NeuroImage: Clinical 26 (2020) 102203

journal homepage: www.elsevier.com/locate/ynicl _—

Contents lists available at ScienceDirect

Neurolmage: Clinical

Neurolmage:

CLINICAL

Systems modeling of white matter microstructural abnormalities in

Alzheimer's disease

a,l a,l

Emrin Horgusluoglu-Moloch™", Gaoyu Xiao

, Minghui Wang

Check for
updates

! Qian Wang®', Xianxiao Zhou™’,

Kwangsik Nho”, Andrew J. Saykin"™, Eric Schadt”, Bin Zhang™", the Alzheimer's Disease

Neuroimaging Initiative (ADNI)

2 Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
Y Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA

¢ Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA

ARTICLE INFO

Keywords:

Alzheimer's disease

Diffusion tensor imaging

White matter

Brain regions

CELF1

Immune response

Gene expression

Multiscale embedded gene coexpression
network analysis

ABSTRACT

Introduction: Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD).
However, it is unclear which brain regions have the strongest WM changes in presymptomatic AD and what
biological processes underlie WM abnormality during disease progression.

Methods: We developed a systems biology framework to integrate matched diffusion tensor imaging (DTI),
genetic and transcriptomic data to investigate regional vulnerability to AD and identify genetic risk factors and
gene subnetworks underlying WM abnormality in AD.

Results: We quantified regional WM abnormality and identified most vulnerable brain regions. A SNP rs2203712
in CELF1 was most significantly associated with several DTI-derived features in the hippocampus, the top ranked
brain region. An immune response gene subnetwork in the blood was most correlated with DTI features across all
the brain regions.

Discussion: Incorporation of image analysis with gene network analysis enhances our understanding of disease
progression and facilitates identification of novel therapeutic strategies for AD.

1. Introduction

Alzheimer's disease (AD) is the most common type of dementia,
affecting 5.7 million people in the U.S. alone, with the number of new
diagnoses increasing dramatically each year (Weiner et al.,, 2015;
Alzheimer's, 2016, Weiner et al., 2017). AD patients display hippo-
campal atrophy, memory impairment, and other cognitive and axonal
loss. The ultimate outcome of AD is neuronal loss and catastrophic
memory deficits. While many studies have focused on amyloid and
neurofibrillary pathology and cortical atrophy in the cortex and sub-
cortical gray matter, less attention has been paid to the significant
white matter (WM) abnormalities, such as demyelination, microglial
activation, loss of oligodendrocytes and reactive astrocytosis, that have
been characterized recently (Acosta-Cabronero and Nestor, 2014; Dean
et al., 2017).

Magnetic resonance imaging (MRI) technology provides a path to
more thoroughly explore associations between white matter

abnormalities and AD related phenotypes. With increasingly high-re-
solution characterizations of brain structure, MRI now plays an im-
portant role in the diagnosis of AD (Knight et al., 2016; Rathore et al.,
2017). Diffusion tensor imaging (DTI) detects abnormal changes in
neuronal fibers at the microstructural level in mild cognitive impair-
ment (MCI) and AD, and provides data on the integrity of brain cir-
cuitry (Rathore et al., 2017; Shen et al., 2017). DTI detects the 3-di-
mensional (3D) diffusion of water molecules along the main fiber
directions (Alexander et al., 2007; Basser and Pierpaoli, 2011), giving
rise to specific features such as mean diffusivity (MD) and fractional
anisotropy (FA) in white matter regions that have been demonstrated to
be strongly correlated WM damage and cognitive impairment (Naggara
et al., 2006; Lee et al., 2017). However, despite the roles well-estab-
lished AD biomarkers such as amyloid-f3 deposition and inflammation
are known to play in disrupting WM integrity during the early stages of
AD, only a small number of studies to date have focused on specific DTI
features to identify associations between CSF-biomarkers and changes
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in WM integrity in AD (Bendlin et al., 2012; Melah et al., 2016). Given
this lack of attention, several key questions remain to be explored re-
garding variations in WM associated with AD-related traits, including
the identification of brain regions in which WM changes most strongly
correlated with presymptomatic AD and the identification of molecular
and biological processes that underlie WM abnormalities that develop
as a result of disease progression.

To help address these critical questions, we systematically inter-
rogated DTI, genetic, gene expression and clinical data generated on
participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Given amyloid beta depositions and neurofibrillary tangle pathology
are associated with a range of pathophysiologic changes in the brain,
including axonal degeneration, disruption of cytoskeletal equilibrium,
and synaptic dysfunction (Mandelkow et al., 2003; Cardenas et al.,
2012), we sought to characterize covariation structures between DTI-
derived features and AD-related traits such as CSF tau/p-tau and Abeta
levels, episodic memory scores, and metabolic activity and amyloidosis
(PET) during disease progression. Specifically, we employed a systems
biology framework to organize, process, and integrate these data and
then characterize the associations among the different dimensions
(imaging, molecular, and clinical) of data. Our framework provided for
a completely data driven approach to first rank-order all brain regions
with respect to their ability, through DTI-derived features, to dis-
criminate between AD cases and controls. Then, from the top ranked
brain regions, we systematically modeled white matter microstructural
abnormalities in AD to identify 1) regional differences in micro-
structural changes; 2) correlations between AD-pathology related en-
dophenotypes and brain region specific DTI-features; 3) key biological
processes underlying WM pathology by integrating DTI and gene ex-
pression data; and 4) AD susceptibility loci associated with micro-
structural changes in AD. From this integrative analysis, we identified
several DTI-derived features that were not only strongly associated with
AD-related traits, but that were associated with known genetic risk loci
in known AD-risk genes such as CELF1. In addition we identified an
immune-associated gene network in blood that was strongly associated
with these DTI features across all brain regions, providing a com-
plementary view of disease progression and therapeutic strategies for
AD.

2. Methods
2.1. Study participants

We obtained the data used in this study from the ADNI database
(adni.loni.usc.edu). ADNI was launched in 2003 by a public-private
partnership led by Michael W. Weiner. Participants were recruited from
more than 50 sites across the United States and Canada. ADNI partici-
pants consist of older individuals, aged 55-90, who are cognitively
normal (CN), or who have significant memory concerns (SMC), mild
cognitive impairment (MCI) or clinically diagnosed AD (http://www.
adni-info.org/). The ADNI dataset includes structural MRI and PET
scans, longitudinal CSF markers, and performance on neuropsycholo-
gical and clinical assessments. In addition, the ADNI data include APOE
and genome-wide genotyping generated on study participants. We
analyzed diffusion tensor imaging scans from 269 individuals, including
57 CN older individuals, 33 individuals with SMC, 76 individuals di-
agnosed with EMCI, 27 individuals with LMCI, and 76 individuals di-
agnosed with AD. We note that not all individuals included in the
analysis of the DTI data had matched clinical and pathological data
(Supplementary Table S1). Clinical and neuroimaging procedures and
the other information about the ADNI cohort can be found at http://
www.adni-info.org/.

2.1.1. Study participants for each analysis
Since not all participants in ADNI had clinical and cognitive in-
formation, we wused different sample sizes for each analysis
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(Supplementary Table S2). The largest set was comprised of 269 in-
dividuals. However, since only 255 or fewer individuals had their
phenotype information such as memory scores, cerebrospinal fluid
(CSF) amyloid beta and tau levels and CDR score (more information can
be found in Supplementary Table S1), we opted to use all available
samples (Table 2 and Supplementary Table S1) for the correlation
analyses involving each DTI feature and the neuropathological traits.
For the co-expression analysis we used 735 individuals (CN =258,
EMCI=212, LMCI=225, AD=40) from gene expression profiling data
in ADNI. For correlation analysis of co-expression network and DTI
features we used 105 individuals (CN =34, MCI=56 and AD =15) who
had matching blood expression and DTI data. For the genetic associa-
tion analysis we used 225 individuals (CN =46, SMC =29, EMCI=62,
LMCI=25, AD=63) from ADNIGO/2 who had both DTI scans and
genotyping data.

2.2. Acquisition of the diffusion weighted MRI data

Diffusion weighted MRI (DWI) data were downloaded from the
ADNI website. Typical DWI acquisition parameters for these data were
as follows: Field Strength=3.0 T; Flip Angle=90.0 degree; Gradient
Directions=41.0; Manufacturer=GE MEDICAL SYSTEMS; Matrix
X =256.0 pixels; Matrix Y=256.0 pixels; Matrix Z=3588.0; Pixel Size
X=1.37 mm; Pixel Size Y=1.37 mm; Pulse Sequence =EP/SE; Slice
Thickness =2.70 mm; TE=57.205 ms; TR =9050.0 ms.

2.3. Diffusion tensor imaging processing

The diffusion weighted MRI (DWI) data were first corrected for
Eddy current distortion through affine registration to a reference vo-
lume (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy). Next, using the
Brain Extraction Tool (BET, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET),
we removed the skull from each DWI image. We computed the DWI
image features based on two different reconstruction models: 1) a single
tensor model (DTI) and 2) neurite orientation dispersion and density
imaging (NODDI) model. Altogether, 9 DWI features were computed, 8
of them are based on DTI model, and the remaining one is based on
NODDI model. Details of these 9 features based on regarding these two
models are described below, (Table 1).

2.3.1. Single tensor model

In the single tensor model, an ellipsoid (tensor) for each 3D image
voxel is computed to quantify the magnitude and anisotropy of water
diffusion at the corresponding spatial location. Eigenvalues (A1, Ao, A3)
are then computed from each 3D tensor and used to generate eight DTI
features: 1) Fractional anisotropy (FA), 2) Mean diffusivity (MD), 3)
Axial diffusivity (L1), 4) Radial diffusivity (RD), 5) Linearity of the
tensor (LIN), 6) Sphericity of the tensor (SPH), 7) Planarity of the tensor
(PLA) and 8) Mode of the tensor (MOD) using FSL (https://fsl.fmrib.ox.
ac.uk/fsl/fslwiki). These features are computed by the following for-
mulae:

1) Fractional anisotropy (FA), which indicates the degree of anisotropy
of a diffusion process:

Table 1
Demographic and clinical characteristics of the ADNI participants
CN SMC EMCI LMCI AD
N 57 33 76 27 76
Age (SD) 75.91 75.24 75.58 76 (6.884) 76.43
(6.765) (5.432) (8.211) (7.643)
Gender (M/F) 25/32 12/21 44/32 18/9 49/27
APOE (e4—/e4+) 37/19 21/12 45/29 10/16 22/53
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2) Mean diffusivity (MD), which represents the average rate of diffu-
sivity in all directions:
MD=<A>= Al+l32+l3

3) Axial diffusivity (L1), which indicates diffusivity parallel to the
majority of axonal fibers:

Li=X4

4) Radial diffusivity (RD), which captures the average diffusivity per-
pendicular to axial diffusivity:
bt A
2

RD

5) Linearity of the tensor (LIN), which evaluates the uniformity of the
diffusion direction along the main fiber direction (largest eigen-
value):

/11 —/12

LIN= ———
Lh+h+

6) Sphericity of the tensor (SPH), which measures a less uniform iso-

tropic diffusion process that implies more isotropic diffusion:
Mh+hb+5

7) Planarity of the tensor (PLA), which indicates the existence of dis-
persed fibers along just two dimensions:
2(h — 4s)
M+ X+

PLA =

8) Mode of the tensor (MOD), which differentiates three types of ani-
sotropy, including diffusion along a geometric plane, diffusion along
a single direction, or isotropic diffusion:

D Moy
W= AP+ o — P + (s — A

2.3.2. Neurite orientation dispersion and density imaging model (NODDI)

Although the single tensor model has been widely used to extract
DTI image features, the single model based measures all rely on the
assumption that there is only one axon orientation in each voxel.
However, this may not be the case for all brain regions. For example, it
has been reported that axonal bundles spread, bend, or cross one an-
other in white matter between the cerebral cortex and nuclei (Zhang
et al., 2011). With the NODDI model, the dispersion in axon orientation
can be explicitly represented. Therefore, in addition to the 8 DTI-based
features, the orientation dispersion index (ODI) (Zhang et al., 2012)
was chosen as the NODDI-based features in our analysis for its ability to
quantify angular variation of neurite orientation and the extent of or-
ientation dispersion about the mean orientation. Higher ODI values
indicate larger axonal dispersion.

2.3.3. Brain region parcellation
After all nine DWI features were computed for each subject, they
were registered to a common template image so that the voxels in each
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image could be transformed into a common coordinate system. In our
study, the image registration involves an affine registration step (FLIRT,
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT), followed by a non-linear
registration step (FNIRT, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT).
We chose the FA image of John Hopkins University Eve atlas (https://
www.mristudio.org/) as the common template image and registered the
FA feature image of each subject to this template. Using the transfor-
mation parameters that had been thus obtained, the other 8 feature
images were also transformed into the same coordinate system. In ad-
dition, we used the JHU-MNI SS Type-I Mori Atlas (https://www.slicer.
org/wiki/Slicer3:Mori-Atlas_labels JHU-MNI SS Type-I) to parcellate
the whole brain of each subject into a total of 176 brain regions
(Supplementary Fig. S2), which were subsequently evaluated for re-
levance to AD severity.

2.4. Endophenotypes

All AD-related endophenotypes, including amyloid beta levels,
Fluorodeoxyglucose (18F) (FDG)-PET and Florbetapir (AV-45) PET
were obtained from the ADNIGO/2 database (http://adni.loni.usc.edu).
CSF measurements and quality control data were downloaded from the
LONI website as “UPENN CSF Biomarkers Elecsys”. The complete de-
scriptions of the collection and process protocols are provided in the
ADNI procedural manual at www.adni-info.org. Alzheimer's Disease
Assessment Scale (ADAS-Cog), Mini-Mental State Examination
(MMSE), Rey Auditory Verbal Learning Test (RAVLT), Functional
Activities Questionnaire (FAQ), and Montreal Cognitive Assessment
(MoCA) and Clinical Dementia Rating Sum of Boxes (CDRSB), clinical
and cognitive performance scores were downloaded as representations
of cognitive test scores (Crane et al., 2012; Johnson et al., 2012). MMSE
and MOCA, which measure memory, recall, and attention, were used as
cognitive screening tests (Trzepacz et al., 2015). For all score types,
those scores determined closest in time to the diffusion MRI scan were
chosen for our analyses. Since not all participants in ADNIGO/2 have
cognitive and clinical recorded scores, Table 2a summarizes how many
participants were included for each correlation-based analysis.

2.5. A systems biology framework for the integrative analysis

We developed a systems biology framework to integrate brain re-
gion specific DTI data with matched genetic and gene expression data
to identify genetic risk factors and gene subnetworks underlying white
matter abnormalities in AD (Fig. 1).

2.5.1. Correlation analysis of brain region specific DTI-features and
neuropathological traits

As described above, along with the DTI scans, a number of clinical/
cognitive scores and AD pathology biomarkers (A(, glucose metabolism
and CSF-tau) were measured as surrogates of AD status for the ADNI
samples. We stratified the traits into two sets as clinical/cognitive
scores (ADAS13, MMSE, MOCA, RAVLT, FAQ, Ecog scores, CDR) and
AD-pathology (CSF-ABETA, CSF-TAU, FDG-PET and AV45-PET) that
reflect different aspects of AD and investigate the relationship between
DWI measures with them separately. We elucidated the correlation
structure between the imaging feature endophenotypes and clinical/
cognitive and pathology biomarker variables to investigate whether any
brain region-specific imaging endophenotypes were predictive of clin-
ical outcomes.

Since DTI features are quantified at the unit of voxel, and given
there are hundreds of thousands of voxels in each brain region, we first
reduced the dimensionality of the data by computing principal com-
ponents (PCs) from the voxel-level data for each region-specific DTI
feature in each brain region. Principal component analysis (PCA) is a
well-established method in neuroimage analysis to reduce data di-
mensionality. As a data-reduction algorithm, PCA generates a set of
new variables or principal components (PCs) that are orthogonal linear
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Fig. 1. A systems biology framework to integrate DTI, genetic, gene expression, and clinical data in AD. (A) DTI features were extracted and correlated with the
clinical and cognitive traits, to systematically rank order 176 brain regions by relevance to AD severity. (B) Multiscale gene coexpression network analysis was then
performed on the gene expression data to identify co-expressed gene modules that were enriched for genes that are correlated with DTI features, providing insights
into molecular processes associated with WM abnormalities. (C) Gene- and SNP-based association analyses were performed across 23 AD GWAS genes and nine DTI-
derived features to assess causal links between AD, AD-associated traits, gene expression traits, and DTI features. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

combinations of a given dataset to maximally explain the variance of
the dataset (Ghodadra et al., 2016; Jolliffe and Cadima, 2016). In this
study, we performed principal component analysis with the voxel-level
data for each DTI feature in each brain region, and took the first right-
singular vector (i.e. the first principal component, PC1) of the stan-
dardized voxel-level data as the representative-voxel, called eigen-voxel
in this paper. For each brain region, the voxel-wise DTI measurements
were treated as a two-dimensional matrix with samples in the rows and
voxels in the columns. We consider the voxels as individual variables.
PCA was performed on the two-dimensional data using the prcomp
function in R program language. We then used a respective PC1 as the
representative of each region-specific DTI feature. As a result of this
dimensionality reduction, we computed 9 eigen-voxels for each brain
region, corresponding to the 9 DTI features. We then computed
Spearman's correlation coefficient r; between each clinical/cognitive
(i) and each eigen-voxel (j) in each brain region (k). P value significance
(Pyi) of the correlation coefficient was computed via the asymptotic t
approximation. Significant correlations were defined as those with
Bonferroni adjusted P value less than 0.05 (adjusted by the i*j*k
number of correlations computed).

In addition to characterizing the correlation between DTI features
and AD-related cognitive traits, we sought to prioritize the different
brain regions with respect to their relevance to AD by comparing the
magnitude of the correlations between the imaging features and cog-
nitive/clinical measures. For this purpose, the various eigen-voxel and
clinical/cognitive trait correlations for a brain region (k) were as-
sembled into a composite importance score defined as Sy = %ZU ],
where n denotes the number of correlation values (i.e. number of traits
times 9 features). The importance score essentially computes the mean
of the absolute value of the correlation coefficients across traits and DTI
features. We have previously used this type of composite score to
ranking the importance of key driver genes identified in gene networks
across multiple brain regions (Zhang et al., 2013). However, instead of
ranking based on p values as was done in this previous work, we sought
to use a quantitative sorting measure from the magnitude of the asso-
ciation in order to incorporate more information into this sorting
measure. Finally, the composite importance scores (Sx) were normal-
ized by dividing by the maximum score, and the brain regions were
subsequently rank ordered by this normalized importance score. The

brain region with the highest composite importance score was ranked
as the top one, while the brain region with the lowest composite im-
portance score was ranked as the bottom one. In this analysis, we used
all available clinical/cognitive traits to give an unbiased ranking of the
brain regions as only few participants have AD-pathology variables.
However, we tested whether each top ranked region was also highly
correlated with AD-pathology endophenotypes to predict white matter
changes in AD.

ROI analysis is a simple and effective means to investigate white
matter changes in small, well defined regions on good quality data. In
the ROI analysis, the average signal of all the voxels in a region is
correlated with clinical outcomes. However, the previous studies have
showed that this technique is prone to error and not suitable for the
investigation of structures with complex boundaries or poorly defined
changes in white matter microstructure (Hermoye et al., 2006; Froeling
et al., 2016). To compare the performance of ROI and PCA, we per-
formed a large scale correlation analysis between each voxel with PC1
and ROI from each DTI feature in each region. In all the 176 regions,
67.4% of the voxels are better correlated with PCls than ROIs. The
distributions of correlation coefficients from ROIs and PCls are shown
in the Supplementary Fig. S3.

2.5.2. Correlation analysis of gene co-expression network and DTI features

To further characterize the correlation structure between DTI fea-
tures, clinical/cognitive traits, and biological processes, we constructed
coexpression networks using the quality-controlled and normalized
gene expression profiling data generated on the blood samples collected
on ADNI participants (N =744). These data were downloaded from the
ADNI LONI website (http://adni.loni.usc.edu) (Saykin et al., 2015).
These gene expression data were generated using the Affymetrix
Human Genome U219 platform (Affymetrix, Santa Clara, CA). Probe
sets defined on this platform that did not map to any gene or that
mapped to multiple genes were excluded from further analyses. For
genes represented by multiple probe sets, the probe set giving rise to the
most expression variation across all samples was selected as the re-
presentative for the gene. The purpose of choosing the probe sets with
most variation is to keep the probe sets with signals (e.g. differentially
regulated) among individuals and conditions (low variation means no
difference between different conditions). So, with highest variation we
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can retain genes/isoforms have difference between case and control and
exclude those genes have little/no difference (Mancarci et al., 2017). In
total, 17,849 genes were included for the gene expression analysis. We
excluded 9 samples that were not associated with gender and age in-
formation, given gender and age information are needed to appro-
priately adjust the gene expression data for our analyses. This resulted
in 735 samples being used for the co-expression network analysis.

A gene co-expression network for the ADNI blood expression data
was constructed using Multiscale Embedded Gene co-Expression
Network Analysis (MEGENA) (Song and Zhang, 2015). This process
involves first constructing a planar filtered network in MEGENA from
significantly correlated gene pairs. The output of this step is then input
into a multiscale clustering analysis to identify co-expression modules
using different scales of compactness of modular structures controlled
by a resolution parameter. The modules identified from this step are
then compared to random Planar Filtered Network (PFN) modules
generated by shuffling the link weights of the parent cluster to calculate
statistical significance. Finally, to elucidate the structure of the sig-
nificant coexpression modules, a multiscale hub analysis is run to
identify highly connected hub nodes (genes) for each significant
module. MEGENA modules identified via this process containing less
than 50 genes were excluded from further analysis. Principal compo-
nent analysis was performed on the modules to obtain the principal
component vectors (eigen-genes) used in the gene expression-DTI fea-
ture correlation analysis. In addition, gene ontology enrichment ana-
lysis (Wang et al., 2012) was performed on the significant gene modules
to identify representative biological processes associated with the
modules. Pearson and Spearman correlation analyses were carried out
on the module eigen-genes and the DTI features across the 176 brain
regions. To control for multiple testing, we employed a Bonferroni
correction procedure, and adjusted p values < 0.05 were considered
statistically significant.

2.6. Genotyping data and quality control

GWAS and APOE genotyping data generated on the ADNI partici-
pants were downloaded from LONI. ADNIGO/2 samples were geno-
typed according to manufacturer's protocol (Illumina, Inc., San Diego,
CA) using the Human OmniExpress BeadChip. SNP quality control
procedures of GWAS data such as SNP call rate < 95%,
Hardy-Weinberg equilibrium test p < 1 x 1075, and frequency fil-
tering (MAF = 5%) were performed using PLINK (http://pngu.mgh.
harvard.edu/~purcell/plink/), version 1.07 (Purcell et al., 2007;
Saykin et al., 2010; Hohman et al., 2014; Ramanan et al., 2014). For
sample quality procedures, due to limitations of population stratifica-
tion in this cohort, only non-Hispanic Caucasian participants were se-
lected for this analysis by genetic clustering with CEU (Utah residents
with Northern and Western European ancestry from the CEPH collec-
tion) and TSI (Tuscans in Italy) populations using HapMap 3 genotype
data and multidimensional scaling (MDS) analysis after performing
standard quality control (QC) procedures for genetic markers and par-
ticipants (Ramanan et al., 2014). Markov Chain Haplotyping software
based on the 1000 Genomes Project as a reference panel was used to
impute un-genotyped SNPs (Ramanan et al., 2014).

2.7. Association analysis

For association analysis we used 225 individuals (CN=46,
SMC=29, EMCI=62, LMCI=25, AD=63) from ADNIGO/2 who have
both DTI scans and genotyping data. Set-based association tests were
performed in an additive genetic model using PLINK (Purcell et al.,
2007) for 23 International Genomics of Alzheimer's Project (IGAP)
genes (Lambert et al., 2013). For each of the 23 gene regions, SNPs
falling into untranslated regions, 3" UTR, 5’ UTR, coding regions, in-
tronic regions, and regulatory regions ( = 100 kb of upstream and
downstream regions) were considered. A total of 12,438 variants passed
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filters and QC from the 23 gene regions. A mean test statistic for each
SNP for each set (gene) was computed to determine if other SNPs were
in linkage disequilibrium (LD; i.e., r? > 0.5). For each SNP within each
set a quantitative trait analysis (QT) was then performed, with age and
sex included as covariates. Then, the top independent SNPs in each set
were selected if their p-values were less than 0.05 in the QT analysis.
From these subsets of SNPs, the statistic for each set was calculated as
the mean of these single SNP statistics. Empirical p values for each set
were calculated from 20,000 permutations. In ADNIGO/2, a con-
servative significance threshold (p < 0.00217) was used based on
Bonferroni correction for 23 IGAP genes.

2.8. Construction of CELF1 centered co-expression gene network in AD

Previously, CUGBP Elav-Like Family Member 1 (CELF1) is identified
as GWAS significant gene in AD (Hinney et al., 2014). CELF1 co-loca-
lizes with other CELF proteins and regulates pre-mRNA alternative
splicing, mRNA editing and translation (Dasgupta and Ladd, 2012).
Since we identified that CELF1 was significantly associated with the
establishment of WM integrity in the hippocampus, for further func-
tional analysis we constructed CELFI centered co-expression gene net-
work and identified functional pathways enriched in the CELFI-cen-
tered subnetwork. We assembled 6 gene expression datasets from 6
different brain regions spanning 3 human postmortem brain cohorts,
including the Mount Sinai Brain Bank (MSBB) AD RNA-seq (4 cortex
regions) (Wang et al., 2018a), MSBB AD microarray (hippocampus re-
gion) (Haroutunian et al., 2009; Wang et al., 2016), and the Religious
Order Study and Memory Aging Project (ROSMAP) RNA-seq (DLPFC)
(David et al., 2012a; David et al., 2012b). The number of subjects for
each human postmortem brain cohort can be found in Supplementary
Table S3. The MSBB AD cohort contained brain specimens obtained
from the Mount Sinai/JJ Peters VA Medical Center Brain Bank, which
holds over 1,700 samples. This cohort was assembled after applying
stringent inclusion/exclusion criteria and represents the full spectrum
of disease severity ranging from cognitively normal to severe dementia.
RNA-sequencing gene expression profiles were generated across 4
cortex brain regions from approximately 360 brains (Wang et al.,
2018b). In addition, microarray gene expression data generated on 19
different cortical regions, including hippocampus, isolated from 55
brains from MSBB were also used (Wang et al., 2016). The ROSMAP
dataset included two prospective cohort studies of aging, i.e. the Re-
ligious Order Study (ROS) and the Memory and Aging Project (MAP)
(De Jager et al., 2018a). While all subjects were without known de-
mentia at study entry, ~60% of the subjects presented a pathologic
diagnosis of AD at autopsy. Postmortem RNA-sequencing data were
generated from dorsolateral prefrontal cortex (DLPFC) of over 600
brains (De Jager et al., 2018b). The MSBB AD microarray data was
obtained from gene expression omnibus (GEO) (accession GSE84422).
For the MSBB AD RNA-seq and ROSMAP RNA-seq cohorts, the pre-
processed expression data matrices were downloaded from the AMP-AD
knowledge portal at Synapse (Wang et al., 2018a). For each dataset, a
Pearson's correlation matrix was derived by calculating correlation
coefficients between CELFI and each of the remaining individual genes.
For simplicity, we focused only on the set of genes that were present in
all 6 datasets. Finally, the genes showing significant correlation with
CELF1 (FDR-corrected pvalues < 0.05) in all datasets with consistent
correlation direction were used to define the consensus CELF1-centered
correlation network.

3. Results

3.1. Regional DTI features are significantly correlated with AD clinical
outcomes

We stratified the traits into two sets as clinical/cognitive scores
(ADAS13, MMSE, MOCA, RAVLT, FAQ, Ecog scores, CDR) and AD-
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Fig. 2. A) Rank-ordered brain regions according to the extent of association to the clinical/cognitive features. B) Heatmap of the correlations between clinical/
cognitive traits and DTI-derived features. Cognitive and pathological traits with DTI-derived features are listed on the right axis, while the top 50 brain regions are
listed across the top axis. The intensity of the color in each cell indicates the magnitude of the Spearman's rank correlation coefficient between the corresponding row
and column variables, for those correlations with adjusted pvalues < 0.05. Red indicates positive correlation; blue indicates negative correlation.
Fluorodeoxyglucose (18F) (FDG)-PET; Florbetapir (AV-45) PET, Alzheimer's Disease Assessment Scale (ADAS-Cog), Mini-Mental State Examination (MMSE), Rey
Auditory Verbal Learning Test (RAVLT), Functional Activities Questionnaire (FAQ), and Montreal Cognitive Assessment (MoCA) and Clinical Dementia Rating Sum of
Boxes (CDRSB), clinical and cognitive performance scores, self (PT)- and informant (SP)- everyday cognition (ECog) memory scores, Fluorodeoxyglucose (18F)
(FDG)-PET and Florbetapir (AV-45) PET. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 2
The number of participants considered for the imaging-clinical/cognition cor-
relation analyses across the five disease categories.

Phenotypes CN SMC EMCI LMCI AD
Clinical

ADAS13 (N=254) 57 31 72 25 69
MMSE (N =255) 57 31 73 25 69
MOCA (N=248) 57 31 71 25 64
RAVLT immediate (N=251) 56 31 73 25 66
RAVLT learning (N=251) 56 31 73 25 66
RAVLT forgetting (N=250) 56 31 73 25 65
FAQ (N=251) 56 31 69 25 70
EcogPtTotal (N =249) 57 31 72 25 64
EcogSPTotal (N=246) 56 30 65 25 70
CDRSB (251) 56 30 70 25 70
AD-pathology related

CSF_ABETA (N=50) 12 12 6 4 16
CSF_TAU (N=62) 14 17 10 5 16
CSF_PTAU (N=62) 14 17 10 5 16
[18F1plorbetapir PET (AV45) (N=134) 36 25 30 12 31
FDG_PET (N=44) 13 4 10 3 14

pathology scores (CSF-ABETA, CSF-TAU, CSF-PTAU FDG-PET and
AV45-PET) that reflect different aspects of AD and investigated the
association of DWI measures with cognitive and pathological scores
separately. To characterize association of DTI-derived features, which
define the structure in the human brain, with AD-related clinical/cog-
nitive traits and pathology endophenotypes, we computed correlations
between the first principal component of each of the 9 DTI features in
each of the 176 regions and cognitive traits, and then rank-ordered
these brain regions according to the extent of association of each region
to the cognitive features. The top 10 ranked regions with cognitive
scores in the descending order were the hippocampus left (HIPPO-left),
the sagittal stratum left (SS-left), the hippocampal cingulum left
(CHIPP-left), the superior temporal white matter left (STWM-left), the
parahippocampal gyrus right (PHG-right), the HIPPO-right, the SS-
right, the STWM-right, the CHIPP-right and the fusiform white matter
right (FWM-right) (Fig. 2A; Supplementary Table S4). The PHG, one
top region identified, was recently identified as the most affected region
with respect to transcriptomic changes among 19 brain regions in an
independent AD cohort from the Mount Sinai Brain Bank (Wang et al.,
2016). Since AD-pathology endopenotypes were available for only few
individuals, they were not used for ranking regions. Instead, we tested
how AD-pathology traits were correlated with the DTI-derived mea-
surements of the top ranked regions (Supplementary Table S5).

For the top 50 brain regions, we performed a more expansive cor-
relation analysis between the first principal components of the 9 DTI-
derived features in each region and various clinical/cognitive traits.
Higher values of some clinical features such as CDR, ADAS13, Ecog
memory scores were associated with poor outcomes while higher scores
of the others clinical features such as MOCA, MMSE and RAVLT were
associated with improved outcomes (Fig. 2B). Our results show that
MD, RD and L1 features were all predictive of poor outcomes, and they
were highly correlated with the clinical dimentia rating (CDR) score as
well as composite memory scores, such as RAVLT, MMSE, MOCA, and
ADAS 13, across all top 10 brain regions. In contrast, the FA and LIN
DTI-derived features were predictive of improved outcomes, although
the correlations with AD endophenotypes in these instances were not
consistent across the top 10 brain regions. FA score is highly associated
with MOCA, FAQ and ECogSP scores in the hippocampus left, the
saggital stratum and STWM regions. Informant Ecog memory score, are
highly correlated with DTI-derived features except PLA and MOD across
10 brain regions (Fig. 2B). MOD and PLA are not informative of clin-
ical/cognitive outcomes in AD.

Our correlation analysis between the first principal components of
the 9 DTI-derived features in top ten ranked regions and various AD
pathology traits revealed that the hippocampus right and left, the
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sagittal stratum left, the parahippocampal gyrus right and the cingulum
right and left were significantly associated with amyloid beta pathology
while MD, RD and L1 features in the HIPPO right and left, the SS left,
the PHG right, the CHIPP right and left were highly correlated with
amyloid beta accumulation (AV45 PET) (corrected p-value < 0.05)
(Fig. 2B; Supplementary Table S5). Given L1 (axial diffusivity) is as-
sociated with axonal injury (Acosta-Cabronero et al., 2010) and RD
(radial diffusivity) is highly associated with demyleination (Bosch et al.,
2012; Mayo et al., 2018) and both DTI features increase in AD patients,
these results support amyloid pathology as highly associated with white
matter microstructural damage in the hippocampus, the cingulum
(hippocampus), the sagittal stratum left as well as the parahippocampal
gyrus right.

3.2. Co-expression-diffusion network analysis establishes a link between
DTI features and a blood transcriptional network associated with AD

To connect the imaging and clinical feature data with molecular
data that can help elucidate the biological processes associated with
variations in the DTI features, we constructed gene coexpression net-
works from molecular profiling data generated on the blood of
ADNIGO/2 participants. Applying MEGENA (Song and Zhang, 2015) to
these data captured interactions among 17,849 genes and identified
150 gene co-expression modules (Supplementary Table S6) comprised
of highly interconnected (coregulated) genes. A total of 105 ADNIGO/2
participants had DTI scans that were matched with blood gene ex-
pression data (Supplementary Table S7). We correlated the eigen-
genes computed for each module with the 9 DTI features for each brain
region (Supplementary Table S8), identifying all significant correla-
tions at a Bonferroni adjusted significance threshold of p < 3.7 x 107>
(Table 2). We also carried out gene ontology enrichment analysis to
annotate the MEGENA modules with representative biological process
categories (Supplementary Table S9). Among the significant expres-
sion module-DTI feature correlations identified, a module enriched for
immune response, cytokine signaling was found to be most correlated
with demyelination and axonal injury in left fusiform white matter and
right superior occipital gyrus, right supramarginal gyrus and post-
central gyrus. In addition, modules associated with cell surface receptor
signaling, neurotrophin TRK receptor signaling, B cell activation, cell
differentiation, regulation of response to stimulus, actin filament
bundle assembly, glomerulus development and cellular developmental
process, were significantly correlated with DTI data in the right me-
dulla. Modules enriched for cell-cell adhesion, IRE1-mediated unfolded
protein response, RNA interference and post-transcriptional regulation
of gene expression were correlated with the right inferior fronto occi-
pital fasciculus, while the modules associated with sensory perception,
nervous system process and G-protein coupled receptor signaling were
strongly correlated with DTI features in the left corticospinal tract.

To further characterize the degree of association between the gene
coexpression modules and DTI features, we rank-ordered the modules
based on the degree of association between each module and the DTI
features in all the regions (Supplementary Table $10). Fig. 3 depicts
the correlation summary for all the modules. The module M30, which is
associated with immune response pathways, is the module most asso-
ciated with multiple brain regions and DTI features (Fig. 3B). Fig. 3C
shows the network structure of M30 and highlights 7 highly connected
(hub) genes including SERPING1, BATF2, PML, IRF7, IFI35, IFIT3 and
RNF31.

3.3. Genetic links between DTI features and AD risk loci

While the gene coexpression network analysis provides a way to link
coherent molecular interactions in blood with the brain imaging data,
pleiotropic relationships between imaging data and genetic risk loci for
AD reflect potentially more direct causal links. To identify such links we
analyzed the DTI scans from the participants’ most recent visits and
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Table 2a

Known pathways enriched in the gene modules significantly correlated with DTI-features in specific brain regions. The column Corrected p-value shows corrected p values for the Spearman's rank correlation between the

indicated DTI feature and gene expression module.

Corrected p-value

Enriched Pathways

Coexpression Module

DTI Feature

Region

1.34 x 1072

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

process

M30

FA

Superior occipital gyrus right

1.62 x 1072

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

process

M30

PLA

Supramarginal gyrus left

2.16 x 1072

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

process

M30

PLA

Supramarginal gyrus right

2.70 x 1072

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

process

M30

LIN

Supramarginal gyrus left

2.97 x 1072

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

process

M30

PLA

Postcentral gyrus right

3.24 x 102

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

M30

MD

Supramarginal gyrus right

process

3.38 x 102

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

process

M30

RD

Supramarginal gyrus right

3.92 x 1072

Sensory perception, nervous system process and G-protein coupled receptor signaling pathway

M18

ODI
O!

Corticospinal tract left

432 x 1072

Cell-cell adhesion, IRE1-mediated unfolded protein response, RNA interference and posttranscriptional regulation of gene expression

M145

DI

Inferior fronto occipital fasciculus

right
Supramarginal gyrus right

432 x 1072

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

M30

L1

process

4,46 x 102

immune response, response to cytokine, cytokine-mediated signaling pathway, innate immune response, regulation of immune system

process

M26

MD

Fusiform WM left

8.51 x 1073

cell surface receptor signaling pathway, neurotrophin TRK receptor signaling pathway, B cell activation, cell differentiation, regulation of

response to stimulus and cellular developmental process

M23

MOD

Medulla right
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their association with the genotyping data in the ADNIGO/2 dataset
(N=225) (Supplementary Table S11). Given that the hippocampus
left was the first ranked region with clinical/cognitive outcomes and
was most strongly related to AD-associated traits, we performed gene-
based association analysis between twenty-three AD risk loci and the
fractional anisotropy (FA) feature in the hippocampus. We identified
CELF1 (CUGBP Elav-Like Family Member 1) as the most significantly
associated loci with the DTI-derived FA feature in the hippocampus
(Bonferroni corrected p = 8 X 10’4; Table 3). An intronic SNP
(rs2203712) in the CELF1 gene was identified as the most significantly
associated with FA, LIN, and the ODI DTI features in the hippocampus
(p =6.34 x 1074 1.4 x 10737 x 10~ %, respectively; Table 4). At
this loci, the participants with no copies of the minor allele (n = 78; TT
genotype) had a smaller FA value in the hippocampus compared to
those with one copy of the minor allele (n = 102; CT genotype) or two
copies of minor allele (n = 45; CC genotype) (Fig. 4).

We also examined the effect of the minor allele (rs2203712-C) on FA
in both amyloid-negative and amyloid-positive participants classified as
positive or negative by CSF AP;_4> levels. Hippocampal FA values were
significantly higher in AP positive participants carrying at least one
minor allele (p = 0.004) (Fig. 4).

3.4. Constructing CELF1 centered co-expression gene network in AD

To understand the functional context of CELF1 operation in AD, we
constructed a CELF1 centered network using 6 gene expression datasets
from 6 different brain regions in three human postmortem brain co-
horts, including Mount Sinai Brain Bank (MSBB) AD RNA-seq (4 cortex
regions) (Wang et al., 2018b), MSBB AD microarray (hippocampus re-
gion) (Haroutunian et al., 2009; Wang et al., 2016), and ROSMAP RNA-
seq (DLPFC) (David et al., 2012a; David et al., 2012b). The genes sig-
nificantly correlated (positively or negatively) with CELFI in all 6 da-
tasets formed the consensus network (Fig. 5 and Supplementary Table
$12). This subnetwork was enriched for a number of neuronal system
related pathways such as synapse, neuron differentiation, synaptic
signaling, synaptic transformation, myelin sheath, axonogenesis and
neurogenesis (Supplementary Table S13) (Fig. 6). Moreover, the
network harbors several well-known AD risk genes including MEF2C,
PSEN1, CD2AP, PICALM, HLA-DRB1 and TREM2.

4. Discussion

Most previous studies involving imaging data in an AD context have
focused on specific tensor-based metrics such as FA (a measurement of
overall directionality of the diffusion of water molecules) and MD (a
measurement of the average rate of diffusivity) features to maximize
the power of diffusion MRI scans to identify disease related micro-
structural abnormalities in the WM of AD related regions (Kantarci
et al., 2011; Maggipinto et al., 2017; Nir et al., 2017). In this study, we
employed a data driven approach to rank order 176 brain regions with
respect to their correlation with region specific DTI features and disease
severity. The hippocampus, the cingulum, the parahippocampal gyrus
right, the sagittal stratum, the superior temporal white matter and the
fusiform white matter (FWM) right were the most correlated with
clinical/cognitive traits. Most of these regions have been previously
shown to be associated with AD related phenotypes, with some well
demonstrated to play a central role in AD pathogenesis and progression
(Kuczynski et al., 2010; Nir et al., 2013). In addition, we identified that
the parahippocampal gyrus is highly associated with white matter mi-
crostructural changes in AD. The hippocampus plays an important role
in the formation of episodic and spatial memory and is associated with
many neurodegenerative diseases (Axmacher et al., 2008). A pattern of
increased MD has previously been found in the hippocampus of AD
patients compared to normal individuals (Lin et al., 2016). The cin-
gulum on the other hand is enriched for WM fibers and is known to play
an important role in in construction of memory networks by carrying
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Fig. 3. Gene co-expression network analysis of the gene expression data from the blood samples of the AD and normal control subjects identifies an immune enriched
gene module associated with the DTI features. (A) The global gene co-expression network is comprised of highly co-expressed modules which are highlighted in
different colors. Co-expression network is constructed based on the significant correlations among gene expression profiles and then used to identify clusters or
modules of highly interconnected genes. Associations between the DTI features and the module eigenvectors (the principal components of modules) are calculated to
rank order the gene modules. The most significant module (M30) is highlighted in a black circle. (B) A sunburst plot showing module hierarchy and the associations
between the modules and the DTI features across all the brain regions. Each block represents a module and the color intensity of a block indicates the correlation
strength between the corresponding module eigenvector and the DTI features (FA, PLA, LIN, MD and RD) with the solid red color standing for the strongest
correlation (M30) and the white color for no significant correlation. The M30 was ranked the top based on the summary of all the significant correlations with 9 DTI
features. (C) The network plot of the module (M30) that is most significantly associated with the DTI features. The nodes with red labels are the hubs in the network.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

axons that project pyramidal neurons in CA1 and CA3 sub-regions of
the hippocampus (Kantarci et al., 2011; O'Dwyer et al., 2011; Nowrangi
et al., 2013; Sali et al., 2013; Nowrangi and Rosenberg, 2015). The WM
microstructural changes and myelin specific pathology in the para-
hippocampal region have been identified in MCI and AD patients (Salat
et al., 2010; Solodkin et al., 2013). In another recent study carried out
by our group, the parahippocampal gyrus was identified as the most
affected region in the transcriptomic analysis of 19 brain regions in an
independent AD cohort from the Mount Sinai Brain Bank (Wang et al.,
2016). Fractional anisotropy reduces specifically in cingulum in hip-
pocampus and sagittal tracts in AD patients, suggesting that disruption
of WM tracts occur near the medial temporal lobe (Qiu et al., 2010). A
three year follow-up study showed changes in WM in the cingulum fi-
bers and hippocampus (Fu et al., 2014), the top two regions by our
study. We further discovered here that the L1, MD and RD DTI features
were all highly correlated with amyloid beta pathology as well as
memory composite scores in regions most affected by AD. Fusiform
gyrus plays a crucial role in facial recognition (Hargrave et al., 2002),
and lower FA scores in fusiform gyrus were significantly associated with
lower MoCA scores in the MCI group relative to normal controls
(Cooley et al., 2015). We also revealed a positive correlation between
MoCA scores and myelination in the fusiform white matter right.
Moreover, we found that the MMSE, MOCA, RAVLT, ADAS13, and
CDRSB scores were all highly correlated with the L1, MD and RD DTI
features, while informant everyday cognition (EcogSP) memory scores

were highly correlated with all DTI-derived features in the para-
hippocampal gyrus right, the superior temporal white matter, and the
fusiform white matter right.

These results demonstrate that our findings are in agreement with
previous findings of impaired WM integrity in the hippocampus, the
parahippocampal gyrus and the fusiform regions of the brains with MCI
and AD. Most of the brain regions in our findings are more generic to
cognitive impairment in general, and may not be specific for AD.
However, our correlation analysis with AD-pathology biomarker vari-
ables revealed that L1, MD and RD features in the HIPPO-left, the
HIPPO-right, the SS-left, the PHG-right, the CHIPP-left and the CHIPP-
right are highly associated with amyloid burden but not any of CSF tau
measurements. Previous studies showed that there was a sharp increase
in Al, which represents L1 measurement in AD (Acosta-Cabronero
et al., 2012; Acosta-Cabronero and Nestor, 2014). In AD patients, it has
been observed that regions with significant increase of A1 that were
concordant to those of RD and MD had substantial anisotropy changes
(Acosta-Cabronero et al., 2010). Since the degeneration leads to in-
crease in Al or axial diffusivity, higher level of L1 is associated with
worse memory scores and higher CDR score. The parahippocampal
gyrus, the hippocampal cingulum and the sagittal stratum are the re-
gions most impacted by axial degeneration and myelination during
disease progression and thus they have the decreased white matter
integrity (Liu et al., 2011; Sun et al., 2014). Further research is needed
to explore the connectivity of the other top-ranked regions to confirm
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Table 3
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Set-based association for 23 IGAP loci and the FA feature using all the common variants (MAF = 0.05) in the neighborhood of the identified risk gene corresponding
to each AD risk locus. Empirical p-values were calculated using 20,000 permutations in PLINK.

Gene Number of Number of significant Empirical gene- List of significant SNP
SNPs in gene SNPs (p < 0.05,7> < 0.5)  based p-value

CELF1 346 4 8 x 107* 1s7118178|rs7925299| rs2203712|rs71475924

CLU 539 3 0.0117 rs11135998(rs59953408| rs532754

SORL1 540 5 0.01405 rs664424|rs11600686| rs4372460|rs12276905| rs10790451

PICALM 687 13 0.1529 1s471470|rs67598967| rs6592271|rs11234568| rs598561|rs11607590|
1s56302636|rs11234555| rs3862786|rs10792829| rs11234549|rs12277986| rs11825598

FERMT2 486 1 0.2276 1562003479

HLA-DRB5 373 2 0.2783 1s9271176|rs680151

SLC24A4 1134 10 0.2957 1s79544202(rs12434183| rs9972287|rs34723497| rs1108161|rs55840245|
rs4904955|rs12436499| rs66753927|rs55866218

HLA-DRB1 399 2 0.3195 1s9271176|rs680151

EPHA1 450 3 0.3443 1s73154208|rs55893042| rs7810606

CASS4 494 3 0.3445 1rs6024817|rs6024937| rs11906849

RIN3 1093 5 0.3584 rs12434183(rs55977629|rs55840245|rs4904955| rs1242105

CD33 320 13 0.3916 1s10425414|rs273692| rs2134068|rs7253654| rs34564964|rs2411329| rs3887787|rs35982135|
1s79254320(rs1710353| rs10409348|rs73055137 | rs4802772

INPP5D 577 6 0.4419 1s72984219]rs7581670| rs3792106|rs59199559| rs62192899|rs62192926

BIN1 908 0.4477 1s6716819|rs6431230| rs13031473

PTK2B 779 13 0.4514 1517375582|rs2565045| rs2322607|rs11780471| rs11994882|rs2565048|
52241657 |rs7000615| rs1367088|rs187228254| rs7013346|rs2271920| rs2741341

ZCWPW1 234 1 0.5396 15118119933

CR1 617 3 0.6456 1s61821132|rs1570564| rs71515116

NME8 750 3 0.6471 rs1668347|rs2198050| rs1668357

ABCA7 672 7 0.7435 rs2240615|rs35500465| rs4147940|rs349310| rs8106918|rs4147912| rs7260506

MEF2C 373 3 0.7944 157728694|rs214134| rs75034114

CD2AP 884 1 0.8546 1516876369

DSG2 491 1 0.8602 1s36032521

MS4A6A 403 0 1 NA

Table 4
Association of rs2203712 in CELF1 with neuroimaging phenotypes

152203712  p-value after adjusting for p-value before adjusting for
diagnosis diagnosis

FA 6.34 x 10°* 5.12 x 10~*

LIN 1.4 x 1073 1.17 x 1073

oDI 7 x107* 5.97 x 107*

the disruption of WM integrity.

The integration of gene coexpression network analysis with the DTI
data led to identification of an immune-response gene subnetwork that
was significantly correlated with demyelination and axonal injury,
especially in the fusiform WM, one of the top regions we identified.

FA score by rs2203712 in CELF1 gene
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Many studies have showed that immune response including the acti-
vation of microglia, release of inflammatory cytokines/chemokines and
enhanced oxidative stress, is associated with AD (Britschgi and Wyss-
Coray, 2007; Frank-Cannon et al., 2009). Microglia exhibit region
specific patterns of gene expression as well as phenotypic diversity in
different brain regions associated with neurogenesis, neuroinflamma-
tion and aging (Olah et al., 2011; Grabert et al., 2016). Increased mi-
croglial activity was found mostly in WM regions relative to other brain
regions in AD animal models (Raj et al., 2017). The immune enriched
subnetwork was also correlated with WM changes. Further studies re-
lated to imaging of glial cell activation and WM changes in specific
brain regions could potentially reveal a mechanistic understanding of
the role of microglia response in WM microstructural changes. After
examining some of the structural features of the immune enriched
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Fig. 4. rs2203712 in the CELF1 gene region is associated with higher fractional anisotropy (FA) in amyloid-positive participants, as classified by CSF A levels. (A)
The presence of at least one copy of the minor allele (T) of rs2203712 was significantly associated with increased FA in hippocampus (p = 0.001). (B) The effect of
the common C allele on fractional anisotropy was present in both amyloid-negative (left column) and amyloid-positive (right column) participants. rs2203712 is
significantly associated with FA in amyloid-positive participants (p = 0.004). Each participant was classified by their amyloid status (positive versus negative) at the

last visit (determined by standard cutoffs on CSF amyloid levels).
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Fig. 5. CELF1 centered consensus gene network in AD. (A) Genes negatively correlated with CELFI1 represented by blue circle nodes and (B) genes positively
correlated with CELFI represented by red circle nodes. In both network plots, the diamond nodes are AD risk genes. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

subnetwork, we identified SERPING1, a gene known to regulate in-
flammatory processes (a Cl inhibitor) during inflammation (Glezer
et al., 2007), as one of the most highly connected nodes (hub nodes) in
this subnetwork. SERPING1 is known to play a crucial role in cortical
development (Gorelik et al., 2017) and age-related macular degenera-
tion (Ennis et al., 2008). We also identified another important gene,
IRF7 which is interferon regulatory transcription factor, modulates
immune responses against Herpes simplex virus type 1 by effecting IFN
pathway in Alzheimer's Disease (Costa et al., 2017). Our other hub gene
PML (Promyelocytic Leukemia) plays important role in plasticity, cir-
cadian rhythms (Manners et al., 2018) and polymorphism in this gene
was significantly associated with neuroimaging biomarkers in hippo-
campus and insular cortex (Moon et al., 2015).

In addition to the characterization of gene expression and AD phe-
notypes associated with DTI-derived features, we explored the genetics
of DTI-derived features in the hippocampus with respect to the known
AD susceptibility loci and identified CELF1, which is contained in a risk
locus recently identified in a large-scale AD GWAS (Lambert et al.,
2013), as a potential genetic regulator. CELF1 co-localizes with other
CELF proteins and regulates pre-mRNA alternative splicing, mRNA
editing and translation (Dasgupta and Ladd, 2012). We observed that
CELF1 was significantly associated with the establishment of WM in-
tegrity in hippocampus. CELFI may play important role in myelination
process and axonal injury. Of particular note is that the most
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significantly AD-associated SNP in this locus, rs2203712, is highly as-
sociated with higher FA levels, a score that reflects fiber density and
myelination in WM. In IGAP, the SNP rs10838725 in CELF1 is asso-
ciated with the expression of MTCH2 and FNBP4 expression levels
(Karch et al., 2016), and more recently it was found to be associated
with delayed AD onset and decreased expression of SPI1 in monocytes
and macrophages. The SNP rs2203712 we identified, is contained in the
same LD (Linkage Disequilibrium) block (97%) as the GWAS SNP
rs10838725, and from the Brain eQTL Almanac (BRAINEAC) brain
tissue microarray-based gene expression database (http://www.
braineac.org/) and as with rs10838725, rs2203712 is significantly
assciated with FNBP4 expression levels in the hippocampus (p-
value = 8.9 x 1073).

To better understand the functional pathways underlying CELF1’s
regulation of AD pathogenesis, we identified a CELFI centered con-
sensus gene co-expression network based on three AD gene expression
datasets including the Mount Sinai Brain Bank (MSBB) AD RNA-seq
data (4 brain regions) (Wang et al., 2018a), the MSBB AD microarray
data in the hippocampus region (Wang et al., 2016), and ROSMAP
RNA-seq data from the dorsolateral prefrontal cortex (DLPFC) (De Jager
et al., 2018a). The consensus network was associated with neuronal
functions such as synaptic signaling, transformation, myelin sheath,
axonogenesis and neurogenesis. In addition, this network contained
known AD risk genes such as PSEN1 and TREMZ2. Given that the
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hippocampus is comprised mainly of grey matter and very sensitive to
early changes in MCI and AD, our findings with respect to the hippo-
campus may represent secondary, indirect association effects. CELFI
and its associated gene network not only provide novel insights into
disease pathophysiology, but they represent potential therapeutic tar-
gets. Interestingly, CELF1 was also contained in one of the top coex-
pression network modules associated with DTI-derived features from
the inferior fronto occipital fasciculus right region.

The results from the DTI data and those from our previous tran-
scriptomic data from 19 brain regions (Wang et al., 2016) pinpointed
the PHG as one of the most modified brain regions in AD. Therefore,
PHG may serve as a potential important indicator for AD progression.
More focused imaging and multi-Omics studies of the PHG may unlock
some key mechanisms with respect to AD pathogenesis. Our study not
only quantifies the vulnerability of 176 human brain regions to AD but
also reveals their potential upstream genetic regulators as well as
downstream manifestation in blood. However, there are important
limitations of our study. First, while ADNI still remains the best and
largest cohort with matched multi-omics and DTI data, the study con-
tains only a moderate number of subjects and a very limited number of
subjects have longitudinal DTI data. Therefore this cohort is less sui-
table for causal inference. To overcome this limitation, we used quan-
titative traits (QT) as phenotypes to substantially increase the detection
power of variant association analysis over a traditional case-control
setup (Shen et al., 2014). Further, while our study involved a great
many traits and many associations, we applied very rigorous processes
to contain false discovery rates. As such, the most prominent findings
reported here are statistically significant after rigorous corrections for
multiple testing. Another limitation with this study is the lack of in-
ference of trajectories or causal sequences as ADNI currently has a very
limited number of subjects with longitudinal DTI data. Moreover, this
study is the lack of replication in the gene-based analyses. Meta-analysis
results would increase our detection power. Further studies are needed
to explore functional evidence of the CELF1 SNP, which was found to be
associated with DTI features and gene expression in AD. Notwith-
standing these limitations, this study provides novel insights into the
biological processes and key regulators related to white matter micro-
structural changes and the findings could lead to novel therapeutic
strategies for AD as well as other neurodegenerative diseases.
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