the

variations in cognitive reserve, genetic background, and en-

vironmental exposures, can lead to differential vulnerabil-

ity. This, in turn, can lead to large variations in the clinical

presentation and course of the subjects. Therefore, it can be

expected that a group of cognitively impaired subjects is

composed of different subtypes. Each subtype would pre-

sent a specific disease course and characteristics.

Traditional imaging approaches [e.g. voxel-based morph-

ometry (VBM) or multi-voxel pattern analysis (MVPA)]

ignore phenotypic heterogeneity and define patterns of

structural or functional changes based on a priori diagnosis

or grouping but not the inherent heterogeneity presented in

the populations (Karas et al., 2004; Busatto et al., 2008;

Klöppel et al., 2008; Misra et al., 2009).

Previous studies have used a priori-defined neuropatho-

logical categories to identify subgroups of subjects (Shiino

et al., 2006; Murray et al., 2011; Lam et al., 2013; Jack

et al., 2015). In these approaches, subtypes of pathologies

are defined based on clinical diagnosis or neuropathological

findings, which unfortunately makes it not reliable enough

for accurately distinguishing them (McKeith et al., 1994;

Larner, 2004) and relies on a clinical ‘intuition’, as opposed

to unbiased data-driven approaches, that would be able to

identify different patterns of pathology distribution based

on the atrophy patterns inherent to the population

(Nettiksimmons et al., 2014; Noh et al., 2014; Toledo

et al., 2016). However, these studies adopted standard clus-

tering methods that tend to group patients along the direc-

tion associated with the largest data variability, which may

not be induced by the pathology, and which might reflect

effects such as age, gender or disease stage. A more specific

characterization of anatomical heterogeneity of neurode-

generation patterns of processes driving cognitive impair-

ment is likely to lead to grouping of subjects into relatively

homogeneous groups with potentially more predictable

clinical outcomes and treatment responses.

In this study, we investigate heterogeneity of neurodegen-

eration in mild cognitive impairment (MCI) and Alzheimer’s

disease relative to cognitively normal individuals, by lever-

aging a newly developed method for semi-supervised pattern

analysis and machine learning (Dong et al., 2016). This new

approach aims to complement and contribute to recently

proposed dimensional approaches, such as the A/T/N

Alzheimer’s disease staging system (Jack et al., 2016), by

evaluating and categorizing heterogeneity of disease-related

neurodegeneration patterns (the ‘N’ component in an A/T/N

system) in a data-driven way that leverages the power of

modern pattern analysis methods. Our approach applies a

sophisticated methodology that finds heterogeneity in a

probabilistic mapping from cognitively normal individuals

to MCI and Alzheimer’s disease dementia patients, while

also accounting for relevant covariates, such as age,

gender, and study recruitment (ADNI 1 versus GO/2) in a

non-linear way. We found four distinct neuroanatomical

subtypes in MCI and Alzheimer’s disease dementia relative

to cognitively normal subjects, which were replicable and

consistent across ADNI-1 and ADNI-GO/2 cohorts.

Subtypes in this context are mainly meant to define the

main dimensions of this heterogeneity, rather than imply

distinct imaging phenotypes. We describe in detail the CSF

biomarkers, cognitive characteristics and white matter hyper-

intensity (WMH) volumes of these subtypes.

Materials and methods

Subjects

A total number of 1243 Alzheimer’s Disease Neuroimaging
Initiative (ADNI) participants were included in the study,
including 760 ADNI-1 subjects (213 cognitively normal, 370
late MCI, and 177 Alzheimer’s disease subjects) and 483
ADNI-GO/2 subjects (186 cognitively normal, 160 late MCI,
and 137 Alzheimer’s disease). Early MCI subjects from the
ADNI-GO/2 were excluded because this group was only
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recruited in ADNI-GO/2. Cognitively normal subjects included
subjects with normal cognition, independently of the presence
of memory complaints. Diagnoses of MCI and Alzheimer’s
disease were established as described (Petersen et al., 1999,
2010; McKhann et al., 2011). The data for this study were
downloaded in December 2015. The ADNI datasets have been
extensively reviewed in Weiner et al. (2015) (http://www.adni-
info.org and Supplementary material). To evaluate differences
in cognitive measures, previously developed memory composite
score (Crane et al., 2012), executive composite score (Gibbons
et al., 2012), and Boston naming test scores were studied.
Median follow-up length for ADNI-1 and ADNI-GO/2 MCI
subjects was 161.0 (first quartile: 105.4–third quartile: 315.0)
and 156.3 (first quartile: 106.5–third quartile: 159.1) weeks,
respectively.

Cerebrospinal fluid collection and
measurement

CSF samples were processed as previously described (Shaw et al.,
2009, 2011) (http://www.adni-info.org/ and Supplementary ma-
terial). Amyloid-b1-42 and total tau (t-tau) were measured using
the multiplex xMAP Luminex platform with Innogenetics
(INNO-BIA AlzBio3) immunoassay kit-based reagents.

MRI acquisition and processing

Acquisition of 1.5 T MRI (for ADNI-1) and 3.0 T MRI (for
ADNI-GO/2) data at each study site followed a previously
described standardized protocol that included volumetric 3D
MP-RAGE/sagittal MP-RAGE with variable resolution around
the target of 1.2 mm isotropically. The scans went through
the following correction methods: gradwarp, B1 calibration,
N3 correction, and (in-house) skull-stripping (Doshi et al.,
2013). See www.loni.ucla.edu/ADNI and Jack et al. (2008)
for details.

T1 structural MRI images of all subjects were segmented into
80 anatomical regions of interest. The region of interest labels
were obtained using multi-atlas segmentation with label fusion
of outputs from multiple registration methods (Doshi et al.,
2015). For visualizing disease patterns, tissue density maps,
referred as RAVENS (regional analysis of volumes examined
in normalized space) (Davatzikos et al., 2001), were computed
and exploited as follows. An established deformable registra-
tion method (Ou et al., 2011), was used for warping individual
images to a single subject brain template. The brain scans were
segmented into three tissue types: grey matter, white matter
and CSF (Li et al., 2014). RAVENS maps encode, locally
and separately for each tissue type, the volumetric changes
observed during the registration. The comparison of the
RAVENS maps obtained for the different groups revealed
the local volumetric differences between them. We used the
cognitively normal group data for linearly regressing age and
gender from the RAVENS maps of the entire dataset. To assess
longitudinal neuroimaging changes, region of interest volumes
were processed using Free-surfer software package version 4.4
framework (Reuter et al., 2010, 2012) (http://surfer.nmr.mgh.
harvard.edu/). Adjusted hippocampal volume was calculated
and matched across ADNI-1 and ADNI-GO/2 cohorts using
a set of matched MRIs as previously described (Toledo et al.,
2014). Subjects were divided into four quartiles.

White matter hyperintensities

WMHs were segmented using different approaches in ADNI-1
(Schwarz et al., 2009) and ADNI-GO/2 (DeCarli et al., 2005).
The method used in ADNI-1 uses proton density (PD), T1, and
T2 magnetic resonance images. A Bayesian Markov random
field approach was adopted, where the joint posterior probabil-
ity of the presence of WMH at each voxel is maximized. The
posterior probability consists of likelihood computed from
image intensities, spatial prior that regularizes the location of
WMHs, and contextual prior that encourages neighbour voxels
to have the same labels. The method used in ADNI-GO/2 uses
fluid-attenuated inversion recovery (FLAIR) and T1 images. This
method first co-registers the FLAIR magnetic resonance image
to the T1 image and performs inhomogeneity correction. The
binary WMH mask is then estimated based on histogram fitting
and thresholding at 3.5 standard deviations above the mean
signal in brain matter distribution. The spatial prior and tissue
class constraints are incorporated with the WMH mask in a
Bayesian approach for the final segmentation.

Heterogeneity and voxel-based mor-
phometry analysis

We used a newly developed probabilistic mapping methodology,
named CHIMERA (Dong et al., 2016), to quantify neuroana-
tomical heterogeneity between MCI/Alzheimer’s disease and
cognitively normal individuals. The CHIMERA software imple-
mentation is available on request and will be available online
through https://www.cbica.upenn.edu/sbia/software. Additional
preprocessing software (registration and region of interest def-
inition) are also available on the same web page. A web-access-
ible pipeline will be soon available to be run remotely via our
image processing web portal: https://ipp.cbica.upenn.edu/.
CHIMERA considers two groups of subjects: a group assumed
to be affected by a pathology (MCI and Alzheimer’s disease,
herein) and a normal control group. By performing a probabil-
ity distribution mapping, it then seeks patterns of difference
between these two groups, constrained non-linearly by a
number of covariates (e.g. age, gender, and study cohort),
thereby effectively estimating heterogeneity of the underlying
pathologic process. More specifically, heterogeneous brain atro-
phy patterns in the pathologic group are described by multiple
transformations from the cognitively normal distribution. Those
transformations are found by matching the transformed normal
control and the patient distributions, constrained by the covari-
ates, which effectively enforce the fact that, for example, a 70-
year-old female patient would have been a 70-year-old female
control, should she had been spared of this pathological process
(which is being estimated). To obtain stable and reproducible
results, CHIMERA was run 10 000 times with random initial-
ization to determine reproducible patterns. The methodological
details and nuances of this approach can be found in the
Supplementary material and Dong et al. (2016).

In this study, ADNI-1 and ADNI-GO/2 datasets were com-
bined to delineate more consistent pathological imaging pat-
terns. However, the structural MRI scans from these two
cohorts have many discrepancies, such as different scan proto-
cols and magnetic field strengths. We took these discrepancies
into account during our analyses by introducing the original
recruitment cohort (ADNI-1 versus ADNI-GO/2) as the third
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covariate in our model, in addition to age and gender. As a
result, patient and normal control distributions were matched
within each cohort separately, but the pathological effects cap-
tured by CHIMERA were shared across datasets. We per-
formed a 10-fold cross-validation using the combined dataset
to evaluate the robustness of the method, which showed an
84.1% agreement (Supplementary material). In addition, we
applied our clustering approach separately in the ADNI-1
and ADNI-GO/2 cohorts, which showed a 63% and 74%
overall agreement with the combined approach, respectively.

Statistical analysis

The demographic variables, APOE genotype, CSF biomarker
levels, cognitive test scores and WMH volumes were compared
across clusters. For categorical variables, Fisher’s exact test
was used to identify differences between groups. In case of
significant differences, pairwise comparisons with Bonferroni
adjustment were performed. For quantitative demographic
variables (age), an ANOVA analysis was conducted, followed
by a Dunn test. For the clinical and CSF biomarker measures,
an ANCOVA analysis was performed, which included age,
gender, years of education and APOE genotype as covariates.
In case of significant differences, Dunn’s post hoc test was
performed. When the ANCOVA requirements were not met,
a Box-Cox transformation was applied to the data. A longitu-
dinal neuropsychological analysis was conducted for late MCI
patients (Alzheimer’s disease subjects were excluded due to
short follow-up) using mixed effect models that included sub-
jects and time as random effects and age, gender, time, APOE
"4 presence and years of education as fixed effects. A Cox
hazards model including age, gender, APOE "4 presence and
years of education as covariates, was fitted for comparing the
conversion of late MCI patient to Alzheimer’s disease in the
different clusters. For the evaluation of the profile of longitu-
dinal changes in MRI volumes, individual mixed effects models
that included age, gender, time and APOE as covariates, were
applied to estimate the yearly volumetric changes in cognitively
normal subjects and each of the clusters. Baseline and second-
year MRI scans were compared for this purpose and region of
interest values were standardized to compare findings across
the different areas. Analyses were performed using R v. 3.2.2
(R Core Team, 2016). The visualization of imaging signatures
of each cluster, clinically and adjusted hippocampal volume-
defined groups was performed via VBM (Cox, 1996;
Ashburner and Friston, 2000) on RAVENS maps.

Results

Cluster demographic and genetic
characteristics

CHIMERA partitioned the entire set of ADNI patients into

four clusters that included in each case subjects from

ADNI-1 and ADNI-GO/2. Subjects in different ADNI co-

horts but within the same cluster exhibited similar atrophy

patterns. The characteristics of clusters identified in ADNI-

1 and ADNI-GO/2 cohorts are summarized in Table 1. In

all ADNI cohorts, cluster 2 subjects were older and had a

greater proportion of Alzheimer’s disease dementia subjects

compared to cluster 1.

Cluster membership confidence

In our main analysis, we assigned each subject to the clus-

ter with the highest probability. For most of the subjects,

cluster membership was assigned with a probability 50.5.

However, in the remaining cases membership was assigned

with a probability 50.5. The ‘tightest’ cluster was cluster 2

(87% subjects had a probability 50.5), whereas cluster 3

was the loosest one (66% subjects had a probability 50.5)

(Supplementary Fig. 2), with most of the loose cases being

close to cluster 1. We summarize these findings using a

Venn diagram in Fig. 1.

Cross-sectional clinical and biomar-
ker associations

CSF amyloid-b1-42-defined groups, WMH volume and the

studied cognitive measures differed between the four clus-

ters (Table 1). Post hoc group comparisons identified simi-

lar results across cohorts. Subjects in clusters 2 and 3

included a higher frequency of subjects with pathological

CSF amyloid-b1-42 values. Cluster 2 and 3 subjects pre-

sented worse performance in the memory composite and

in ADAS-Cog compared to cluster 1. In addition, cluster

2 subjects had worse executive composite, higher phos-

phorylated-tau values and greater WMH volume compared

to cluster 1 subjects. Only in ADNI-GO/2 did the clusters

differ in terms of CSF t-tau values (cluster 1 had lower

values than cluster 2 and 3).

Group-wise voxel-based morphome-
try results

The group-wise VBM results were presented in Fig. 2.

Cluster 1 showed the least amount and extent of atrophy:

in the ADNI-1 cohort atrophy was mainly localized in the

temporal lobe with additional involvement of the posterior

cingulate cortex, and in ADNI-GO/2 it was statistically in-

distinguishable from cognitively normal. Interestingly, clus-

ter 4 showed moderate localized atrophy in the

hippocampus and the anterior-medial temporal cortex,

without any significant involvement beyond these regions.

Conversely, clusters 2 and 3 showed widespread involve-

ment, extending to the temporal, parietal, and occipital

lobes in addition to subcortical grey matter. However,

they presented markedly different patterns, as cluster 2 pre-

sented relatively most severe temporal atrophy, whereas

cluster 3 exhibited a more diffuse atrophy pattern, with

comparatively less dominant involvement of the temporal

lobe compared to cluster 2. Group comparisons based on

baseline diagnosis and adjusted hippocampal volume quar-

tiles are presented in Supplementary Figs 3 and 4,

respectively.
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Longitudinal changes

Clusters 2 and 3 showed a faster progression from MCI to

Alzheimer’s disease, and a steeper cognitive decline in the

studied cognitive measures compared to cluster 1 (Table 2

and Figs 3 and 4). Similarly, clusters 2 and 3 showed a

more pronounced longitudinal cognitive decline than clus-

ter 1 (Fig. 3). Interestingly, whereas the rate of change of

the executive profile was similar in clusters 2 and 3 (P-

value = 0.75), cluster 3 showed a lower rate of memory

decline compared to cluster 2 (P-value = 0.039). In none

of the analyses did cluster 4 differ from cluster 1.

Supplementary Table 1 and Supplementary Figs 5 and 6

summarize the results for adjusted hippocampal volume

quartiles.

Figure 2 VBM between the identified clusters and the cognitively normal reference group for the ADNI-1 (A) and ADNI-GO/2

cohorts (B). Colour scale represents the effect size of grey matter RAVENS maps of each comparison between a cluster and cognitively normal

individuals. Red indicates greater atrophy (lower volume). Effect size maps are thresholded at false discovery rate (FDR) adjusted P-value of 0.05.

Figure 1 Venn diagram depicting number of subjects

classified tightly or loosely into clusters. Subjects with a

probability 40.5 were included within a single cluster, whereas

subjects with a highest cluster probability 50.5 are depicted in the

interphase of the two top clusters.

740 | BRAIN 2017: 140; 735–747 A. Dong et al.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww319/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww319/-/DC1
http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww319/-/DC1


Longitudinal MRI changes in the different region of

interests for the different groups are summarized in

Supplementary Fig. 7. In this figure it can be appreciated

that cluster 1 shows a similar pattern of atrophy as the

cognitively normal group in all areas except the temporal

lobe where atrophy rate is more pronounced for cluster 1.

Cluster 2 and 3 showed the fastest rates of atrophy, with

the former showing a faster temporal atrophy whereas in

the latter case the preponderance was frontal. Finally, clus-

ter 4 showed an intermediate pattern.

Prevalence of clusters as a function of
age

We also investigated the prevalence of each of the four

clusters, as a function of age. Figure 5 shows the number

of subjects in each cluster, average over 5-year bracket

around each age, as well as the cluster’s relative frequency

(which takes into account the variable number of subjects

per age group) as a function of age. Curves were fitted

using cubic splines with three control points. Taking into

consideration potential boundary effects in these fits

(small number of subjects on either end of the age spec-

trum), Fig. 5 generally shows that the proportions of clus-

ters 2 and 3 increase and decrease, respectively, steadily.

Cluster 4 is relatively stable throughout this age range,

whereas the proportion of cluster 1 seems to decrease

steadily after the age of 63.

Discussion
We evaluated the heterogeneity of neurodegeneration pre-

sent in MCI and Alzheimer’s disease, relative to cognitively

normal individuals, on data from ADNI and by using new

semi-supervised pattern analysis and machine learning

method. We found four distinct groups that best summar-

ized this neuroanatomical heterogeneity. Besides having

Figure 4 Longitudinal cognitive changes in ADAS-Cog13,

memory and executive composite scores in MCI subjects

stratified by MRI-defined clusters.

Table 2 Longitudinal neuropsychological associations of the clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4

MCI to ADa Ref. 2.26 (50.0001) 1.87 (0.0024) 1.27 (0.21)

ADAS-Cog13 Ref. 0.20 (50.0001) 0.09 (0.023) 0.04 (0.31)

Memoryb Ref. �0.11 (50.0001) �0.06 (0.030) 0.004 (0.86)

Executiveb Ref. �0.12 (50.0001) �0.11 (0.0005) �0.04 (0.17)

Only late MCI subjects were included due to short Alzheimer’s disease (AD) subjects follow-up.

Age, gender, education and APOE were included as covariates.
a Hazard ratio (P-value).
b Regression coefficient (P-value).

Figure 3 Progression from MCI to Alzheimer’s disease

stratified by MRI-defined clusters.
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markedly different atrophy patterns, these groups also dif-

fered in the frequency of Alzheimer’s disease-like CSF amyl-

oid-b1-42 and tau levels, and clinical profiles (Table 3). In

particular, cluster 1 included individuals with generally

normal anatomy, the lowest frequency of subjects with ab-

normal CSF amyloid-b1-42 levels, normal CSF-tau levels,

least baseline cognitive impairment and slowest rates of

cognitive decline. Conversely, cluster 2 was consistent

with the typical Alzheimer’s disease-like neuroanatomical

patterns and high frequency of Alzheimer’s disease-like

CSF amyloid-b1-42 levels, and fastest cognitive decline af-

fecting executive and memory cognitive domains. Cluster 3

showed greater cortical atrophy in parietal and dorsolateral

frontal cortex with proportionately lesser involvement of

the limbic cortex, compared to cluster 2. Although cluster

3 was associated with fast cognitive decline, this decline

was more marked for the executive rather than the

memory composite score, which is consistent with the ima-

ging findings. Notably, cluster 3 MCI individuals did not

show further progression to Alzheimer’s disease after 4

years, although this has to be interpreted cautiously due

to the small number of subjects followed for that long a

period. Finally, cluster 4 included individuals with localized

atrophy in the hippocampus and medial temporal lobe,

although cognitive changes did not differ from the ones

observed in cluster 1.

Whereas CSF amyloid-b and tau values can be con-

sidered as a single linear measure and pathology studies

have described a typical amyloid-b in the brain and brain-

stem (Thal et al., 2002), we consider that structural ima-

ging neurodegeneration patterns can be heterogeneous and

that a single dichotomous classification of the neurodegen-

eration dimension in the Alzheimer’s disease staging system

(Jack et al., 2016) into presence or absence might be an

oversimplification that does not take advantage of the data

richness offered by current neuroimaging approaches. As

we describe below, none of the clusters captured specifically

amyloid-b positivity or negativity, although the clusters

showed differences in the frequency of amyloid-b positivity.

It is well known that different neurodegenerative conditions

can present similar clinical presentations leading to imper-

fect clinic-pathological correlation (Toledo et al., 2012).

Therefore, it is not surprising that this extends to the pat-

terns of brain atrophy captured by structural MRI, which

ultimately represent neurodegeneration that is clinically ex-

pressed as impairment in different cognitive functions. Even

in ADNI, a clinical trial-oriented cohort recruiting subjects

with a typical Alzheimer’s disease profile, there has been a

Figure 5 Prevalence of clusters as a function of age. (A) Number of subjects with 5-year brackets. (B) Relative frequency of clusters,

fitted with cubic splines.

Table 3 Summary of characteristics of clusters

Neuroanatomical atrophy pattern Alzheimer’s disease-like

CSF amyloid-b1-42 levels

Cognitive decline

Cluster 1 Mild or none; non-focal Lowest frequency Least steep

Cluster 2 Widespread, greater temporal involvement Higher Steepest for memory and executive

Cluster 3 Widespread, global Higher Steepest for executive, intermediate for memory

Cluster 4 Localized, temporal Lower Least steep
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significant neuropathological heterogeneity in patients with

classic amnestic Alzheimer’s disease clinical presentation

(Toledo et al., 2013b).

The variability revealed by our analysis indicates that a

dimensional approach to neurodegeneration in cognitively

impaired subjects, including MCI and Alzheimer’s disease

dementia stages, is important and consistent with previous

observations of atypical Alzheimer’s disease presentations

(Alladi et al., 2007; Gorno-Tempini et al., 2008; Crutch

et al., 2012; Ossenkoppele et al., 2015). The different pat-

terns we observed might also relate to several coincident

neurodegenerative and vascular pathologies (Schneider

et al., 2007; Arvanitakis et al., 2011; Toledo et al., 2012,

2013a).

This dimensional approach is important not only for a

personalized prognosis but also for recruiting more homo-

geneous groups of individuals into clinical trials and tai-

lored interventions. For example, MCI individuals who

fall into cluster 1 have basically relatively normal brain

anatomy and relatively better prognosis; their cognitive de-

cline might be highly influenced by factors other than

Alzheimer’s disease pathology. Interestingly, although this

group has a decreasing relative frequency with increasing

age, as expected, it remains a significant �20% of this

population in ages 80 and older. Individuals in cluster 2

present the typical Alzheimer’s disease profile and have rap-

idly increasing relative frequency with increasing age

(Fig. 5B). Individuals along the dimension of cluster 4 are

particularly interesting. These subjects showed focal and

pronounced atrophy in the temporal lobe with preserved

brain volumes elsewhere. Although subjects in this group

showed a relatively slower cognitive decline, long-term

follow-up indicated a steady progression from MCI to de-

mentia. These individuals are likely to represent an earlier

stage, as indicated by a higher frequency of late MCI sub-

jects as opposed to Alzheimer’s disease dementia at the

baseline visit, and might later develop a pattern similar to

the one observed in cluster 2. These changes would be

consistent with Braak’s tau pathology staging (Braak

et al., 2006). Cluster 4 could, therefore, be at the relatively

early stage of disease, which is potentially an excellent

target for clinical trials aiming to slow down disease pro-

gression. It is important to note that these individuals’ cog-

nitive performance was comparable to the subjects in

cluster 1, indicating that cognitive summary scores might

not always capture regional differences in atrophy patterns

and lack the ability to detect heterogeneous atrophy pat-

terns. Interestingly, cluster 4 had a rather stable relative

frequency as a function of age (Fig. 5B), which is consistent

with the interpretation of this group as newly emerging,

early stage Alzheimer’s disease cases who later move into

cluster 2 as new cases take their place in cluster 4.

Longitudinal analyses are required to further test this hy-

pothesis. Finally, cluster 3 subjects presented predominantly

executive function decline and a more widespread and non-

focal pattern of atrophy. Therefore, this cluster might be

likely representing atypical Alzheimer’s disease

presentations (Ossenkoppele et al., 2015) or a mixture of

pathologies which commonly presents in demented subjects

and are associated with a relatively greater impairment of

executive function (Toledo et al., 2012; 2013a, b; 2016).

The decreasing prevalence of this group with increasing age

is consistent with prior work that more ‘cortical’ or atyp-

ical presentations of Alzheimer’s disease occur more com-

monly at younger age of onset (van der Flier et al., 2011).

In addition, the profile of cluster 3 is consistent with pre-

vious results indicating that hippocampal volume alone

might be neither a sensitive, nor specific biomarker early

stages (Da et al., 2014; Toledo et al., 2014, 2015), espe-

cially this might be the case for atypical non-amnestic pres-

entations without underlying Alzheimer’s disease

pathology. Our results indicate that the entire pattern of

brain atrophy needs to be taken into consideration. This

also further emphasizes the potential value of such cluster-

ing in clinical trial recruitment, as cluster 3, similar to clus-

ter 2, represents a group that has a high likelihood of

Alzheimer’s disease pathology based on CSF amyloid-b1-

42 levels, but in which memory and hippocampal measures

would be less effective as markers of disease progression

than, for example, executive measures.

A somewhat unexpected finding of our study was the fact

that cluster 3 had significantly lower WMH load, com-

pared to clusters 2 and 4, and even to cluster 1 in

ADNI-1, although it was characterized by fast executive

decline, as our initial expectation was that this group

might present more of the small vessel ischaemic disease

phenotype, which would have been consistent with more

widespread atrophy. It appears that cluster 3 might reflect

either more cortical presentations of Alzheimer’s disease, or

potentially other kinds of co-morbidities or mixed pathol-

ogies, which result in the atypical Alzheimer’s disease pat-

tern of atrophy. For example, the initial study of ADNI

autopsy cases identified that cases with coincident Lewy-

related pathology had a relative large executive impairment

compared to memory scores (Toledo et al., 2013b). This

result could be partly explained by the exclusion of subjects

with a high baseline Hachinski score or imaging findings

consistent with an infarct, therefore excluding cases with

overt vascular pathology from ADNI.

Somewhat unexpected was also the fact that cluster 4

had significant WMH load. As this group’s imaging pattern

seems to mainly indicate early and likely relatively purer

Alzheimer’s disease pathology, we did not expect to have

significant WMH load. This finding is consistent with a

recently reported association between high WMH volume

and temporal lobe atrophy was identified in a large popu-

lation-based study (Habes et al., 2016). Moreover, it has

been described that the hippocampus might present rela-

tively higher vulnerability to vascular changes (Montagne

et al., 2015). Cluster 2 also displayed Alzheimer’s disease-

like atrophy and high WMH load. These results indicate

that lesion load and Alzheimer’s disease-like atrophy seem

to be correlated, to some extent, even at seemingly early

disease stages. This finding is in agreement with growing
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literature that shows an association between WMH load

and Alzheimer’s disease pathology, albeit our study is not

able to determine whether this association is due to shared

risk factors or to a more direct relationship in

pathophysiology.

Overall, clusters 2 and 3 presented the highest frequency

of subjects with Alzheimer’s disease-like CSF amyloid-b1-42

values, whereas cluster 1 presented a higher number of

subjects with normal CSF amyloid-b1-42 values. These find-

ings confirm that different pathologies (or combinations of

pathologies) (Toledo et al., 2013b) can present with clas-

sical amnestic MCI and Alzheimer’s disease dementia clin-

ical presentations and similarities even extends to MRI

patterns of atrophy, although the frequency of suspected

non-amyloid pathology (SNAP) cases differed between the

different clusters (4.2–36.7%) indicating that specificity

varies across the clusters.

Finally, the longitudinal MRI changes did also differ be-

tween the clusters. Clusters 2 and 3 showed the fastest de-

cline. Areas with the fastest decline corresponded to the

same areas that were more involved in baseline compari-

sons, further reinforcing baseline findings. Interestingly,

cluster 1 showed a large overlap with the cognitively

normal group, except in the temporal lobe that showed a

faster progression, therefore mainly involving Alzheimer’s

disease areas, but probably representing an early stage, at

least for part of this group.

Taken together, our findings suggest that there is remark-

able heterogeneity in patterns of brain atrophy that distin-

guish cognitively normal from MCI and patients with

Alzheimer’s disease, even in a relatively homogeneous

group of subjects as those recruited in ADNI. In particular,

a relatively normal group (cluster 1) displays only mild

atrophy. The cross-sectional and longitudinal profile of

this cluster suggests that it is heterogeneous, with some

individuals likely to progress to the other two clusters (clus-

ters 2 and 3), and some likely to remain stable for a rela-

tively long time. Individuals belonging to the cluster 4 are

likely to be at early and rapidly progressing Alzheimer’s

disease stages. Individuals in cluster 3 either represent

more cortical presentations of Alzheimer’s disease, perhaps

reflected by their younger age, or mixed pathologies other

than small vessel ischaemic disease, some of which are

likely to progress to predominantly Alzheimer’s disease de-

mentia, and others to a more executive-prominent cognitive

decline and dementia. In addition to shedding light into the

neuroanatomical heterogeneity of MCI and Alzheimer’s dis-

ease, our results suggest that patient recruitment into clin-

ical trials might benefit from a finer characterization of the

neuroanatomical phenotypes. Finally, our results suggest

that a rigorous and quantitative dimensional neuroanatom-

ical approach is necessary for neurodegenerative diseases,

in view of the underlying heterogeneity seen, even in rela-

tively selected groups of subjects like the ones of ADNI.

Supplementary Fig. 3 further underlines the limitations of

commonly used voxel-based methods in characterizing the

spectrum of neuroanatomical alterations in MCI and

Alzheimer’s disease based on a priori diagnostic definitions

that rely on disease severity. In particular, these figures in-

dicate that voxel-based analysis of regional volumes detects

the same form of brain atrophy pattern in Alzheimer’s dis-

ease dementia and MCI, with MCI pattern being more spa-

tially restricted and less pronounced. This picture is

consistent with a single typical progression pattern for

Alzheimer’s disease, presenting a milder involvement in

MCI, thereby largely missing the remarkable heterogeneity

unveiled by our results. Given that the underlying patho-

physiological mechanisms leading to brain atrophy are

complex and heterogeneous, personalized treatment deci-

sions and selection into treatment trials are likely to benefit

significantly from the dimensional approach followed

herein.

Our work differs substantially from recent clustering-

based approaches (Nettiksimmons et al., 2014). The

CHIMERA methodology used herein does not apply

direct clustering to the images themselves which could clus-

ter individuals according to anatomical characteristics such

as brain or ventricular size, demographics, and other fac-

tors not related to disease effects. In contrast, CHIMERA

estimates the disease effects by grouping the differences be-

tween patients and controls matched for these confounding

covariates. Also, previous findings (Nettiksimmons et al.,

2014) were derived from a much smaller sample drawn

only from ADNI-1 using a limited number of features to

perform the clustering (11 basic features, including brain,

ventricular and hippocampal volumes) and seemed to have

been significantly affected by outliers in the data (e.g. clus-

ter 4 of the aforementioned publication included only seven

individuals of likely very extreme measurements, which are

arguably outliers). However, our findings are generally in

agreement with (Nettiksimmons et al., 2014), especially the

existence of a subpopulation of MCI which is almost en-

tirely normal in all measures, and a subpopulation which

seems to display a typical Alzheimer’s disease-like pattern,

albeit their results reveal additional heterogeneity.

Another previous study described three patterns of neuro-

fibrillary tangle deposition based on a priori definitions

(Murray et al., 2011). These groups were described as hip-

pocampal-sparing, limbic-predominant and typical

Alzheimer’s disease, and were later characterized using

structural MRIs (Whitwell et al., 2012). Our findings also

confirm the presence of subpopulations in MCI and

Alzheimer’s disease-dementia subjects with different degrees

of limbic and extra-limbic pathologic that in some cases do

not follow the pattern expected based on tau neurofibrillary

tangle tau staging (Braak et al., 2006). In our study, cases

with a lesser limbic involvement (cluster 3) were also

younger than cases with typical Alzheimer’s disease atro-

phy, although we found larger dorsolateral prefrontal

cortex atrophy. As noted above, cluster 3 is likely to in-

clude patients with more cortical disease in young onset

cases as described in van der Flier et al. (2011).

Grouping subjects based on adjusted hippocampal

volume quartiles led to a linear staging of patient atrophy,
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primarily reflecting hippocampal volume, as expected.

However, these maps failed to reveal remarkable hetero-

geneity highlighted by our clustering analysis, including

cluster 3 which was characterized by substantial and wide-

spread cortical atrophy but relatively preserved hippocam-

pal volumes. We have also calculated conversion and

longitudinal cognitive models in Supplementary Figs 5

and 6. Although four adjusted hippocampal volume quar-

tiles were studied, analyses showed that patterns just rep-

resented two subgroups: 75% of the subjects who

progressed rapidly and the remaining 25% who remained

more stable. The experiments showed that our analysis

were focused on delineating imaging patterns throughout

the brain, whereas hippocampal volumes are very import-

ant biomarker of memory decline but yet not sufficiently

rich or specific in capturing heterogeneity of atrophy

throughout the entire brain.

Limitations of this study are the smaller sample for

ADNI-GO/2, which led to small numbers in some clusters,

and the relative homogeneity of subjects recruited in the

study, which namely were recruited as late MCI subjects

with and Alzheimer’s disease-like clinical presentation

or early Alzheimer’s disease dementia type subjects.

Future studies should expand to more heterogeneous

populations.
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