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Purpose: Many methods are available to segment structural magnetic resonance (MR) images of the
brain into different tissue types. These have generally been developed for research purposes but there
is some clinical use in the diagnosis of neurodegenerative diseases such as dementia. The potential
exists for computed tomography (CT) segmentation to be used in place of MRI segmentation, but this
will require a method to verify the accuracy of CT processing, particularly if algorithms developed
for MR are used, as MR has notably greater tissue contrast.
Methods: To investigate these issues we have created a three-dimensional (3D) printed brain with
realistic Hounsfield unit (HU) values based on tissue maps segmented directly from an individual T1
MRI scan of a normal subject. Several T1 MRI scans of normal subjects from the ADNI database
were segmented using SPM12 and used to create stereolithography files of different tissues for 3D
printing. The attenuation properties of several material blends were investigated, and three suitable
formulations were used to print an object expected to have realistic geometry and attenuation proper-
ties. A skull was simulated by coating the object with plaster of Paris impregnated bandages. Using
two CT scanners, the realism of the phantom was assessed by the measurement of HU values,
SPM12 segmentation and comparison with the source data used to create the phantom.
Results: Realistic relative HU values were measured although a subtraction of 60 was required to
obtain equivalence with the expected values (gray matter 32.9–35.8 phantom, 29.9–34.2 literature).
Segmentation of images acquired at different kVps/mAs showed excellent agreement with the source
data (Dice Similarity Coefficient 0.79 for gray matter). The performance of two scanners with two
segmentation methods was compared, with the scanners found to have similar performance and with
one segmentation method clearly superior to the other.
Conclusion: The ability to use 3D printing to create a realistic (in terms of geometry and attenuation
properties) head phantom has been demonstrated and used in an initial assessment of CT segmenta-
tion accuracy using freely available software developed for MRI. © 2020 The Authors. Medical Phy-
sics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine
[https://doi.org/10.1002/mp.14127]
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1. INTRODUCTION

X-ray computed tomography (CT) and magnetic resonance
imaging (MRI) are commonly used imaging techniques for the
assessment of pathological brain disorders. Modern CT has
many advantages over MRI, including lower cost of both the
imaging system and patient examination, fewer motion artifacts
due to faster acquisition times (up to two orders of magnitude),
greater availability, higher spatial resolution, and fewer limita-
tions related to claustrophobia and the presence of ferromagnetic
materials in the body. The disadvantages of CT include lower
contrast/noise and the exposure of the patient to ionizing radia-
tion. However, while radiation exposure is a concern, the risk/
benefit ratio is age and organ dependent, usually justifying the
use of CT to study brain pathology in the elderly.1,2

Structural neuroimaging is recommended as part of the
clinical evaluation in all patients with suspected dementia in

the United Kingdom.3 Currently, unenhanced CT is used as
the first line of neuroimaging in dementia and an estimated
150 000 scans are carried out per year in the United King-
dom.4,5 Images are generally inspected visually, and reports
framed in terms of the location of substantial atrophy, tissue
abnormality, or ventricular enlargement. The number of
imaging studies carried to investigate neurodegenerative dis-
ease, particularly for dementia, looks certain to expand con-
siderably due to an increased incidence6 while the number of
radiology vacancies continue to grow.7

Over the past two decades, the development of several
automated techniques for the analysis of structural MRI data
has led to a proliferation of studies on the neuroanatomical
basis of both neurological and psychiatric disorders.8,9 The
most widely used technique is voxel-based morphometry
(VBM) which involves a voxel-wise comparison of the local
volume or concentration of gray and white matter (GM and
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WM) between groups of subjects.10,11 Voxel-based morphom-
etry has been used successfully to investigate a wide number
of disorders such as Alzheimer’s disease (AD),12 Parkinson’s
disease,13 depression,14 and multiple sclerosis.15

Clinical application of these methods would appear
promising in the assessment of neurodegenerative conditions;
automated brain morphometry is increasingly recognized as a
biomarker for AD16 and atrophy measurement from serial
scans is an attractive way to characterize diseases such as
multiple sclerosis.17,18 However, while a number of these
sophisticated methods of analysis are available to quantify
local and global atrophy from MRI, relatively little progress
has been made to integrate these into clinical workflows due
to special hardware requirements, prohibitively long process-
ing times and dependency on specific acquisition tech-
niques.19 The accuracy and precision of these methods have
not been well characterized.20 Software approved for clinical
use has been shown to lead to errors in the evaluation of neu-
rodegenerative conditions.21

Validation of MRI segmentation is difficult as the ground
truth (the precise nature of the underlying anatomy) is not
known although reliability and reproducibility of the FMRIB
Software Library (FSL), statistical parametric mapping
(SPM), and FreeSurfer have been benchmarked using human
subjects.22 Although digital phantoms are widespread for
MRI,20,23,24 they do not test the actual imaging chain as the
scanner itself is simulated. Due to the difficulties in both cre-
ating and handling materials with realistic MR properties, no
realistic full brain physical MRI phantoms are available.

An alternative would be to apply automated segmentation
and volumetry to x-ray computed tomography of the brain, an
approach that has been proposed but has yet to be clinically
implemented for single subjects.25,26 The accuracy of CT seg-
mentation will depend, to some extent, on the ability of CT
images to accurately depict the structures of the head. This in
turn will depend on the scanner used and the exposure and
reconstruction factors selected. The delineation of soft tissue
structures will depend on material contrast, edge resolution,
and image noise, which are in turn affected by the peak tube
potential (kVp), filtration, tube current (mA), rotation time,
reconstructed slice width, and the reconstruction algorithm,
including iterative methods and any other postacquisition
image processing. Furthermore, any segmentation may
depend on the orientation of the patient in the scanner and
any beam hardening or movement artefacts.

Segmentation approaches based on open source software
such as statistical parametric mapping (SPM) have been
applied to CT. The availability of CT-specific templates, reg-
istration, and rewindowing functions in the SPM clinical tool-
box27 is an important step forward and has led to the further
creation of procedures for the automated delineation of stroke
and atrophy.28 Another recent study has used FMRIB’s auto-
mated segmentation tool (FSL FAST) to segment CT scans
without the use of prior maps, although the results appear
somewhat disappointing.29 A landmark study uses the stan-
dard segmentation procedure in SPM8 to successfully delin-
eate GM, WM, and CSF and then demonstrates the

superiority of CT-VBM compared to MRI-VBM for a group
study of AD patients compared to controls.26 However, to
segment the images various preprocessing/resampling steps
were required and the SPM settings had to be varied for indi-
vidual subjects. This makes the analysis both time consuming
and potentially inaccurate at the individual level. The study
authors have recently revised their method to use the default
SPM12 settings to segment CT scans to increase the accuracy
of the standardization of DaTscan imaging, but have not
repeated their work with dementia scans.30 Another study
uses a segmentation protocol based on SPM12 combined
with topologically constrained tissue boundary refinement to
delineate WM, GM, and cerebrospinal fluid (CSF) and
directly assesses accuracy by comparing CT segmentation for
MRI segmentation in the same subjects.31 Before clinical use
can be contemplated a method is required to test the accuracy
and reproducibility of the entire imaging chain, including the
scanner, reconstruction, and the software for segmentation
and quantitative analysis of the brain.

The production of realistic medical models by 3D printing
(3DP) has expanded greatly in recent years; however, this
concentrates almost exclusively on visualization for surgical
planning and creation of custom tailored implants and pros-
theses.32 Several studies describe the creation of anthropo-
morphic and even patient-specific phantoms for use in either
CT or radiotherapy dosimetry. The limitation of the phantoms
presented in these studies is that they do not allow for com-
plex nested structures with multiple material properties, as
would be required to simulate the brain. The earliest of these
uses a fused deposition modeling printer to recreate the
RANDO phantom in a two stage process where 3DP was
used to produce the exterior surfaces from acrylonitrile buta-
diene (ABS) which were used as a mould.33 The ABS phan-
tom was verified as soft tissue equivalent by comparing dose
measurements using both the original RANDO phantom and
the printed/moulded phantom.

Another study used a real human skull as a basis for a
mould for the construction of an anthropomorphic head phan-
tom using a mixture of dolomite and polymethyl methacry-
late.34 A 1:1 mixture resulted in the creation of a phantom
with realistic attenuation coefficients. Two 3DP technologies
— digital light processing (DLP) and Polyjet — were used to
print patient-specific models of the spine which were then
embedded in an acrylic body phantom.35 Realistic Houns-
field unit (HU) measurements were achieved, with DLP pro-
ducing higher values typical for younger patients and PolyJet
producing the lower values characteristic of older patients.

A patient-specific radiotherapy phantom, consisting of 11
3DP sagittal slices through the chest and neck, was created
using segmented DICOM data and printed using polylactic
acid (PLA).36 This produced an accurate single tissue phan-
tom with relatively inaccurate HU simulation; the typical
deviation was 120 HU. A similar single tissue patient-speci-
fic phantom of the head and neck was printed in two parts
using the proprietary ABSplus material.37 Hounsfield unit
discrepancies were also high at approximately �300 HU.
Finally, a commercial anthropomorphic head phantom
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containing the bone and hollow of the maxillary sinus was
reproduced as a single tissue 3DP phantom with slots for
dosemeters fabricated using PLA.38 The HU discrepancies
between the commercial and 3DP phantoms approached
2000 HU in bone.

Of more interest is a recent study using 3D printing tech-
niques, that created a life-size phantom based on a clinical
CT scan of the thorax of a patient with lung cancer.39 This
was assembled from bony structures printed in gypsum, lung
structures consisting of airways, blood vessels >1mm, an
outer lung surface, three lung tumours printed in nylon, and
soft tissues represented by silicone (poured into a 3D-printed
mould). Correspondence between the source image and phan-
tom HU was good across the range �478 to +730.

Another study used a Polyjet printer to produce tissue
equivalent phantoms representing the anatomical texture pre-
sent in the lungs and soft tissue.40 Hounsfield unit measure-
ments were taken for a range of blended materials. The
available blended proportions were discrete rather than allow-
ing fine tuning of materials. This showed HU in the range 15–
95 are possible, depending on the kVp of the CT scanner. It
has been demonstrated that Polyjet printing is also able to sim-
ulate bone, but it is not possible to print this at the same time
as the soft tissue structures.35 However, Polyjet printing offers
a way of 3D printing a multiple material phantom with struc-
tures close in x-ray attenuation to those of the brain and CSF.

This work aims to use 3D printing to create a realistic
anthropomorphic phantom representing the CT properties of
a normal human brain and skull. Properly developed, this
type of phantom will allow the optimization and validation of
CT segmentation across different scanners and disease states.
Although the lack of contrast available from CT means that
procedures such as hippocampal segmentation and cortical
thickness analyses may never be possible, segmentation will
allow the use of disease-specific atlases41 and approaches
based on sulcal morphology.42 If sufficient realism can be
attained with the phantom, imaging the resulting phantom on
different scanners and using different acquisition parameters
will enable the validation of the entire processing chain in the
proposed clinical implementation of CT-VBM.

2. MATERIALS AND METHODS

2.A. Materials and 3D printing

All 3D printing was carried out on a Stratasys Objet prin-
ter (Stratasys Ltd, Israel) by the Bristol Robotics Laboratory
(Bristol, UK) using Tango+ and VeroWhite materials. This
printer has a maximum resolution of 0.1 mm. Initially, six
material blends were chosen based on a recent study40 and
printed as single material cylinders of diameter 5cm. These
were scanned on a Siemens Somatom AS + CT scanner (Sie-
mens, Germany) at a range of kVp values. For each cylinder,
Image J was used to measure the mean HU and standard
deviation in a circular ROI for a stack of 15 9 3 mm images
along the cylinder. The mean values along the stack were cal-
culated and are shown in Table I.

The materials 9740, 9770, and 9795 were chosen to pre-
sent CSF, WM, and GM, respectively. Depending on the kVp
used, a simple subtraction of 50–60 HU from the scanned
images of the phantom should yield corrected HU values
approximately 10 HU apart across the required range. The
measured HU was broadly in agreement with the literature
(see Table III) and shows both a progression with the propor-
tions of the blend, and an increase with kVp. No material
accurately represents the HU of GM, WM, or CSF, but the
difference in HU between each, at 10–15 HU can be readily
simulated. It should be noted that the measured HU values in
this study are consistently around 30 higher than the values in
the recent study.40 This may be due to different scanner man-
ufacturers (Siemens vs General Electric), different sample
geometries leading to different scatter fractions, the use of
different model Stratasys printers and a 4 yr gap between
studies during which time the printed material composition
may have been altered.

2.B. Segmentation using SPM12

Statistical parametric mapping segmentation uses a
probabilistic framework combining image registration, tis-
sue classification, and bias correction within the same
model. Voxel intensity values are used to assign their
probabilities of belonging to one of several tissue classes
via estimation of the parameters of the intensity distribu-
tions of each class. An objective function is derived from
a mixture of Gaussian random variable models, a parame-
ter optimization process is then used to minimize the value
of this function. A set of a priori tissue probability maps
specified in a standard space is used to assist the classifi-
cation. Statistical parametric mapping uses standard brains
from the Montreal Neurological Institute (MNI). The MNI
defined a new standard space by using a large series of
MRI scans on normal controls. The objective function
assists this process by weighting the probability maps of
MNI space according to Bayesian inference principles and
then deforming them so that they match the volumes being
segmented.10,31 For this work two sets of a priori tissue
probability maps were employed; first, the default maps
provided with the SPM12 software were used. Second,
compatible maps from a study that created a database of
adult, age-specific MRI brain, and head templates were
used.43 The study participants included healthy adults from
20 through 89 yr of age. The templates were done in 5-,
10-yr, and multi-year intervals from 20 through 89 yr, and
consist of publicly available average T1W images for the
head and brain, and a priori tissue probability maps. The
maps from the oldest age group (80–89 yr) were used.

2.C. Alzheimer’s disease neuroimaging initiative
(ADNI) control T1 MRI data

Magnetic resonance imaging scans of 10 control subjects
between the ages of 56 and 68 were selected and segmented
using default SPM12 parameters. Bias correction was used
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with light regularization and 60 mm FWHM cutoff. The tis-
sue probability maps provided by SPM were used depicting
GM, WM, CSF, bone, soft tissue, and air/background which
used 1, 1, 2, 3, 4, and 2 Gaussians per class, respectively.
Where more than one Gaussian is specified this means the
tissue probability map may be shared by several clusters.
Markov random field cleanup was enabled and the brain
extraction cleanup was disabled. Warping regularization
parameters were set to the default values, affine regulariza-
tion was to European brain using the ICBM space template
and the sampling distance was three. Further details can be
obtained from the SPM12 manual supplied with the soft-
ware.44

Segmentation produced GM, WM, and CSF segments
in standard space with tissue densities between 0 and 1.
These segments were averaged and the normalized mean
square error (NMSE) between the individual segments and
the average were calculated. The individual T1 scan with
the lowest total NMSE for the three tissue types was
selected to be the basis of the phantom. This scan had in-
plane resolution of 1.02 9 1.02 mm and a 1.2 mm slice
thickness. NMSE, where si and mi are the ith voxels of
the individual segmented and mean images respectively, is
defined below.

NMSE ¼
P

iðmi � siÞ2P
i m

2
i

2.D. Creation of print files from segments

To avoid overlapping maps, after the segmented dataset
was selected, each segment was thresholded at various values
between 0.1 and 0.6 using the SPM12 imcalc function. The
imcalc function was then used to check for zero value voxels
in the brain; any zero values would be printed with support
material, the attenuation properties of which are unknown.
After visual assessment of the resulting maps 0.4 was chosen
as the threshold, that is, values below 0.4 were set to zero and
values above were set to 1. The grayscale modelmaker func-
tion in 3d slicer was then used to create stereolithography
(STL) files for each tissue type using a threshold of 1, 15
smoothing iterations, and a decimation fraction of 0.25.45

Print files for each tissue type were then created from the
STL files.

2.E. 3DP process

The phantom was printed and the support material
removed. However, a simulated skull was required to repro-
duce the attenuation, beam hardening, and scatter in clinical
scans of the head. Plaster of Paris offered a simple method to
create a skull around the 3D printed brain; the HU of this
material had previously been shown to be similar to that of
the skull.46 Layers of plaster of Paris impregnated bandages
(Gypsona, France) were applied to the phantom to create a
skull of approximately 3 mm thickness. The base of the brain
was not covered. The phantom is shown as Figure 1.

2.F. CT scanning

The assembled phantom was imaged using a Toshiba
Aquilion One CT scanner using a 0.5 mm slice width and
0.468 mm in-plane resolution (scanner 1). Subsequently the
phantom was imaged using a General Electric Discovery 670
SPECT/CT system using a 0.625 mm slice width and
0.625 mm in-plane resolution (scanner 2). For both scanners,
the phantom was placed in the patient head rest and oriented
to represent normal patient positioning, that is, supine with-
out head tilt. The scan time was 1 s and the kVp and mA
were both varied and matched as far as possible between the
two scanners (see Table II). For scanner 1, reconstruction
was carried out using the brain kernel. For scanner 2 only 1
kernel (“standard”) was available. Additional scanning to
study the kV variation of the phantom materials was carried
out using a Siemens Symbia SPECT/CT as the other scanners
were not available. As for scanner 2, only one kernel was
available.

2.G. Image processing

SPM12 was used to convert DICOM files exported from
the scanner to analyze format. The imcalc function was then
used to subtract 60 HU globally from each scan. The SPM
clinical toolbox was then used to permanently transform
image intensity values from HU by changing the values in the
image file.27,47 This is equivalent to a radiologist choosing
brightness and contrast levels to emphasize tissue contrast, a
process usually referred to as windowing48 or rewindowing.
The transformation increases the dynamic range of the range

TABLE I. Hounsfield units of blended materials at different kVp values.

Material
9740 9750 9760 9770 9785 9795

kVp Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev

70 52.4 5.0 54.1 5.2 55.7 5.2 61.9 5.5 63.5 5.6 71.6 5.5

80 63.4 4.1 65.3 4.3 67.2 4.3 72.4 4.4 74.6 4.4 82.4 4.4

100 75.3 3.0 77.4 3.2 79.6 3.3 84.8 3.3 87.5 3.3 94.9 3.2

120 81.9 2.4 84.2 2.7 86.4 2.7 91.6 2.7 94.8 2.8 101.9 2.7

140 86.1 2.2 88.4 2.5 90.7 2.5 96.0 2.3 99.4 2.6 106.4 2.4
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of HU that are of interest. Three factors are used in this oper-
ation; dark units, mid units, and a scaling factor with defaults
of 1000, 100, and 10, respectively. The dark unit value is sub-
tracted from the image and the dynamic range of the HU val-
ues in the mid unit range is increased using the scaling factor.
Further details can be found in the code files of the clinical
toolbox, accessible from the SPM website.44

The images before and after permanent rewindowing were
then segmented twice; first using the default SPM12 settings
and second using age-specific prior tissue maps.43 This
resulted in four segmentations for each scan — rewindowed
default (RWD), rewindowed age-specific maps (RWX), no
rewindowing default (D), and no rewindowing age-specific
maps (X). As the scanned images were not in register with
the phantom source data, the SPM12 coregistration function
was used to register an averaged GM map from the phantom
acquisitions to the source data GM map using rigid body
affine-only transformations. The derived parameters were
applied to all segments and unsegmented scans in order to
coregister them to the source data. The segments derived
from the scanned images were binarized (with intensities
>0.4 set to 1) were compared to the source data used to create
the phantom print files in order to calculate the DSC.

In order to visualize the accuracy of the segmentation of
individual brain structures, regions of interest from the
Automatic Anatomic Labelling toolbox49 were inverted from
standard space into patient space using the deformation
matrices generated during the initial SPM12 segmentation of
the source MRI and then with the deformation models
obtained from CT segmentation. After inversion the ROIs

were converted to surface models using the same process as
described in Section 2.D. The surface models derived from
the two segmentations were then compared visually using 3d
slicer.

2.H. Dice similarity coefficient (DSC)

The difference between various single segmented images
and the source data used to create the phantom was character-
ized by a single number, the DSC.50 The DSC measures the
spatial overlap between two segmentations, A and B, and is
defined as DSC(A,B) = 2(A ∩ B)/(A + B), where ∩is the
intersection.51

3. RESULTS

Figure 2 shows a comparison of the source MRI and CT
scans of the phantom in the two scanners. The CT scans
appear to be an accurate reflection of the source data with
faithful reproduction of tissues and anatomy. There appears
to be a gap between the plaster of Paris and printed CSF in
some areas. This may be air or support material that has filled
undetected gaps between the STL files used to create the
phantom.

Table III compares the range and mean of measured HU
in the phantom for acquisition ID C for both scanners with
simulated values.52 Additional data are taken from published
studies of patient data; scanner A was a Phillips Brilliance
64-channel CT scanner at 120 kV and the maximum obtain-
able tube current,53 scanner B was a GE Lightspeed VCT and
Scanner C a GE Discovery CT750 HD both operating at
120 kV.54 Additional values for the skull52,55 and CSF52 were
also obtained.

After an adjustment of 60 HU reasonable agreement is
seen and the images appear realistic. Figure 3 shows the
variation of HU values with kV for the phantom and plas-
tic source material (scanned in air) and plastic source sam-
ples (scanned in a 20 cm diameter water phantom). This
was carried out using a Siemens Symbia SPECT/CT sys-
tem. Good agreement between the plastic sample measure-
ments at 80kV with the initial material assessment in
Table I which also used a Siemens scanner. The kV

FIG. 1. Three-dimensional printing brain (left) and the completed phantom after coating with plaster of Paris (right).

TABLE II. Acquisition parameters for the two computed tomography scanners
used to scan the phantom.

Acquisition ID
kVp—
scanner 1

mA—
scanner 1

kVp—
scanner 2

mA—
scanner 2

A 100 300 100 255

B 120 150 120 150

C 120 300 120 300

D 135 300 140 280
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variation is as expected from a previous study40 with the
gray/white ratio diminishing with increasing kV. The
printed and water phantom values are higher than initially
measured material values particularly at 80 kV, which may
reflect beam hardening in the phantoms.

Figure 4 shows a comparison of the source MRI tissue
maps and the maps obtained after scanning the phantom on

both scanners and segmenting using the RWD and RWX set-
tings on both scanners; they are from acquisition C as the kV
and mAs are the same for both scanners and are typical of
clinical practice.1 Visual assessment of these images shows
generally good agreement. The RWD segmentations show
greater blurring between GM and WM than the RWX seg-
mentations, but with the RWX segmentations showing gross

SOURCE DATA SCANNER 1 -120KV SCANNER 2 - 120KV SCANNER2 - 80KV

FIG. 2. Comparison of the source magnetic resonance imaging (column 1) and phantom scan C (120 kV, 300 mAs) for scanner 1 (column 2) and scanner 2 (col-
umn 3) with an 80 kV acquisition on scanner 2 (column). The three rows depict different slices at different levels in the head/phantom. As the printer was only
capable of printing three different types of plastic no nonbrain structures —– such as the eyes or skull —– were printed. Computed tomography scans have
60 HU subtraction and are displayed with a window level of 30 HU, window width 90 HU. Representative ROIs used for determination of the mean HU for each
tissue type are shown in red.

TABLE III. Comparison of expected and measured HU values for scan C for both scanners (right hand columns). The expected values for scanners A to C are
from patient studies. Simulated values are from Monte Carlo simulations of clinical dose distributions. The measured phantom values for scanner 1 and scanner
2 are after a subtraction of 60 HU.

Tissue

Published data This study

Mean CT number
scanner A53 (120 kVp)

Mean CT
number

scanner B54 (120 kVp)
Mean CT number

scanner C54 (120 kVp)

Simulated
value (120 kVp52,
not specified55)

Mean scanner
1 (120 kVp)

Mean scanner
2 (120 kVp)

Gray matter 29.9 � 3.8 33.2 � 0.74 34.18 � 0.97 4052 35.8 � 9.9 32.9 � 6.7

White matter 22.7 � 3.8 25.06 � 0.6 26.11 � 0.93 3452 29.3 � 9.5 27.4 � 6.1

Cerebrospinal fluid — — — 1352 22 � 10.4 19.5 � 6.9

Cancellous bone — — 568–82855, 99952 690 715
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differences at the edge of the brain. These observations are
reflected in Fig. 5, where the highest DSC values for the GM
segmentations result from the RWD method for both scan-
ners, with a peak DSC of around 0.8. Figure 6 shows the
DSC results for acquisition C in more detail for each segmen-
tation type. As would be expected from Fig. 4, the DSC for
the RWX method is around 0.4 for both scanners for the
CSF, reflecting inaccurate segmentation at the edge of the
brain for the age-specific maps.

Finally, the accuracy of the segmentation of individual
brain structures is illustrated in Fig. 7. This shows a 3D over-
lay of the left hippocampus from the source data and from
the C acquisitions for both scanners. Visually, the overall
shape of the segmentations appears similar but both CT seg-
mentations appears offset from the source data by approx.
1 mm along the hippocampal axis and 2 mm laterally. This
is comparable to the voxel size of the segmentations
(1.5 mm) used to create the phantom itself and to assess CT
scans of the phantom, and considerably greater than the max-
imum print resolution of 0.1 mm. The scanned segmentation
does not appear to show any substantial distortion relative to
the source data.

4. DISCUSSION

This study has used two scanners with consistent acquisi-
tion parameters and two segmentation methods. Method 1
used the default SPM12 segmentation and method 2 replaced
the tissue prior maps with age-specific alternatives. These
maps were used after a number of mis-segmentations of CSF
for patients with large ventricles were observed. For the mis-
segmentations areas of ventricular CSF toward the edge of

the brain (i.e., outside the areas in the SPM12 CSF prior
map) were mis-classified as WM. The age-specific maps had
larger ventricles and resulted in visually more accurate seg-
mentations of ventricular CSF.

The measured DSC in this study approach 0.8 for GM
segmentation for rewindowed scans. These are lower than
values obtained in a recent study comparing an enhanced
segmentation approach based on SPM12 but incorporating
neuroanatomy-constrained correction of tissue boundaries
based on the local topological properties of the GM/WM
interface.31 Their approach obtains higher DSC for WM
and CSF (0.85 and 0.91, respectively), indicating the suc-
cess of their method, with a similar DSC measured for
GM of 0.87. It is worth noting, however, that in order to
demonstrate the utility of their method the study authors
had to collect data from consented patients and had to
exclude poor quality scans.

The highest DSC values — between 0.7 and 0.8 for all tis-
sues — were calculated for scanner 2 using rewindowing and
default segmentation. These values were only slightly higher
than those calculated for scanner 1 and would be unlikely to
cause a discernible difference between analyses carried out
on segmented data from the scanners. It is interesting to note
that a SPECT/CT system has comparable performance to a
dedicated CT scanner and could lead to the routine acquisi-
tion of diagnostic CT data from SPECT/CT systems at the
same hospital visit for HMPAO SPECT scanning for demen-
tia patients.

As previously noted, in Fig. 4 the peripheral CSF in the
source data is represented in the RWD results but not in the
final two columns which illustrate inaccurate CSF segmenta-
tion using the RWX methods. This is reflected in the DSC
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labeled “water”). Results are after a subtraction of 60 HU.
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values in Fig. 6, with values as low as 0.38 for scanner 1.
This effect can sometimes be seen when segmenting MRI
scans using the old age priors as opposed to the default
SPM12 maps and represents an advantage to using the rela-
tively blurred SPM12 maps for normal subjects. It may be
that the optimal approach would be to blur the old age maps,
or create new maps with relatively large ventricles by averag-
ing the results of successful segmentations of older subjects.

It appears that rewindowing improves contrast (or at least
makes the images have a similar dynamic range to MRI) and
uniformly improves DSC results. Additionally, the DSC
results from scanner 2 are higher for some settings, possibly
reflecting the larger voxel size and lower noise.

The representation of the skull is relatively crude, as it
was simply moulded around the 3D printed brain and CSF.
Although the plaster of Paris impregnated bandage was
applied directly to the printed phantom, and manually
moulded to its contours, the scans show an air gap between
the skull and CSF. This is due to contraction either of the
printed material or, more likely, the plaster of Paris. In addi-
tion, it is thinner than a typical skull although more plaster of
Paris could easily be added. However, while these

shortcomings reduce the realism, they are unlikely affect the
accuracy of GM and WM segmentation and will still provide
the required attenuation. Although further work is required to
fine tune the scanned HU values of the three main tissues and
to 3D print simulated bone, we were able to create the phan-
tom for approximately £900 using commercial 3D printing
equipment, open source software, and freely available imag-
ing data. It took 2 hours to create the STL files from the
downloaded ADNI data, although this procedure could be
automated.

As outlined in the introduction, although the contrast
available from MRI is considerably greater than CT, subtle
differences in image acquisition and even scanning the same
individual but on different scanners has the potential to yield
different results.56 Physical phantoms that can adequately
simulate the human brain are not available, although digital
brain phantoms have been used to demonstrate that SPM,
FSL, and FreeSurfer underestimate GM and overestimate
WM volumes with increasing noise.24 Results from simulated
images are always limited in their application because simu-
lated images cannot capture the full complexity of real MR
images and it has been demonstrated that, in the case of FSL
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WHITE MATTER

CEREBROSPINAL FLUID

RWD SCANNER 1 RWD SCANNER 2RWX SCANNER 1 RWX SCANNER 2SOURCE DATA

RWD SCANNER 1D SCANNER 1

FIG. 4. Comparison of tissue maps in patient space for the source magnetic resonance imaging (left) and after segmentation of acquisition C using the rewin-
dowed default (RWD) method for scanner 1, RWD for scanner 2 then the rewindowed age-specific maps (RWX) methods for each scanner. Top row is gray mat-
ter, second row is white matter, and third row is cerebrospinal fluid. It can be seen that the RWX segmentations are noticeably less blurred. The bottom row
compares default segmentations with (RWD) and without rewindowing (D) for scanner 1, showing greater uniformity particularly around the motor/sensory cor-
tex for RWD.
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FAST, it is not sufficient to use simulated images to get an
idea of how a segmentation algorithm will perform on real
datasets.20 A study of the effects of deviations from ideal
image quality on the output of the brain boundary shift inte-
gral method showed that measurement errors can exceed the
disease effect in AD.17 The ADNI MRI protocols57 demon-
strate that standardization can be successfully applied in this
area but may be too stringent for routine clinical use.

It may well be possible to use phantoms to measure
parameters that could be used as exclusion criteria in the clin-
ical use of CT analyses, thereby increasing sensitivity, speci-
ficity, and clinical confidence. It appears from this work that
rewindowing is a necessary prerequisite for the use of CT
segmentation and that DSC levels of 0.8 are achievable and
could serve as an initial threshold.

The effects of neuroimaging on clinical confidence analy-
ses are not an area that has been investigated rigourously, the
effects of analyses even less so.58–61 The literature appears to
concentrate more on novel methods rather than demonstrat-
ing the usefulness of existing ones.

It would be relatively straightforward to create multiple
phantoms of the same subject with progressive atrophy; the
atrophy could be simulated from a “base” scan or by the
assessment of multiple patient scans from the ADNI data-
base. A recent publication has indicated that the changes in
brain structure in Alzheimer’s patients can be detected in
periods as short as 6 months on serial MRI scanning62 and
the comparison of serial CTs also show promise.63 Care
would be required when creating multiple STLs/phantoms
with only small differences as inaccuracies in the preprocess-
ing may mask these changes.64 It may be the case that in the
future the systematic use of phantoms to minimize the vari-
ance of image/segmentation quality across scanners may
improve the accuracy of patient analyses using approaches
such as deep learning.65,66

A recent study on CT segmentation indicates that higher
accuracy than achieved in this study may be obtained via
enhancements to SPM12 or the development of a machine
learning approach utilizing a support vector machine.67 These
studies used data pooled across multiple scanners and have
limited applicability as the effects of different scanners, and
acquisition protocols cannot be examined without further

data collection from human subjects. More importantly they
utilize a ground truth for DSC calculation for CT segmenta-
tion based on MRI segmentation for the same patient. These
datasets are time consuming and expensive to collect and rep-
resent arguably a less reliable ground truth than the CT phan-
tom described in this work.

5. CONCLUSIONS

We have demonstrated that 3D printing can be used to cre-
ate a highly realistic — in terms of both physical characteris-
tics (HU) and anatomical accuracy — physical CT phantom
of the human brain. As the precise internal structure of the
phantom is known it was possible to demonstrate the similar-
ity of the two scanners and the improved performance of one
of the segmentation methods compared to the other. To our
knowledge this is the first study of these areas.

This phantom has immediate applications in dose vs
image quality optimization for visual image interpretation
and the selection of minimum acceptable segmentation accu-
racy for existing and proposed clinical CT segmentation
workflows.
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