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ABSTRACT

The prediction of subjects with mild cognitive impairment (MCI) who will progress to Alzheimer’s disease
(AD) is clinically relevant, and may above all have a significant impact on accelerating the development
of new treatments. In this paper, we present a new MRI-based biomarker that enables us to accurately
predict conversion of MCI subjects to AD. In order to better capture the AD signature, we introduce two
main contributions. First, we present a new graph-based grading framework to combine inter-subject
similarity features and intra-subject variability features. This framework involves patch-based grading of
anatomical structures and graph-based modeling of structure alteration relationships. Second, we propose
an innovative multiscale brain analysis to capture alterations caused by AD at different anatomical levels.
Based on a cascade of classifiers, this multiscale approach enables the analysis of alterations of whole
brain structures and hippocampus subfields at the same time. During our experiments using the ADNI-1
dataset, the proposed multiscale graph-based grading method obtained an area under the curve (AUC)
of 81% to predict conversion of MCI subjects to AD within three years. Moreover, when combined with
cognitive scores, the proposed method obtained 85% of AUC. These results are competitive in comparison
to state-of-the-art methods evaluated on the same dataset.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is the most prevalent dementia af-
fecting elderly people (Petrella et al.,, 2003). According to the
World Health Organization, the number of patients with AD will
double in the next 20 years (Duthey, 2013). AD is a serious con-
dition characterized by an irreversible neurodegenerative process
that causes mental dysfunctions such as longterm memory loss,
language impairment, disorientation, change in personality, and
ultimately causes death (Alzheimer’s Association, 2015). The dis-
ease is characterized by an accumulation of beta-amyloid plaques
and neurofibrillary tangles composed of tau protein (Hardy, 2006)
leading to synapse and neuronal losses. To date, no known therapy
has been able to stop or hinder the progression of AD. Moreover,
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because neuroimaging studies have revealed that brain changes
occur decades before the diagnosis is established (Coupé et al.,
2015; 2019), the pathological load is already high when the
diagnosis is made (DeCarli, 2003).

During this pre-diagnosis phase of neurodegeneration, the pa-
tient is already suffering from amnesic mild cognitive impairment
(MCI). It is noteworthy that although current definition tends to
describe AD evolution as a continuum of beta-amyloid accumula-
tion (Jack et al., 2018), MCI is considered a prodromal phase of AD.
The clinical symptoms of MCI are slight but still result in a measur-
able decrease in cognitive abilities. Previous studies have suggested
that approximately 12% of subjects suffering from MCI progress to
AD in the four years following the first symptoms (Petersen et al.,
1999). Therefore, although MCI subjects present a high risk of AD
development, subjects suffering from MCI can remain stable (i.e.,
do not convert to AD). The early prediction of the subjects suf-
fering from MCI symptoms who will convert to AD is thus cru-
cial. This can improve the effectiveness of the future therapies by
reducing the brain changes before the therapy starts. Further, the
prediction of conversion to AD can accelerate the development of
new therapies by making the subject selection more accurate. This
would decrease the cost of clinical trials and enable more accurate
clinical studies.
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With the improvement of medical imaging techniques such as
magnetic resonance imaging (MRI), many methods were developed
to increase the ability of computer-aided diagnosis systems to help
early AD detection (Arbabshirani et al., 2017; Rathore et al., 2017).
Computer-aided diagnosis systems describe anatomical informa-
tion using different type of image-based features that operate at
varying scales of analysis. Among these different scales, ranging
from local to global, we can cite voxel, patch, shape, thickness,
and volume. Considered features are then integrated into machine-
learning methods to estimate the pathologic status of the subject
under study. These methods can be grouped into two categories
related to how they analyze AD alterations:

o Inter-subject similarity: This first group of methods focus on
the detection of similarities between individuals from different
groups that represent specific disease severities. Among these
approaches, a popular method to estimate similarity at a voxel
scale is the voxel-based morphometry (VBM) (Ashburner and
Friston, 2000; Moradi et al.,, 2015). Methods based on region
of interest (ROI) have also been proposed. A widely used
approach is based on a volumetric measurement of gray matter
within brain structures (Bron et al., 2015; Ledig et al., 2018).
Other ROI-based methods such as thickness measurement were
developed to capture the variations of gray matter along the
cerebral cortex (Wolz et al., 2011; Wee et al., 2013). Among
advanced methods, patch-based grading (PBG) framework
was proposed to capture subtler alterations caused by the
pathology. This exemplar-based framework aims to detect the
similarity in terms of local anatomical patterns by comparing
size-restrained area from the subject under study to a template
library composed of two different population of subjects. PBG
methods has demonstrated state-of-the-art performance to
detect alterations of hippocampus (Coupé et al, 2012b; Hett
et al., 2018b). This framework has also been extended to per-
form a whole brain analysis (Tong et al., 2017a). This extension
has shown competitive performance for AD prediction espe-
cially compared to other approaches based on deep-learning
architectures (Basaia et al.,, 2018; Lian et al., 2018).
Intra-subject variability: Several methods were proposed to
capture the intra-subject variability; such methods assume that
AD does not occur at isolated areas but in several inter-related
regions. Although similarity-based biomarkers provide helpful
tools for detecting the first signs of AD, the structural al-
terations leading to cognitive decline are not homogeneous
within a given subject. Therefore, intra-subject variability fea-
tures could encode relevant information. Some methods pro-
posed to capture the relationship of spread cortical atrophy
with a network-based framework (Wee et al., 2013). Other ap-
proaches estimate inter-regional correlation of brain tissue vol-
umes (Zhou et al., 2011). A study has also proposed a generic
framework that embeds spatial and anatomical priors within
a graph model (Cuingnet et al., 2013). This method extracts
intra-subject variability from different features (for instance,
voxel-based and cortical thickness) and various MRI modali-
ties (i.e., in their work, they evaluate their method using struc-
tural MRI) using an anatomical regularization scheme based on
a graph model. More recently, convolutional neural networks
(CNN) were used to capture relationships between anatomi-
cal structures volumes (Suk et al., 2017), and cortical thickness
(Wee et al.,, 2019). These two last methods, model the struc-
tures abnormality relationships using a deep-learning approach.
It is interesting to note that methods based on inter-subject
similarities and intra-subject variability have performed simi-
larly for AD prediction.

All these elements indicate that inter-subject similarity and
intra-subject variability features provide important information for
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predicting the subject’s conversion. Consequently, we proposed to
develop a new method that efficiently combines inter-subject sim-
ilarities estimated with a patch-based grading approach and intra-
subjects’ variability modeled by a graph-based approach. In our
works, given the essential aspect of the interpretability nature of
the produced results and the lack of prior knowledge related to the
topology of alteration relationships, we opt for a sparse represen-
tation of a fully-connected graph defined by an adjacency matrix
based on a gaussian kernel.

As a new contribution of the previously published work in con-
ference proceedings (Hett et al., 2018¢; 2018a), we applied our new
method to two different anatomical scales: hippocampal subfields
and whole brain structures. The experiments carried out show an
increase in prediction performances for both anatomical scales. We
also present a novel method based on a cascade of classifiers to
efficiently and simultaneously combine information related to hip-
pocampal subfields and whole brain structures alterations.

2. Materials
2.1. Dataset

Data used in this work were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset?. ADNI is a North
American campaign launched in 2003 with aims to provide MRI,
positron emission tomography scans, clinical neurological mea-
sures and other biomarkers. We use T1-weighted (T1w) MRI from
the baseline of the standardized ADNI1 dataset (Wyman et al.,
2013). This dataset includes AD patients, subjects with mild cogni-
tive impairment (MCI) and cognitive normal (CN) subjects. MCI is
a presymptomatic phase of AD composed of subjects who have ab-
normal memory dysfunctions. In our experiments we consider two
groups of MCI. The first group is composed of patients who have
stable MCI (sMCI) who did not convert to AD during the 36 months
following their first visit, and the second one is composed of pa-
tients having MCI symptoms at the baseline and then converted
to AD in the following 36 months. This group is named progres-
sive MCI (pMCI). The information of the dataset used in our work
is summarized in Table 1. The list of subjects and the code used
to construct the graph-based grading features and to evaluate the
proposed method are openly available online>.

2.2. Preprocessing

The data are preprocessed using the following steps: (1)
denoising using a spatially adaptive non-local means filter
(Manjon et al., 2010), (2) inhomogeneity correction using N4
method (Tustison et al., 2010), (3) affine registration to MNI152
space using ANTS software (Avants et al., 2011), (4) intensity
standardization using a piece-wise linear histogram normalization
(Manjon et al., 2014). All experiments were conducted with images
in the MNI space.

3. Method
3.1. Method overview

As illustrated in Fig. 1, our graph of structure grading method
that combines inter-subjects’ similarities and intra-subjects’ vari-
ability is composed of several steps.

First, a segmentation of the structures of interest is computed
on the input images. Then, a patch-based grading (PBG) approach

2 http://adni.loni.ucla.edu.
3 https://github.com/hettk/multi-scale_graph-based_grading.
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Table 1
Description of the dataset used in this work. Data are provided by ADNIL
CN sMCI pMCI AD P value

Number 213 90 126 130
Ages (years)  75.7 £ 5.0 749 £ 7.5 73.7 £ 7.0 741 £ 7.7 p = 0.63°
Sex (M/F) 108/105 58/32 68/58 64/66 x%=5.29, p = 0.15¢
MMSE 29.1 £ 1.0 276 £ 1.7 265 £ 1.6 235+ 19 p < 0.012P
CDR-SB 35 + 2.7 45 + 23 48 + 2.1 47 £ 1.9 p < 0.012>
RAVLT 454 + 97 355 + 102 277 £ 89 246 + 7.0 p <0.01*
FAQ 84 + 44 133 + 54 202 + 6.7 30.0 £ 9.0 p < 0.012P
ADAS11 52 + 3.0 8.1 + 3.6 125 + 49 202 +£ 7.6 p < 0.01*°
ADAS13 02 £+ 09 23 £+ 37 43 + 48 146 + 66 p <0.01*P

@ Significant at p < 0.05.
b Kruskal-Wallis test (df = 3).
¢ Chi-square test (df = 3).
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Fig. 1. Pipeline of the proposed graph-based grading method. PBG is computed using CN and AD training groups. CN group is also used to correct the bias related to age.
Then, this estimation is applied to AD and MCI subjects. Afterwards, the graph is constructed, and the feature selection is trained on CN and AD and then is applied to CN,

AD and MCL. Finally the classifier is trained with CN and AD.

is conducted over every segmented structures (e.g., hippocampal
subfields and brain structures). The two main alterations impacting
the brain structures captured with PBG methods are the changes
caused by normal aging (Koikkalainen et al., 2012) and the alter-
ations caused by the progression of AD. Therefore, at each voxel,
the grading values are age-corrected to avoid bias due to normal
aging. After the patch-based grading maps are age-corrected, we
construct an undirected graph to model the topology of alterations
caused by Alzheimer’s disease. This results in a high dimensional
feature vector. Consequently, to reduce the dimensionality of the
feature vector computed by our graph-based method, we use an
elastic net that provides a sparse representation of the most dis-
criminative elements of our graph (i.e., edges and vertices). We use
only the most discriminative features of our graph as the input to
a random forest method which predicts the subject’s conversion.

3.2. Segmentation

First, to enable analysis of the alterations that occur over differ-
ent brain structures, segmentation using a non-local label fusion

(Giraud et al., 2016) and a systematic error correction (Wang et al.,
2011) at two different anatomical scales are performed, the hip-
pocampal subfields and the whole brain structures.

Segmentation of hippocampal subfields was performed with
HIPS, which is a method based on a combination of non-linear reg-
istration and patch-based label fusion (Romero et al., 2017). This
technique uses a training library based on a dataset composed of
high resolution T1w images manually labeled according to the pro-
tocol proposed in (Winterburn et al., 2013). To perform the seg-
mentation, the ADNI images were up-sampled to 0.5 x 0.5 x 0.5
mm using a local adaptive super-resolution method to fit in the
training image resolution (Coupé et al., 2013). The method provides
automatic segmentation of hippocampal subfields grouped into 5
labels: Subiculum, CA1SP, CA1SR-L-M, CA2-3 and CA4/DG. After-
wards, the segmentation maps obtained on the up-sampled T1w
images were down-sampled to fit in the previous MNI space res-
olution. All further hippocampal subfields analyzes were achieved
in the MNI space resolution.

Whole brain structures were labeled with a patch-based
multi-template segmentation (Manjon and Coupé, 2016). This
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method was performed using 35 images manually labeled by
Neuromorphometrics, Inc.* following the brain-COLOR labeling
protocol composed of 133 structures.

Finally, visual quality control was conducted to remove all in-
correct segmentations from the dataset. To prevent any bias in the
dataset, the pathological status of each subject was hidden during
the entire quality control process.

3.3. Patch-based grading

Following image segmentation, a patch-based grading of the
entire brain was performed using the method described in
(Hett et al., 2018b). This method was first proposed to detect
hippocampus structural alterations with a new scale of analysis
(Coupé et al., 2012a; 2012b). The patch-based grading approach
provides the probability that the disease has impacted the under-
lying structure at each voxel. This probability is estimated via an
inter-subject similarity measurement derived from a non-local ap-
proach.

The method begins by building a training library T from two
datasets of images: one with images from CN subjects and the
other one from AD patients. Then, for each voxel x; of the re-
gion of interest in the considered subject x, the PBG method pro-
duces a weak classifier denoted, gy, that provides a surrogate for
the pathological grading at the considered position i. A PBG value
is computed using a measurement of the similarity between the
patch P, surrounding the voxel x; belonging to the image under
study and a set Ky, = {Ptj} of the closest patches Ry, surrounding
the voxel t;, extracted from the template t e T. The grading value
gx; at x; is defined as:

e, WP PP
8T T o Wby B)

where w(x;, ;) is the weight assigned to the pathological status p;
of the training image t. We estimate w as:

(1)

1Py =P 113
W(PXi’Iij):exp<_ 'hzj 2) (2)

where h = min||P, — PthI% + ¢ and € — 0. The pathological status
pe is set to —1 for patches extracted from AD patients and to 1
for patches extracted from CN subjects. Therefore, the PBG method
provides a score representing an estimate of the alterations caused
by AD at each voxel. Consequently, cerebral tissues strongly altered
by AD have scores close to —1 while healthy tissues have scores
close to 1.

3.4. Graph construction

Once structure alterations were estimated using patch-based
grading, we modeled intra-subject variability for each subject using
a graph to better capture the AD signature. Indeed, within the last
decade, graph modeling has been widely used for its ability to cap-
ture the patterns of different diseases (Tong et al., 2017b; Parisot
et al., 2018). This is achieved by encoding the relationships of ab-
normalities between different structures in the edges of the graph.
Furthermore, graph modeling can also depict inter-subject simi-
larity, by independently encoding the abnormality of each struc-
ture in the vertices measurement. Consequently, we proposed a
graph-based grading approach that uses a graph model to com-
bine inter-subject similarities computed with the PBG and intra-
subjects’ variability computed with the difference of the grading
value distributions for each structure.

4 http://Neuromorphometrics.com.
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In our graph-based grading method, the segmentation maps
were used to fuse grading values into each ROI, and to build our
graph. We defined an undirected graph G = (V,E, y,®), where
V={v,..., vy} is the set of vertices for the N considered brain
structures, E =V x V is the set of edges, y and w are two func-
tions of the vertices and the edges, respectively. In our work, y is
the mean of the grading values for a given structure while w com-
putes grading distribution distance between two structures. To this
end, the probability distributions of PBG values were estimated
with a histogram H, for each structure v. The number of bins was
computed with Sturge’s rule (Sturges, 1926) using the average of
number voxels that compose each brain structure or hippocampal
subfields (i.e., histogram of whole brain structures and hippocam-
pal subfields were estimated using different bin number). For each
vertex we assigned a function y :V — R defined as y (v) = uy,.
where puy, is the mean of Hy. For each edge we assigned a weight
given by the function w : E — R defined as follows:

@ (v, vj) = exp(=W (Hy,, Hy;)?/0’?) 3)

where W is the Wasserstein distance with L; norm (Rubner et al.,
2000) that showed best performance during our experiments. In-
deed, this metric introduced by the optimal transport theory, aims
to minimize the amount of work needed to rearrange the his-
togram H,, to Hyj. The Wasserstein distance between two his-
tograms is defined as the minimization of the following equation,

W (Hy,. Hy). F) = min Y fidy (4)
F={fi1} ol
subject to,
> fur=pk Vkel
kel
Y fu=aq Vel
lel
fer=0 Yk €] (5)

where I={k|1 <k <m} is the index set for bins, Hy, = {pylk €
I} and Hy, ={qilk €I} are the two normalized histograms. | =
{(k,Dlkel lel} is the set for flows, and d,, = ||k —I||; is the
group distance defined by a L; norm.

3.5. Selection of discriminant graph components

Completion of the previous step results in a high-dimensional
feature vector. Because features computed from the graph-based
grading method have varying significance levels, in this work, we
used an elastic net regression method to provide a sparse repre-
sentation of the most discriminating edges and vertices. This re-
sults in reducing the feature dimensionality by capturing the key
structures and the key relationships between the different brain
structures (see Fig. 1). Indeed, it has been demonstrated that com-
bining the L1 and L2 norms takes into account possible inter-
feature correlation while imposing sparsity (Zou and Hastie, 2005).
Finally, after normalization, the resulting feature vector is given as
the input of the feature selection, defined as the minimization of
the following equation:

i1
ﬂ=rrllsln§||Xﬁ—J/I|§+/O||ﬁ||§+/\||/3||1 (6)

where B is a sparse vector that represents the regression coeffi-
cients and X is a matrix with rows corresponding to the subjects
and columns corresponding to the features, including: the vertices,
the edges or a concatenation of both for the full graph of grading
feature vector. p and A are the regularization hyper-parameters set
to balance the sparsity and the correlation inter-feature, and y rep-
resents the pathological status of each patient.
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Fig. 2. Schema of the proposed multi-scale graph-based grading method. First, the segmentation maps are used to aggregate grading values. Our method computes a
histogram for each structure/subfield. Once the graphs are built, an elastic net is computed to select the most discriminating graph features for each anatomical scale. A
first layer of random forest classifiers are computed to estimate a posteriori probabilities. Finally, a linear classifier is trained with the a posteriori probabilities from each

anatomical scale to compute the final decision. A random forest classifier replaces the lin
resulting from the concatenation of a posteriori probabilities and cognitive scores.

3.6. Application to different anatomical scales

In our experiments, we considered two different anatomical
scales. First, as presented in (Hett et al., 2018a), we applied our
graph of structure grading method within a definition of the
hippocampal subfields. A histogram was computed to estimate the
probability distribution of the grading values for each hippocampal
subfields. Thus, GGgpfieqs = (V,E, ', 2), represents the graph
of the hippocampal subfields grading. The vertices V represent
alteration of hippocampal subfields measured with patch-based
grading, and the edges E represent the relationship between
hippocampal subfield alterations embedded in graph modeling.

Second, we applied our graph-based approach to a whole brain
parcellisation. Here, the histograms are computed to estimate the
probability distribution of the grading values within each brain
structure as proposed in (Hett et al, 2018c). Thus, for this sec-
ond anatomical scale of analysis, GGy, = (V,E, ', Q) represents
the graph of brain structure grading, where V represents the mea-
sures of alteration of brain structures, and E represents the alter-
ation relationship between two brain structures.

3.7. Multi-scale graph-based grading

To combine multiple anatomical scales (for instance, brain
structures and hippocampal subfields), we developed a multi-scale
graph-based grading (MGG) approach based on a cascade of classi-
fiers. In this approach, the graph of brain structures and the graph
of hippocampal subfields were computed separately as it is de-
scribed in the previous sections (see Fig. 2). The elastic net re-
gression method was then used to select the most discriminating
features of each graph. Afterward, a first layer of RF classifier was
used to compute both a posteriori probabilities P(p¢ |XGGbrain) and
P(pt|Xoc,, il ;) for whole brain and hippocampal subfields, respec-

tively. As defined in Eq (1), pr represents the pathological status of

ear classifier for the multimodal experiments to deal with the feature heterogeneity

the subject under study, while Xc, . and Xgc_, riewas TEPTEsent the
selected features of GGpgin and GGgypfegs models, respectively. Fi-
nally, these a posteriori probabilities were used as the input of a
linear classifier to make the final decision.

In addition of this new method, we also proposed a straightfor-
ward extension of our graph-based grading method. This approach
results in the concatenation of GGpyip and GGgypperqs features into

a single feature vector before the feature selection step.

3.8. Combination with cognitive tests

Previous works have shown that MRI-based biomarkers are
complementary to cognitive assessments used in clinical rou-
tines (Tong et al., 2017a; Samper-Gonzalez et al., 2019). There-
fore, in addition of studying the efficiency of our novel imaging-
based biomarkers, a study of the complementarity of our proposed
method with cognitive scores has also been conducted. In this
work, we have considered different cognitive scores such as MMSE,
CDR-SB, RAVLT, FAQ, ADAS11, and ADAS13 cognitive tests. The cog-
nitive scores are concatenated into a vector of cognitive features
and normalized by a z-score. Finally, a concatenation of normal-
ized cognitive scores and graph-based features are used as inputs
of the final classifier as illustrated in Fig. 2.

3.9. Details of implementation

A fast patch extraction scheme was used to find the most simi-
lar patches (Giraud et al., 2016). We used the grading method pro-
posed in (Hett et al., 2018b), with the same parameters for the
size of the patches and Ky,. The effect of age was corrected using a
linear regression estimated on CN population (Koikkalainen et al.,
2012).

The elastic net feature selection was computed with the SLEP
package (Liu et al., 2009). The two parameters A and p were set
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Classification of sMCI versus pMCIL. Results obtained by inter-subject similarity features (i.e., vertices),
intra-subject variability features (i.e., edges) and a combination of both. The patch-based grading
applied on the hippocampus is used as baseline. The experiment shows a slight superiority of the
whole brain structures for AD prediction. All results are expressed in terms of percentage.

Methods AUC ACC BACC SEN SPE

Hippocampus PBG 768 +£02 703+00 706+00 69.0+00 72.2+0.0
Hipp. all vertices 739+02 671+00 679+£00 722400 63500
Hipp. selected vertices 77.1 £0.2 71.1+04 714+04 695+06 732 +05
Hipp. all edges 66.7+02 61.1+04 620+04 680+04 56.0+04
Hipp. selected edges 67.9 £ 0.2 63.0 £ 0.4 63.8 £ 04 689 £ 0.4 58.7 £ 0.4
GGsybfietds 782 +02 747+04 743 +05 7714+£05 714+09
Brain all vertices 682 +02 653+04 667+05 686+05 62205
Brain selected vertices 77.2 £ 0.2 70.1 £ 0.4 71.1 £ 0.5 778 £ 05 644+ 0.5
Brain all edges 67.1 £02 657 +02 648 +0.7 694402 60502
Brain selected edges 76.9 £ 0.2 722 £04 719 £0.5 73.8 £ 0.5 70.0 + 0.5
GGhrain 794 +£02 755+04 751+05 776+05 726405

Table 3

Comparisons of the different PBG approaches for the task of classifying sMCI versus pMCL. PBG computed over the hip-
pocampus is provided as a baseline. The results show that the MGG approach improves performance in terms of AUC, ACC,
BACC, SEN and SPE. All results are expressed in terms of percentages. Non-parametric permutation tests were conducted to
assess the differences between mean accuracies of each investigated method.

Methods AUC ACC BACC SEN SPE
Hippocampus PBG! 768 +£02 703 +00 706 £ 0.0 69.0 £ 0.0 722+ 0.0
Graph of hippocampal subfields (GGappeis)*  78.2 & 0.2 747 £ 04 743 £ 04 771 +£04 714+04
P12=0.0001
Graph of brain structures (GGjpgin)? 79.4 £ 0.2 755 + 0.4 752 £04 776+04 726 £ 04
p2v3:0.0001
Graph of hipp. sub. + brain (GG, )* 79.6 £ 0.2 745+ 04 739 £04 773+04 706 +04
p24=0.8
Multi-scale graph-based grading* (MGG)® 806 0.2 760+04 757 +04 778 £+ 04 736 +04
p3,5:0.0001

* Method illustrated in Fig. 2

up with a grid search method conducted within a nested 10-folds
cross validation procedure using CN and AD data. Then, the opti-
mal parameters were directly applied for sMCI vs. pMCI classifica-
tion without further tuning. The classifications based on the two
different anatomical scales (i.e., whole brain structures and hip-
pocampal subfields) were obtained using a random forest (RF)°. In
our experiments, we used the Gini index as impurity criterion. RF
has also two parameters, the numbers of three N and the number
of randomly selected features T, which were set to Niree = 500, and
T = |logs (Nfeqtures)] (Breiman, 2001). A linear discriminant anal-
ysis (LDA) classifier was used to compute the final decision for
the combination of a posteriori probabilities from graph of brain
structures and hippocampal subfields. In addition, a random forest
classifier replaces linear classifier for the multimodal experiment
to deal with the non-linear nature of feature boundaries result-
ing from the concatenation of image-based features and cognitive
scores. All features were normalized using z-scores before the se-
lection and classification steps.

In our experiments, we performed sMCI versus pMCI and CN
versus AD classifications. For sMCI versus pMCI classification, the
elastic net feature selection and the classifiers were trained with
CN and AD. Indeed, as shown in Tong et al. (2017a), the use of
CN and AD to train the feature selection method and the classifier
enables to better discrimination between sMCI and pMCI subjects.
Furthermore, this technique also limits bias and the overfitting
problem. Finally, to estimate the variability of the classification
performance, 100 runs were performed. A stratified 10-folds
cross-validation procedure was conducted for the comparison of
CN versus AD. Mean area under curve (AUC), accuracy (ACC),

5 http://code.google.com/p/randomforest- matlab.

balanced accuracy (BACC), sensitivity (SEN), and specificity (SPE)
are provided for each experiment. A non-parametric permutation
test based on Fisher’s technique was used to statistically estimate
the improvement of classification performance of each anatomical
scale and their combinations.

4. Results

To evaluate the performance of the graph-based grading
method, we first compare the prediction accuracy of the different
graph components. Afterwards, we apply our method within
the hippocampal subfields and the whole brain structures (see
Table 2), and evaluate the proposed approach to combine different
anatomical scales (see Table 3). Then, we evaluate the complemen-
tarity of our image-based biomarker and the cognitive scores that
are usually used in clinical routines (see Table 4). Finally, we com-
pare the performance of our method with state-of-the-art methods
for early detection of Alzheimer’s disease (see Tables 5 and 6).

4.1. Graph of hippocampal subfields

First, we compared each element of our graph of structure grad-
ing within the hippocampal subfields (see Table 2). As previously
proposed in (Hett et al., 2018b), the PBG applied within the whole
hippocampus is used as baseline for this experiment.

PBG based on the whole hippocampus structure obtains 76.8%
of AUC, 70.3% of ACC and is more specific than sensitive. Although
PBG values of all hippocampal subfields (see “all” in the Table 2) do
not improve prediction performances, PBG values within selected
vertices (i.e., subiculum, CA1-SP, and CA1-SRLM) obtain 77.1% of
AUC, 71.1% of ACC (see “selected” in the Table 2), and improve the
specificity in comparison to hippocampus grading. Thus, the use of
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Table 4
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Comparison of our graph-based approach with cognitive test scores and combination of both for AD prediction (i.e., SMCI ver-
sus pMCI comparison). Although our MSGG obtains better results in terms of AUC, ACC, BACC, and SPE, the results of this
comparison demonstrate the complementarity of our imaging-based method with cognitive scores. All results are expressed as

percentage.
Methods AUC ACC BACC SEN SPE
Cognitive score 78.8 £ 0.2 74.5 + 04 724 + 04 849 + 0.4 60.0 + 0.4
MGG 80.6 + 0.2 76.0 + 0.4 75.7 £ 04 77.8 £ 04 73.6 + 0.4
MGG + Cognitive score 85.5 + 0.2 80.6 + 0.4 79.2 + 04 873 + 04 711 £ 04

Table 5

Comparison with state-of-the-arts methods for Alzheimer’s disease classification using similar ADNI1 dataset. In addition
to sMCI versus pMCI, we provided results of CN versus AD classification. All results are expressed in percentage of accuracy
(ACC) and balanced accuracy (BACC). Best balanced accuracy for each comparison is presented in bold font.

Methods Subjects CN vs. AD sMCI vs. pMCI
CN sMCI  pMCI  AD ACC BACC  ACC BACC
Patch-based grading (Coupé et al., 2012b) 231 238 167 198 88.0 87.5 71.0 71.0
Sparse ensemble grading (Liu et al., 2012) 229  na n.a 198 90.8 905 n.a n.a
Voxel-based morphometry (Moradi et al., 2015) 231 100 164 200 n.a n.a 74.7 70.2
Sparse-based grading (Tong et al., 2017a) 229 129 171 191 n.a n.a 75.0 n.a
Multiple ensemble learning (Tong et al., 2014) 231 238 167 198 89.0 895 704 715
Deep ensemble learning (Suk et al., 2017) 226 226 167 186 91.0 913 74.8 74.9
Hierarchical network (Lian et al., 2018) 229 226 167 199 90.3 89.4 809 69.0
Deep neural network (Basaia et al., 2018) 352 510 253 295 99.2 99.2 75.1 75.0
Cortical graph network (Wee et al., 2019) 242  na n.a 355 858 855 n.a n.a
Proposed method 213 90 126 130 916 914 76.0  75.7

Table 6

Comparison of the different combination of different imaging biomarkers CSF, and demographic data used in clin-
ical routines for the prediction of MCI conversion (i.e., SMCI versus pMCI comparison). All results are expressed as

percentage. Best AUC is expressed in bold font.

Methods Source AUC ACC
Latent feature representation (Suk et al., 2015) MRI + PET + CSF n.a 833
Combined sparse-based grading (Tong et al., 2017a) MRI + Cognitive scores? 87.0 80.7
Voxel-wise approach (Samper-Gonzalez et al.,, 2019) MRI + FDG-PET + Cognitive score®  88.5  80.9
Multimodal deep learning approach (Lee et al., 2019)  MRI + CSF + Cognitive scores® n.a 76.0
Proposed MRI + Cognitive scores? 85.5 80.6

2 FAge, MMSE, CDR-sb, RAVLT, ADAS.

b Gender, MMSE, Education level, CDR-sb, RAVLT, ADAS.

¢ ADNI-EF, ADNI-MEM.
4 MMSE, CDR-sb, RAVLT, FAQ, ADAS11, ADAS13.

hippocampal subfields selected with the elastic net method slightly
increases the prediction performance of AD compared to the union
of all subfields or the whole hippocampus. Furthermore, the edges
selected by the elastic net do not improve the prediction perfor-
mance compared to other hippocampal features. Finally, the pro-
posed method combining edges and vertices improves the AUC by
1.4 percent points and the accuracy 4.4 percent points compared
to the global hippocampus grading. Our graph-based method also
improves the AUC by 1.1 percent points and the accuracy by 3.6
percent points when compared to the use of the most discrimi-
nant hippocampal subfields. Moreover, in both cases, our proposed
graph-based method has a higher sensitivity.

Fig. 3-B illustrates the contribution (i.e., the number of selec-
tion by the elastic net) for each hippocampal subfield in the graph-
based features vectors after the feature selection step. The experi-
ments have shown that the most discriminant hippocampal sub-
fields selected are the subiculum, and the two subfields repre-
senting the CA1. This is particularly interesting because hippocam-
pal subfields selected by the elastic net regression method are
in line with previous studies, which have shown that the CA1
and subiculum are the subfields with the most significant atro-
phy. These founding were shown in studies that analyses patients
in late stages of AD (Kerchner et al., 2012; Trujillo-Estrada et al.,
2014), and studies that analyze the hippocampal subfields at the
early stage of the disease (Hett et al., 2019; Parker et al., 2019).

4.2. Graph of brain structures

We also conducted an evaluation of graph-based grading over
the whole brain similar to that of the hippocampus where we
individually estimated the performance obtained by each type of
feature separately (see Table 2). The use of all vertices (i.e., the
averages of PBG values computed within each brain structure)
decreases the prediction performance compared to the use of
only the hippocampus (65.3% compared to 70.3% of accuracy). A
selection of the most discriminating vertices obtains similar re-
sults to those of the hippocampus only with an accuracy of 70.1%.
Contrary to the hippocampal subfields where vertices were most
efficient than edges, the use of edge features performs similarly to
the vertices.

As shown with the hippocampal subfields, the combination of
both features, edges and vertices, that capture the inter-subjects’
similarities and intra-subject variability enables an important in-
crease of prediction performance. Our method applied using the
brain structures obtains 75.5% accuracy and 79.4% AUC. Moreover,
the experiments also show a sensitivity similar to using only se-
lected vertices and a higher specificity than using only selected
edges.

Fig. 3-A illustrates the most selected brain structures during the
feature selection step. The experiments have shown that the most
frequently selected brain structures are the temporal lobe, the
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selected

Fig. 3. Representation of the most selected structures. The brain structures and hippocampal subfields are selected separately with the elastic net method. Frequently
selected structures are colored using opaque red to transparent for structures never selected. (A) the most frequently selected brain structures are the temporal lobe, the
postcentral gyrus, the anterior cingulate gyrus, the hippocampus and the precuneus. (B) the most frequently selected hippocampal subfields are the CA1-SP, the CA1-SRLM,
and the subiculum. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

postcentral gyrus, the anterior cingulate gyrus, the hippocampus
and the precuneus. It is also interesting, as the results obtained
from the hippocampal subfields, the most selected brain struc-
tures are in line with clinical studies that show a relationship
between the atrophy of specific brain structures (Busatto et al.,
2003; Hyman et al., 1984; Kogure et al., 2000; Frisoni et al., 2002;
Apostolova et al., 2007).

4.3. Multiscale graph-based grading

Table 3 provides a comparison of prediction performances ob-
tained with our graph-based grading method applied in each
anatomical scale independently and the combination of both. In
this experiment, two approaches were investigated.

First, the results of this comparison confirm that for sMCI ver-
sus pMCI classification, whole-brain analysis enables better perfor-
mance than analysis of the hippocampus subfields (p=0.0001). In-
deed, GGpqin (Whole brain) obtains 79.4% of AUC and 75.5% of ac-
curacy while GGgpgeigs (hippocampus subfields) obtains 78.2% of
AUC and 74.7% of accuracy.

Second, we compare the two approaches of combining both
anatomical scales (i.e., simple concatenation or cascade of classi-
fiers). These results suggest that the straightforward concatenation
of the feature vectors from GGpgip and GGgypgelqs Methods does
not improve the performance compared to GGprgin and GGgypfeids-
Indeed, the concatenation of the feature vectors obtains 79.6% of
AUC and 74.5% of ACC, which is lower than the results obtained
from the use of whole brain structures. However, the multi-scale
graph-based approach (MGG) method (see Fig. 2) shows in-
creased performance for each considered measure of classification
(p=0.0001). This last method obtains 80.6% of AUC and 76% of
accuracy. This indicates that the analysis of hippocampal subfields
and whole brain structures are complementary. Therefore, in the

rest of the experiments, we only consider the MGG method in our
comparisons.

4.4. Complementarity with cognitive tests

Table 4 presents a comparison of the results obtained using fea-
tures derived from cognitive tests, our imaging-based method, and
the combination of both. This comparison demonstrates that our
imaging-based method obtains better results than using cognitive
scores. Indeed, MGG improves the sMCI versus pMCI classification
by 1.8 percent point of AUC and 1.5 percent point of accuracy com-
pared to using cognitive scores only.

Moreover, the results of the experiment indicate the comple-
mentarity of imaging-based and cognitive assessments for AD pre-
diction. Thus, the combination of cognitive scores and MGG fea-
tures obtains 85.5% AUC and 80.6% accuracy which improves AUC
by 4.9% and improves accuracy by 4.6% when compared to the
MGG method.

4.5. Comparison with state-of-the-art methods

To compare to state-of-the-art methods, we evaluate our find-
ings against those obtained using MRI-based methods in similar
ADNI datasets (see Table 5), and to a set of multi-modal methods
(see Table 6). Besides cognitive assessments, the presented meth-
ods involved cerebral spinal fluid biomarkers (CSF), positron emis-
sion tomography (PET), and fluorodeoxyglucose PET (FDG-PET).

Firstly, MGG is compared with state-of-the-art methods using
a similar ADNI1 dataset. Our graph-based method is compared
with the original PBG method (Coupé et al., 2012b), a graph-based
grading method (Tong et al., 2014), an ensemble grading method
(Liu et al, 2012), a sparse-based grading method (Tong et al.,
2017a), a VBM method (Moradi et al., 2015) and advanced ap-
proaches based on deep ensemble learning technique (Suk et al.,
2017; Lian et al., 2018; Basaia et al., 2018; Wee et al., 2019).
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The results of these comparisons demonstrate the competitive
performance of our MGG method for CN versus AD and sMCI
versus pMCI classifications. Indeed, our method obtains state-of-
the-art results with 91.6% of accuracy for CN versus AD which are
comparable to the most recent method based on deep-learning
techniques. Furthermore, our method also obtains state-of-the-art
performances for sMCI versus pMCI classification with 76.0% of
accuracy. These results are competitive with recent approaches
based on deep-learning methods (Suk et al., 2017; Lian et al., 2018;
Basaia et al., 2018; Wee et al., 2019). Moreover, our multi-scale
graph-based method improves accuracy by 3.6 and 5 percentage
points of the original PBG method for CN versus AD and sMCI
versus pMCI classification, respectively (Coupé et al., 2012b).

As presented in Table 6, the combination of MGG and cognitive
scores was compared with state-of-the-art multimodal approaches.
This comparison includes a method combining structural MRI and
cognitive scores that obtains 80.7% of accuracy (Tong et al., 2017a),
a method combining MRI, PET scans and CSF that obtains 83.3%
of accuracy (Suk et al., 2015), a voxel-wise approach that com-
bines MRI, FDG-PET and cognitive scores that obtains 80.9% of
ACC (Samper-Gonzalez et al., 2019), and a recent multimodal deep-
learning approach combining MRI, CSF and cognitive scores that
obtains 76% of accuracy (Lee et al., 2019). This demonstrates the
competitive performance of our graph-based approach that obtains
state-of-the-art results with only the use of MRI-based and cogni-
tive score features.

5. Discussion

The first contribution of this paper is the development of a
new graph-based grading approach that combines inter-subject
similarities and intra-subject variability efficiently. We validated
this new method with two different anatomical scales: the hip-
pocampal subfields and the whole brain structures. The second
contribution is the development of an anatomical scale fusion
based on a cascade of classifiers approach. We applied this multi-
scale graph-based grading framework to the hippocampal subfields
and a parcellation of the entire brain structures. To validate our
new multi-scale graph-based grading framework, we compared
each component of our graph at each anatomical scale. Then, we
compared the results obtained in our experiments with the results
of state-of-the-art methods proposed in the literature. Finally, we
compared the results obtained with our imaging-based biomarker
with a bank of cognitive scores that are used in clinical routines.

5.1. Graph of hippocampal subfields

Postmortem and in-vivo studies have suggested that the first re-
gions of the brain which are changed in typical disease progression
are the entorhinal cortex (EC) and the hippocampus (Jack et al.,
1992; Braak and Braak, 1995; Bobinski et al., 1999). Neuroimag-
ing studies have further shown that the hippocampus undergoes
the most significant alterations in the early stage of AD (Frisoni
et al., 2010; Schwarz et al.,, 2016). However, recent methods ap-
plied to the hippocampus have shown limited performances for
AD prediction (Hett et al., 2017; Tong et al., 2017a). This limitation
could stem from global analysis of the hippocampus, which is di-
vided into heterogeneous subfields. The terminology differs across
segmentation protocols (Yushkevich et al., 2015) but the most rec-
ognized definition (Lorente de N6, 1934) divides the hippocampus
into the subiculum, the cornu ammonis (CA1/2/3/4), and the den-
trate gyrus (DG). Studies have shown that hippocampal subfields
are not equally impacted by AD (Braak and Braak, 1997; Braak
et al., 2006; Apostolova et al., 2006; La Joie et al., 2013; Kerchner
et al.,, 2010; 2012). Specifically, postmortem, animal-based and re-
cent in-vivo imaging studies showed that the CA1 and the subicu-
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lum are the subfields impacted by the most discriminant atrophy
in the last stage of AD (Apostolova et al., 2006; La Joie et al., 2013;
Kerchner et al.,, 2012; Li et al., 2013; Trujillo-Estrada et al., 2014;
Hett et al., 2019). This indicates that the analysis of the hippocam-
pus with a global measure could limit prediction performance and
that better modeling of the structural alterations within the hip-
pocampal subfields could improve prediction performance.

Consequently, we proposed to better model hippocampus alter-
ations with the application of our novel graph-based framework
within the hippocampal subfields. First, we studied the efficiency
of a straightforward approach that computes the average of grad-
ing values in each hippocampus subfield separately instead of the
whole hippocampus structure as it is usually done. This results
in poorer performance compared to the average of grading val-
ues within the whole hippocampus. However, the grading values
within the most discriminant hippocampal subfields (i.e., subicu-
lum and the two definitions of CA1) obtain similar performances
to the average of grading values within the whole hippocampus.
This is possibly be due to the fact that the subiculum and CA1 rep-
resent the major part of the hippocampus.

The related hippocampal subfield features selected by the elas-
tic net are consistent with previous in-vivo imaging studies, which
are based on 3T MRI and ultra-high field MRI at 7T. These studies
analyzed the atrophy of each hippocampal subfield at an advanced
stage of AD. These studies showed that CA1 is the subfield with
the most severe atrophy (Apostolova et al., 2006; Mueller et al.,
2007; La Joie et al., 2013; Carlesimo et al., 2015; Hett et al., 2019),
and also indicate that CA1SR-L-M is the subfield with the greatest
atrophy at advanced stages of AD (Kerchner et al., 2010; 2012). It is
interesting to note that the results of our experiments are also in
accordance with previous postmortem, animal-based, and in-vivo
studies combining volume and diffusivity MRI. These last studies
demonstrated that the subiculum is the earliest hippocampal re-
gion affected by AD (Trujillo-Estrada et al., 2014; Li et al., 2013).

Finally, the great improvement obtained with the combination
of inter-subject similarities and intra-subject variability shows that
this information is complementary. It also confirms this combina-
tion enables the obtention of results similar to methods based on
whole brain analysis with only the use of the hippocampus.

5.2. Graph of brain structures

Next, we investigated our method at the whole brain scale.
The comparison of hippocampus PBG and the most discriminant
vertices indicate that the straightforward combination of other
discriminant brain structures does not increase the prediction
performance compared to using only the hippocampus. Moreover,
when the edges and the vertices are combined, our experiments
show that the edges are the most discriminant selected elements.

Our experiments indicate that the most selected brain struc-
tures are the postcentral gyrus, the anterior cingulate gyrus, the
hippocampus, and the precuneus (see Fig. 3), which align with cur-
rent literature. First, it is interesting to note that the most discrim-
inant features obtained by the sparse selection method show the
importance of the temporal lobe and the hippocampus. Indeed,
studies have shown a significant loss of gray matter within the
temporal lobe (Killiany et al., 1993; Busatto et al., 2003), while the
hippocampus has long been known as the structure with the ear-
liest alterations (Hyman et al., 1984; West et al., 1994; Braak and
Braak, 1995; Ledig et al.,, 2018). Second, VBM and perfusion stud-
ies have shown that the precuneus suffers from a noticeable atro-
phy and a bilateral decrease of regional cerebral blood flow com-
pared to control subjects (Kogure et al., 2000; Karas et al., 2007).
Studies have shown a significant reduction in volume of the ante-
rior cingulate gyrus compared to control (Frisoni et al., 2002; Jones
et al., 2006). Additionally, a study showed that the volume of the
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anterior cingulate gyrus is correlated with apathy which is symp-
tomatic of AD (Apostolova et al., 2007). However, the importance
of the postcentral gyrus was unexpected since it has been shown
that this structure seems unaffected by AD process (Halliday et al.,
2003). These elements seem to indicate that the structural pat-
tern of AD is composed of both highly impacted and healthy brain
structures.

Finally, the good performance of the graph-based grading
method demonstrates that the combination of both features en-
ables a better discrimination of subjects who convert to dementia
in the years following their first visits. The good results within
hippocampal subfield and brain structure parcellation indicates
that our framework can be applied with different anatomical
representation.

5.3. Multi-scale graph-based grading

Afterwards, we compared the results of our multi-scale (MGG)
approach with the previously described GGyqin and GGgypgergs- First,
the conducted experiments show that our graph of structure grad-
ing applied within hippocampal subfields improves prediction of
conversion to Alzheimer’s disease compared to the PBG applied
within the hippocampus.

The results obtained by the straightforward extension of the
graph of structure grading to combine whole brain structure and
hippocampal subfields did not demonstrate an improvement in AD
conversion prediction compared to the single use of GGy, and
GGgupfields- The main limitation might come from the fact that the
straightforward combination of different anatomical representa-
tions suffer from a substantial augmentation of feature dimension-
ality. To address these limitations, we proposed the MGG method
that is based on a cascade of classifiers. This method alleviates
the dimensionality issue by estimating an intermediate conversion
probability for each anatomical scale considered. This results in an
increase in AD prediction performances compared to GGy, and
GGsubﬁeldS methods.

5.4. Comparison with state-of-the-art methods

In this last decade, many improvements in computer-aided di-
agnosis methods were proposed to better capture structural alter-
ations using anatomical MRI (see (Rathore et al., 2017) for a re-
view). Two main approaches were proposed: methods based on
inter-subject similarity (Coupé et al., 2012b; Moradi et al., 2015;
Tong et al., 2017a) and methods based on intra-subject variabil-
ity (Tong et al, 2014; Suk et al, 2014). Consequently, the first
contribution of our work was to combine inter-subject similarity
- using the PBG framework - and the intra-subject variability —
with the integration of PBG into a graph-based model. Indeed, our
graph-based grading can obtain competitive results with different
anatomical representations.

Another difference with state-of-the-art methods comes from
the proposition of a multi-anatomical scale analysis of AD alter-
ations. In contrast to previous methods which analyzed changes at
a unique anatomical scale (i.e., cortical cortex, whole brain struc-
tures, hippocampus, or hippocampal subfields,..), we proposed
combining whole brain structures parcellation with a representa-
tion of hippocampal subfields. This combination has resulted in
performances competitive with state-of-the-art methods.

Finally, the comparison with state-of-the-art approaches us-
ing similar ADNI1 subset has shown that our multi-scale graph-
based grading method obtains competitive results for both AD
detection and prediction. The high performances of the methods
proposed in (Basaia et al., 2018) and (Lian et al., 2018) have to
be moderated. The high accuracy for AD detection obtained by
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Basaia et al. (2018) raises two concerns. First, it has been re-
ported that the majority of deep-learning methods that obtain
almost perfect detection performances suffer from data-leakage
problems (Wen et al,, 2019a; 2019b). Second, and more impor-
tantly, the diagnoses provided by ADNI were established using a
set of cognitive-scores and functional performances, which results
in diagnosis error (Beach et al., 2012; Matias-Guiu et al., 2017)
since AD can only be diagnosed for sure after a postmortem anal-
ysis revealing the two cerebral hallmarks of the disease (i.e., beta
amyloid deposition and neurofibrillary tangles) (Cairns et al., 2010).
This last element raises a question about the clinical relevance of
such results.

Finally, the excellent result of Lian et al. (2018) for AD predic-
tion mainly takes advantage its unbalanced nature (i.e., 52.9% of
sensitivity and 85.9% of specificity). This results in overly high clas-
sification accuracy, which is not representative of the overall per-
formance provided by this method. Consequently, the balanced ac-
curacy was used to fairly compare the classification performance
with other methods (see Table 5).

5.5. Complementarity with cognitive tests

Finally, an analysis of the complementarity of our imaging-
based method with scores resulting from cognitive assessments
was carried out. These experiments enabled the comparison of the
performance of cognitive scores and our imaging biomarker for AD
prediction.

The conducted experiments demonstrate that our graph-based
grading approach using T1 weighted MRI obtains substantially bet-
ter results for the prediction of AD than the single use of cognitive
scores. Moreover, as shown in many works listed in Table 6 (Suk
et al,, 2015; Tong et al., 2017a; Samper-Gonzalez et al., 2019; Lee
et al.,, 2019), MRI-based biomarkers and cognitive assessments are
complementary, and their combination improves classification per-
formances. Thus, the combination of our graph-based grading tech-
nique and cognitive assessments demonstrates a great improve-
ment in performance compared to the use of each method sepa-
rately. This improvement is comparable to studies based on multi-
modality frameworks, which use more expensive biomarkers (i.e.,
PET, FDG-PET....), and can be invasive (i.e., CSF). These elements
complicate the implementation of such multi-modal features in
clinical routines.

5.6. Strength and limitations

In addition to the strengths and limitations of the patch-based
grading framework, the major strength of the proposed method
comes from the ability to efficiently combine intra-subject variabil-
ity and inter-subject similarity in a common model that can be ap-
plied at different anatomical scales. Nonetheless, we acknowledge
that the proposed multi-scale graph-based grading framework is
not without potential limitations. The main limitation come from
the dependence of our method to the quality of segmentation
maps that are used to aggregate patch-based grading and estimate
abnormality of each structure.

6. Conclusion

Improved modeling of AD alterations is a great challenge that
could lead to earlier predictions of conversion. Therefore, in this
work, we developed a new method to better model AD signa-
ture. Our proposed method models the pattern of AD alterations by
combining inter-subject similarity and intra-subject variability. The
conducted experiments have shown that our framework can be ap-
plied with different anatomical representations. Consequently, we
proposed a multi-anatomical scale graph-based grading method to
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combine the alterations at different anatomical scales. In addition,
we conducted the first joint analysis of the hippocampus subfields
and brain structure changes in the same framework. The results
show state-of-the-art-performance, confirming the complementar-
ity of hippocampal subfields and whole brain analysis, and the
complementarity of inter-subject similarity and intra-subject vari-
ability.
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