
Medical Image Analysis 97 (2024) 103231

A
1

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Interpretable deep clustering survival machines for Alzheimer’s disease
subtype discovery
Bojian Hou a,1, Zixuan Wen a,1, Jingxuan Bao a, Richard Zhang a, Boning Tong a, Shu Yang a,
Junhao Wen c, Yuhan Cui b, Jason H. Moore d, Andrew J. Saykin e, Heng Huang f,
Paul M. Thompson c, Marylyn D. Ritchie a, Christos Davatzikos b, Li Shen a,∗,
for the Alzheimer’s Disease Neuroimaging Initiative2

a Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
b Center for Biomedical Image Computing and Analytics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
c Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90007, USA
d Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
e Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
f Department of Computer Science, University of Maryland, College Park, MD 20742, USA

A R T I C L E I N F O

Keywords:
Survival analysis
Alzheimer’s disease
Subtype discovery
Interpretability

A B S T R A C T

Alzheimer’s disease (AD) is a complex neurodegenerative disorder that has impacted millions of people
worldwide. The neuroanatomical heterogeneity of AD has made it challenging to fully understand the
disease mechanism. Identifying AD subtypes during the prodromal stage and determining their genetic
basis would be immensely valuable for drug discovery and subsequent clinical treatment. Previous studies
that clustered subgroups typically used unsupervised learning techniques, neglecting the survival information
and potentially limiting the insights gained. To address this problem, we propose an interpretable survival
analysis method called Deep Clustering Survival Machines (DCSM), which combines both discriminative and
generative mechanisms. Similar to mixture models, we assume that the timing information of survival data
can be generatively described by a mixture of parametric distributions, referred to as expert distributions.
We learn the weights of these expert distributions for individual instances in a discriminative manner by
leveraging their features. This allows us to characterize the survival information of each instance through
a weighted combination of the learned expert distributions. We demonstrate the superiority of the DCSM
method by applying this approach to cluster patients with mild cognitive impairment (MCI) into subgroups
with different risks of converting to AD. Conventional clustering measurements for survival analysis along with
genetic association studies successfully validate the effectiveness of the proposed method and characterize our
clustering findings.
1. Introduction

According to the World Health Organization (WHO)3, dementia
has affected 55 million people worldwide in 2023. This number could
increase to 139 million by 2050 as more people age. Alzheimer’s
disease (AD) is the most common cause of dementia, accounting for
over two-thirds of the cases. However, as a complex and heterogeneous
brain disorder, AD remains poorly understood. Finding subtypes of
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AD and their genetic factors could help develop new drugs and guide
treatments in the prodromal stage for this critical condition.

Previous works usually use unsupervised learning methods such as
KMeans (Hartigan and Wong, 1979), GMM (Reynolds et al., 2009),
DBSCAN (Ester et al., 1996) etc. to stratify AD patients into different
clusters/subtypes (Alashwal et al., 2019; Feng et al., 2022). They
merely utilize the feature information to find different groups with
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distinct characteristics. However, these approaches ignore the fact that
dementia patients often visit the hospital multiple times to track their
disease progression. These results in longitudinal trajectories that cap-
ture additional survival information about the patients such as the
probability of conversion from mild cognitive impairment (MCI) to AD.
Thus, it would be valuable if we can leverage the survival information
to facilitate AD subtype discovery.

There is now a growing field of literature concerning with disease
progression modeling and subtyping. These models estimate distinct
data-driven disease timelines for multiple subgroups, essentially esti-
mating subtypes and disease progressions simultaneously. The most
popular one is SuSTaIn (Young et al., 2018; Aksman et al., 2021;
Fonteijn et al., 2012; Young et al., 2014). Nonetheless, our current em-
phasis lies in survival analysis and stratifying subjects into groups with
different risk levels, rendering these studies potentially less applicable
to our specific focus.

The goal of survival analysis (Flynn, 2012) is to learn a survival
model to build the bridge between features and survival information.
When given the feature of a subject, survival models can predict the risk
of death or occurrence of some event such as MCI converting to AD. In
this way, we have an opportunity to utilize the predicted risk to stratify
the MCI patients into different subgroups with different risks of con-
verting to AD. It would thus enable customized treatment for different
patients with different risks. In this study, we aim to conduct subtypes
discovery for Alzheimer’s disease from the survival analysis perspec-
tive, which has the potential to improve clinical decision-making by
identifying high-risk MCI patients who may require more care or early
treatment. It is worth noting that a big challenge in survival analysis is
censoring, which means the target event of a subject is unobservable
after a period of time or no event happens during the monitoring.
Therefore, many subjects do not possess complete survival information
and we face the problem of semi-supervised learning or weak super-
vised learning (Hou et al., 2017; Zhou, 2018) instead of fully supervised
learning. Given these circumstances, it becomes impractical to directly
employ survival information for the purpose of subgroup stratification.
Thus, the development of an effective clustering technique that is
capable of leveraging partial survival information becomes imperative.

There are many survival models that have been proposed to pre-
dict the risk of an event happening, also known as ‘‘time-to-event
prediction’’ (Kvamme et al., 2019). The most classic method is called
the Cox PH model (Cox, 1972). It assumes a constant hazard rate
over time for every subject, known as the proportional hazard (PH)
assumption. However, this PH assumption may not hold in practice
thus hindering Cox model’s performance. There are other methods
that do not make any assumptions about the underlying distribution
of survival times, such as Kaplan–Meier (Bland and Altman, 1998),
Nelson-Aalen (Klein, 1991), and Life-Table (Tarone, 1975). Never-
theless, these methods struggle with high-dimensional data. Machine
learning techniques can help overcome this high-dimensional challenge
and can learn the association between features and survival outcomes
efficiently. For example, Deep Survival Machines (DSM) (Nagpal et al.,
2021) uses deep neural networks to learn the compact representation
of the features and uses the negative log-likelihood as the loss to learn
all the parameters, showing promising results in prediction accuracy.
Deep Cox (Katzman et al., 2018) utilizes the derived Cox PH loss to
optimize the parameter learning of deep neural networks.

Nevertheless, all the survival models aforementioned are not specif-
ically designed for clustering. They are mainly used to do risk predic-
tion. To leverage them to do clustering, we need to set a threshold
for the predicted risks to artificially cluster them into subgroups, such
as two groups where one is with high risk and the other is with low
risk. Survival Clustering Analysis (SCA) (Chapfuwa et al., 2020) and
Variational Deep Survival Clustering (VaDeSC) (Manduchi et al., 2021)
are two recent works that can do both risk prediction and clustering.
However, SCA cannot control the number of clusters because it utilizes
2

the truncated Dirichlet process to realize the automatic identification
of the cluster numbers, and VaDeSC as a fully generative method is
restricted to a specific distribution of features. Neural Survival Clus-
tering (Jeanselme et al., 2022) is another recent model developed
to perform clustering and time-to-event prediction simultaneously. It
learns the survival probability for each instance by learning fixed neural
networks without any assumptions in a thorough discriminative man-
ner. However, the model requires a considerable amount of training
data to avoid overfitting, which may not be feasible for small-scale
datasets, particularly in the medical field.

In this study, we propose a hybrid method that leverages both
the discriminative and generative strategies to perform clustering and
risk prediction simultaneously. Specifically, we assume that there are
a certain number of expert distributions in a latent space and each
expert distribution can be modeled by parameterized distributions in
a generative way. The survival function for each instance is a weighted
combination of all the expert distributions and the weight for each
instance is learned by a multi-layer perceptron (MLP) directly from the
features in a discriminative manner. Consequently, we can naturally
cluster all the instances according to how the weights are allocated
to different expert distributions for each instance. We demonstrate
the advantage of our method by evaluating not only the conventional
clustering measurements for survival analysis but also the genetic asso-
ciation discrepancies between different groups of patients with different
risks of converting from MCI to AD. In summary, our contributions are
five-fold:

• We propose a hybrid survival analysis method called Deep Clus-
tering Survival Machines (DCSM) that integrates the advantages
of the discriminative and generative ideas and can perform both
clustering and time-to-event prediction simultaneously.

• We apply our method to Alzheimer’s imaging data to discover AD
subtypes. LogRank results and their differential genetic associa-
tions validate the effectiveness of the proposed method.

• To further validate the effectiveness of the proposed method,
we also conduct experiments on several real-world benchmark
datasets. The results show promising clustering results as well as
competitive time-to-event prediction performance.

• Our method is interpretable in that the expert distributions are
constant for all the instances. Different weightings signify differ-
ent attention to the expert distributions and thus we can easily
tell which subgroup the instance belongs to.

• We perform feature importance for different regions of the brain
to interpret what regions the proposed model pays more attention
to when clustering the patients into low and high risks. The
identified important brain regions show a strong relationship to
AD.

2. Related work

Clustering. Clustering is the most relevant topic to our paper. Cluster-
ing is a concept from the machine learning community that involves
grouping similar data points together based on certain characteristics.
In the medical domain, people may use stratification or subtype dis-
covery to describe similar problems. These terms refer to the process
of identifying subgroups within a larger population that share similar
characteristics or traits. The paper will use these terms interchangeably.
Traditional clustering methods such as KMeans (Hartigan and Wong,
1979), GMM (Reynolds et al., 2009), DBSCAN (Ester et al., 1996) usu-
ally use the sample features only to calculate the similarity or distance
between samples to discover the subtype among populations (Alashwal
et al., 2019; Feng et al., 2022). Considering that patients can visit
hospitals several times and thus render longitudinal information, we
can also use survival analysis techniques to predict the risk of getting
AD for each patient and stratify them using the predicted risk in a
post-hoc way. This risk prediction in survival analysis is also called

‘‘time-to-event-prediction’’.
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Fig. 1. Post-hoc clustering mechanism of Cox PH, Deep Cox, and DSM. In this work,
we adopt median as the threshold. The patients whose predicted risk scores lower than
the median are clustered as low-risk group, while the others are clustered as high-risk
group

Time-to-event prediction. There are many time-to-event prediction meth-
ods that have been proposed. One of the most prevalent methods is
the Cox proportional hazards regression model (Cox PH) (Cox, 1972).
It assumes that the relative proportional hazard between subjects is
constant over time. In other words, if subject 𝐴 has a higher risk of
death or another event at some time point than another subject 𝐵,
then 𝐴’s risk will always be higher than 𝐵’s. Although Cox PH has
achieved many successes in survival analysis, it still has a narrow
application since its assumption of proportional hazard is too strong to
satisfy in reality. Traditional methods including Kaplan–Meier (Bland
and Altman, 1998), Nelson-Aalen (Klein, 1991), and Life-Table (Tarone,
1975) are also useful to do survival analysis. However, they can
hardly scale to large dimensionality. Recently, many machine learning
methods, especially deep learning methods, have been proposed to
do survival analysis. Most of them are dedicated to improving upon
Cox PH. A common idea is to use deep neural networks to learn the
nonlinear relationship between the explanatory variables and outcome
by optimizing the partial likelihood of Cox PH (Katzman et al., 2018).
However, this is still restricted to the strong assumption of proportional
hazard. Recently, a fully parametric method utilizing deep learning
called Deep Survival Machines (DSM) (Nagpal et al., 2021) has at-
tracted much attention. It does not make the PH assumption and can
achieve competitive predictive performance compared to state-of-the-
art methods. However, DSM learns different base distributions for each
instance, making the model hard to interpret (Hou and Zhou, 2018,
2020).

Clustering with time-to-event prediction. There are a few other methods
that perform both clustering and time-to-event prediction simulta-
neously. For example, Survival Clustering Analysis (SCA) (Chapfuwa
et al., 2020) assumes that the latent space is a mixture of distribu-
tions and uses the truncated Dirichlet process to automatically identify
the number of clusters. However, SCA cannot control the number of
clusters and thus cannot validate its advantages compared to post-
hoc methods. Variational deep survival clustering (VaDeSC) (Manduchi
et al., 2021), as a fully generative method, uses a Gaussian mixture
distribution to model the features in a latent space and uses the Weibull
distribution to model the survival timing information. This builds a
good bridge between the features and survival information by jointly
optimizing both likelihoods. However, there is a trade-off between the
discriminative and generative learning paradigms. A fully generative
framework may not be a good fit for all types of data since it is
difficult to let both the features and survival information obey the prior
assumption of their distributions at the same time. Neural Survival
Clustering (Jeanselme et al., 2022) attempts to learn the survival
probability for each instance by learning fixed neural networks. This
framework brings more flexibility due to the lack of assumptions.
However, the model needs large amounts of training data to prevent
overfitting. Thus, the model may not be applicable to small-scale data,
especially in the medical domain.
3

3. Preliminaries

3.1. Basic notation

Survival analysis aims to estimate the probability of an event of
interest happening after a certain time 𝑡 based on the features 𝑋 of
individual subjects (Flynn, 2012). This probability can be modeled by
a survival function 𝑆(⋅|𝑋) = 𝑃 (𝑇 > 𝑡|𝑋). The data we tackled are
assumed to be right-censored. This means our dataset D consists of
tuples {𝐱𝑖, 𝑡𝑖, 𝛿𝑖}𝑁𝑖=1 where 𝐱𝑖 ∈ R𝑑 is the 𝑑 dimensional feature vector
for the 𝑖th subject, 𝑡𝑖 is the last time we followed the 𝑖th subject, 𝛿𝑖
is the event indicator, and 𝑁 is the number of all subjects. If 𝛿𝑖 = 1,
the event will occur at time 𝑡𝑖 for the 𝑖th subject (this means the 𝑖th
subject is uncensored). If 𝛿𝑖 = 0, we lose the 𝑖th subject at time 𝑡𝑖, or
the monitoring ended before the occurrence of the event (this means
the 𝑖th subject is censored). We denote D𝑈 as the uncensored subset
and D𝐶 as the censored subset.

3.2. Cox PH

Cox PH model (Cox, 1972) is the most popular and conventional
survival model. It assumes proportional hazards, meaning the ratio
of hazards of two subjects does not change over time. Suppose the
parameter of the Cox PH model is 𝜷 ∈ R𝑑 , then the hazard function
at time 𝑡 for the 𝑖th subject with feature vector 𝐱𝑖 is

𝜆(𝑡|𝐱𝑖) = 𝜆0(𝑡) exp(𝜷⊤𝐱𝑖), (1)

where 𝜆0(𝑡) is the baseline hazard that describes how the risk of event
per time unit changes over time at baseline level of features. To
estimate the parameter 𝜷, Cox PH model uses the maximum likelihood
estimation (MLE) to maximize the Cox partial likelihood:

𝐿(𝛽) =
∏

𝑖∈D𝑈

exp(𝜷⊤𝐱𝑖)
∑

𝑗∶𝑡𝑗≥𝑡𝑖 exp(𝜷
⊤𝐱𝑗 )

. (2)

By calculating the first and second derivative of this partial likeli-
hood function, 𝜷 can be obtained using the Newton–Raphson algo-
rithm (Akram and Ann, 2015).

3.3. Deep Cox

The Deep Cox model (also called DeepSurv) (Katzman et al., 2018)
is another solution for the Cox PH idea. As opposed to following the
traditional solution of maximizing the partial likelihood mentioned
above, Deep Cox attempts to leverage deep neural networks to learn
a nonlinear mapping 𝜙𝜽(⋅) parameterized by 𝜽 for the features 𝐱𝑖 and
try to get the optimal predictive model by minimizing the negative
logarithm of the partial likelihood as the loss function:

𝓁(𝜽) = −
∑

𝑖∈D𝑈

⎛

⎜

⎜

⎝

𝜙𝜽(𝐱𝑖) − log
∑

𝑗∶𝑡𝑗≥𝑡𝑖

exp(𝜙𝜽(𝐱𝑗 ))
⎞

⎟

⎟

⎠

. (3)

3.4. Clustering mechanism

The clustering mechanism of post-hoc survival models is illustrated
in Fig. 1. Cox PH, Deep Cox and DSM are used as post-hoc clustering
methods in this paper. To cluster MCI patients, we first obtain their
predicted risk scores, and then we set a threshold (usually the median
or the mean of the whole risk scores) to get the subtypes. In our experi-
ment, we choose to use median as the threshold for the three baselines.
This is because using the median as the threshold generates better
results for them (refer to Table E.10 in the Appendix). This presents
a challenge for our method, but we will show in our experiment that
our method still outperforms the improved versions of the baselines.
In our paper, it is important to emphasize that we concentrate on two
distinct clusters: one associated with low risk and the other with high
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Fig. 2. Mechanism of Deep Clustering Survival Machines (DCSM). In Part 1, DCSM is designed to learn a conditional distribution 𝑃 (𝑇 = 𝑡|𝑋), which is a weighted combination
over all 𝐾 constant expert distributions (Weibull distributions). Part 2 illustrates that DCSM cluster each instance/subject according to the weight 𝛼𝑘 that is allocated to each
expert distribution.
risk. Our primary objective is to provide valuable insights for patients
and clinicians regarding the likelihood of developing AD (Alzheimer’s
disease). By identifying individuals at high risk, we can emphasize the
need for early intervention or more customized treatment strategies.
While high and low-risk clusters hold significant relevance, including
an additional cluster such as medium risk would only introduce con-
fusion for patients and clinicians, thereby detracting from the overall
clarity and effectiveness of our findings. Despite these reasons, we still
conduct the experiments for 𝐾 = 3 to illustrate the robustness of our
method (refer to Table D.7 in the Appendix).

4. Method

In Part 1 of Fig. 2, the deep clustering survival machines (DCSM)
is designed to learn a conditional distribution 𝑃 (𝑇 |𝑋 = 𝐱) by optimiz-
ing the maximum likelihood estimation (MLE) of the time 𝑇 . Similar
to the mixture model learning paradigm, the conditional distribution
𝑃 (𝑇 |𝑋 = 𝐱) is characterized by learning a mixture over 𝐾 well-defined
parametric distributions, referred to as expert distributions. In order to
use gradient-based methods to optimize MLE, we choose the Weibull
distributions as the expert distributions that are flexible to fit various
distributions and have closed-form solutions for the PDF and CDF:

PDF(𝑡) = 𝜇
𝜎

( 𝑡
𝜎

)𝜇−1
𝑒−

(

𝑡
𝜎

)𝜇

, CDF(𝑡) = 𝑒−
(

𝑡
𝜎

)𝜇

, (4)

where 𝜇 and 𝜎 are the shape and scale parameters separately.
Part 1 of Fig. 2 indicates that we firstly need to learn an encoder for

the input features 𝐱 ∈ R𝑑 to obtain a compact representation �̃� ∈ R𝑑′ .
Here we use a multi-layer perceptron (MLP) 𝜙𝜽(⋅) parameterized by
𝜽 as the backbone model. This representation will be multiplied by
a parameter 𝒘 ∈ R𝑑′×𝐾 with softmax to obtain the mixture weight
𝛼𝑘, 𝑘 = 1,… , 𝐾 with respect to each (𝑘th) expert distribution that is
parameterized by 𝜇𝑘 and 𝜎𝑘. The final survival distribution for the time
𝑇 conditioned on each instance is a weighted combination over all 𝐾
constant expert distributions. Eventually, we have a set of parameters
𝛩 = {𝜽,𝒘, {𝜇𝑘, 𝜎𝑘}𝐾𝑘=1} to learn during the training process. Because
𝜇𝑘 and 𝜎𝑘 are the same for different input instances, we can cluster
each instance/subject according to the weight 𝛼𝑘 that is allocated to
each expert distribution, as illustrated in Part 2 of Fig. 2. Specifically,
we assign an subgroup/cluster indicator 𝑘 to each instance when the
instance’s corresponding weight 𝛼 is the largest among all 𝐾 weights.
4

𝑘

According to the framework of MLE, our goal is to maximize the
likelihood with respect to the timing information 𝑇 conditioned on 𝐱.
Given that the likelihood functions are different for uncensored and
censored data, we calculate them separately. For the uncensored data,
the log-likelihood of 𝑇 is computed as follows, where ELBO is the lower
bound of the likelihood derived by Jensen’s Inequality:

lnP(D𝑈 |𝛩) = ln
(

𝛱 |D𝑈 |

𝑖=1 P(𝑇 = 𝑡𝑖|𝑋 = 𝐱𝑖, 𝛩)
)

=
|D𝑈 |

∑

𝑖=1
ln

( 𝐾
∑

𝑘=1
P(𝑇 = 𝑡𝑖|𝛼𝑘, 𝜇𝑘, 𝜎𝑘)P(𝛼𝑘|𝑋 = 𝐱𝑖,𝒘)

)

=
|D𝑈 |

∑

𝑖=1
ln
(

E𝛼𝑘∼(⋅|𝐱𝑖 ,𝒘)[P(𝑇 = 𝑡𝑖|𝛼𝑘, 𝜇𝑘, 𝜎𝑘)]
)

(5)

≥
|D𝑈 |

∑

𝑖=1

(

E𝛼𝑘∼(⋅|𝐱𝑖 ,𝒘)[lnP(𝑇 = 𝑡𝑖|𝛼𝑘, 𝜇𝑘, 𝜎𝑘)]
)

=
|D𝑈 |

∑

𝑖=1

(

softmax𝐾 (lnPDF(𝑡𝑖|𝜇𝑘, 𝜎𝑘))
)

= 𝐄𝐋𝐁𝐎𝑈 (𝛩).

Similarly, the log-likelihood of 𝑇 for the censored data is:

lnP(D𝐶 |𝛩) = ln
(

𝛱 |D𝐶 |
𝑖=1 P(𝑇 > 𝑡𝑖|𝑋 = 𝐱𝑖, 𝛩)

)

≥
|D𝐶 |
∑

𝑖=1

(

E𝛼𝑘∼(⋅|𝐱𝑖 ,𝒘)[lnP(𝑇 > 𝑡𝑖|𝛼𝑘, 𝜇𝑘, 𝜎𝑘)]
)

=
|D𝐶 |
∑

𝑖=1

(

softmax𝐾 (lnCDF(𝑡𝑖|𝜇𝑘, 𝜎𝑘))
)

= 𝐄𝐋𝐁𝐎𝐶 (𝛩).

(6)

In addition, to stabilize the performance, we incorporate prior knowl-
edge for 𝜇𝑘 and 𝜎𝑘. Specifically, we minimize the prior loss 𝐿𝑝𝑟𝑖𝑜𝑟 to
make them as close as possible to the 𝜇 and 𝜎 from the prior model:

𝐿𝑝𝑟𝑖𝑜𝑟 =
𝐾
∑

𝑘=1
‖𝜇𝑘 − 𝜇‖22 + ‖𝜎𝑘 − 𝜎‖22. (7)

where the prior model is learned by the same MLE framework with a
single expert distribution that is still Weill distribution. In this context,
the prior 𝜇 and 𝜎 are not traditional prior distributions for 𝜇𝑘 and 𝜎𝑘
as required by the maximum a posteriori (MAP) estimation. Instead,
they are specific values derived from a pre-trained prior model, which
follows a similar framework to ours but with only a single expert
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Algorithm 1 DCSM Training, Time-to-event Prediction and Clustering

1: Input: Dataset D consists of tuples {x𝑖, 𝑡𝑖, 𝛿𝑖}𝑁𝑖=1
2: Output: Trained model 𝑓 = {𝜙𝜽,𝒘, {𝜇𝑘, 𝜎𝑘}𝐾𝑘=1}, the estimated risk

𝑟𝑖 and the cluster label 𝑘 for each subject 𝑖
3: Split D into a training set Dtr and a testing set Dte
4: # Training Phase...
5: Initialize a prior-model 𝑓prior = {𝜙𝜽prior ,𝒘prior, 𝜇, 𝜎}
6: Pre-train the model 𝑓prior with only one expert distribution parame-

terized by 𝜇 and 𝜎 by maximizing (5)+(6) on Dtr where the trained
prior-model 𝑓prior will be used in (7)

7: Initialize a formal model 𝑓 = {𝜙𝜽,𝒘, {𝜇𝑘, 𝜎𝑘}𝐾𝑘=1}
8: Train the model 𝑓 with multiple expert distributions parameterized

by 𝜇𝑘 and 𝜎𝑘 by minimizing (8) on Dtr and obtain the trained model
𝑓

9: # Time-to-event Prediction Phase...
10: Calculate the weights {𝛼𝑘}𝐾𝑘=1 of all 𝐾 expert distributions for the

𝑖th subject by (9)
11: Obtain the risk 𝑟𝑖 of the 𝑖th subject by (10)
12: # Clustering Phase...
13: Obtain the cluster label 𝑘 for the 𝑖th subject based on the largest 𝛼𝑘

distribution. During the official training of our model, we introduce
regularization terms in the loss function to prevent the parameters of
the expert distributions from deviating excessively from the prior values
obtained from the pre-trained model. This approach deviates from the
conventional MAP estimation, where prior distributions are typically
used. The final objective 𝐿𝑎𝑙𝑙 is the sum of the negative of the log-
likelihoods of both the uncensored and censored data in addition to
the prior loss where 𝜆 is a trade-off hyperparameter:

𝐿𝑎𝑙𝑙 = 𝐿𝑝𝑟𝑖𝑜𝑟 − 𝐄𝐋𝐁𝐎𝑈 (𝛩) − 𝜆 ⋅ 𝐄𝐋𝐁𝐎𝐶 (𝛩). (8)

The implementing details are as follows. First, we split the dataset D
into a training set Dtr and a testing set Dte. In the training phase, we first
initialize a prior-model 𝑓prior = {𝜙𝜽prior ,𝒘prior, 𝜇, 𝜎} where the prior-
model only contains one expert distribution parameterized by 𝜇 and 𝜎.
In our implementation, we use PyTorch (Paszke et al., 2019) to conduct
the model initialization. Then we pre-train the prior-model 𝑓prior by
maximizing the likelihood (5)+(6) on Dtr. In this way, the learned 𝜇
and 𝜎 from the prior model can be used in (7). Then we initialize the
formal model 𝑓 = {𝜙𝜽,𝒘, {𝜇𝑘, 𝜎𝑘}𝐾𝑘=1} and train it by minimizing (8) on
Dtr. After we obtain the trained model 𝑓 , we can conduct time-to-event
prediction and clustering simultaneously. To do that, we first need to
calculate the weights {𝛼𝑘}𝐾𝑘=1 of all 𝐾 expert distribution for the 𝑖th
subject by the softmax on 𝒘⊤𝜙𝜽(𝐱𝑖):

𝛼𝑘 =
exp((𝒘⊤𝜙𝜽(𝐱𝑖))𝑘)

∑𝐾
𝑗=1 exp((𝒘⊤𝜙𝜽(𝐱𝑖))𝑗 )

(9)

or time-to-event prediction, we use the weights to conduct weighted
ombination for all the CDF value given a specific time 𝑡 which is the
ime horizon 𝑡𝑚𝑎𝑥 in our case. Then the risk for the 𝑖th subject 𝑟𝑖 is
stimated by

𝑖 = 1 −
𝐾
∑

𝑘=1
P(𝑇 ≤ 𝑡𝑚𝑎𝑥|𝛼𝑘, 𝜇𝑘, 𝜎𝑘)

= 1 −
𝐾
∑

𝑘=1
𝛼𝑘CDF(𝑡𝑚𝑎𝑥) = 1 −

𝐾
∑

𝑘=1
𝛼𝑘 exp

(

−
(

𝑡𝑚𝑎𝑥
𝜎𝑘

)𝜇𝑘)

.

(10)

or clustering, we just assign the index 𝑘 to the 𝑖th subject if 𝛼𝑘 is
he largest among all the 𝐾 weights. The algorithm is summarized in
lgorithm 1.

. Experiments

In this section, we first introduce the datasets we used in the experi-
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ents. This includes three popular AD-related datasets, four benchmark
atasets, and a group of genotyping data relevant to AD. Then, we intro-
uce the metrics, baselines, and settings in our experiments. Finally, we
eport and discuss the LogRank, C-index, genetic association analysis,
nd interpretability results. Code is available at https://github.com/
ojianHou/DCSM.

.1. Datasets

The genotyping data, demographic data and imaging data used
n our experiments were obtained from the Alzheimer’s Disease Neu-
oimaging Initiative (ADNI) database (Weiner et al., 2017). ADNI was
aunched in 2003 as a public–private partnership, led by Principal
nvestigator Michael W. Weiner, MD. The primary goal of ADNI has
een to test whether serial magnetic resonance imaging (MRI), positron
mission tomography (PET), other biological markers, and clinical and
europsychological assessment can be combined to measure the pro-
ression of mild cognitive impairment (MCI) and early Alzheimer’s dis-
ase (AD). Up-to-date information about the ADNI database is available
t www.adni-info.org.

We focused our analysis on three ADNI imaging modalities:

• AV45: Florbetapir PET (Jagust et al., 2015) that measures amy-
loid burden.

• FDG: Fluorodeoxyglucose PET (Jagust et al., 2010) which mea-
sures glucose metabolism.

• VBM: Structural magnetic resonance imaging (MRI) (Jack et al.,
2015) measuring brain morphometry.

tructural MRI scans were processed with voxel-based morphometry
VBM) using the statistical parametric mapping software tool (Ash-
urner and Friston, 2000). The MarsBaR region of interest (ROI) tool-
ox (Tzourio-Mazoyer et al., 2002) was used to extract mean gray
atter density, amyloid, and FDG-PET glucose utilization values for

ach ROI. After extraction, there were 116 ROI-level measures for each
odality. All the MCI participants with no missing data were analyzed,

nd we had 𝑁 = 466 for AV45, 𝑁 = 467 for FDG, and 𝑁 = 462 for
VBM. We use AV45 (FDG or VBM) as observed covariates as shown in
Fig. 3(b). Their characteristics are summarized in Table 1.

As mentioned in Section 3.1, in survival analysis, the label of each
subject consists of two items. One is the time 𝑡 which is the time
duration we followed the subject. The other is the event indicator 𝛿 that
s to indicate whether an event such as death or disease onset happens
o the subject. Originally, the subjects from the ADNI dataset did not
ave such information. What they have are the several visits and which
isease they are diagnosed at each certain visit. To obtain the label,
e first selected the subjects with MCI status at their first visit and

ecorded the date of their imaging modalities visit as the initial time.
ote that in our work, we are interested in the risk of MCI patients
onverting to AD. Thus, we only focus on the subjects who are MCI
atients originally. Then, among these subjects, we selected the ones
ho ended up converting to AD and recorded this visit time as the event
ime, and their event indicator is 1. We call these patients uncensored
atients. It is worth noting that there are reverting issues among these
ncensored patients indicating that they can revert back to MCI. We
ncluded these patients since we only recorded the label until the first
ime they converted to AD (event happens), which meets the definition
f uncensored data. There are 3 such kind of patients in VBM and 4 for
oth AV45 and FDG. For the remaining subjects who did not change
heir status over all the visits, their event indicator is 0. Their event
ime will be the time of their final visit. The time 𝑡 is the difference

between initial time and event time. The feature vector of each subject
is collected from the features at their first visit. All the other feature
vectors of that subject generated in the subsequent visits are ignored.
Fig. 3(a) illustrates the survival information for five subjects where
Subjects 1, 4 and 5 converted to AD, and Subjects 2 and 3 were lost

to follow-up.

https://github.com/BojianHou/DCSM
https://github.com/BojianHou/DCSM
https://github.com/BojianHou/DCSM
http://www.adni-info.org
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Fig. 3. Illustration of how our features and labels look like. In this figure, there are 5 subjects in total. (a) illustrates the labels including time duration 𝑡 and event indicator 𝛿.
All five subjects started from MCI. During the monitoring, the event happened to Subjects 1, 4 and 5 thus their event indicator 𝛿 equals to 1. Subject 2 quit the monitoring and
there was no event happened to Subject 3 until the end of the monitoring. Thus their event indicators are both 0. (b) shows the features (covariates) of the five subjects. All the
features are extracted from the 116 brain regions for each modality.
Table 1
Statistics of AD-related datasets used in the experiments. 𝑁 refers to number of subjects. 𝑚 refers to the number of brain regions. The time range 𝑡𝑚𝑎𝑥 is noted
in days. Education is noted in years.

Dataset 𝑁 𝑚 Event (%) 𝑡𝑚𝑎𝑥 Age Gender(M/F) Education # of overlapping

AV45 466 116 25.10 2258 72.38 ± 7.81 267/199 16.20 ± 2.71
432FDG 467 116 24.62 2254 72.36 ± 7.81 266/201 16.18 ± 2.71

VBM 462 116 24.24 2275 72.42 ± 7.91 265/197 16.18 ± 2.74
Table 2
Statistics of benchmark datasets used in the experiments. The time range 𝑡𝑚𝑎𝑥 in PBC
is noted in years while others are noted in days. ‘‘FRAM’’ refers to ‘‘FRAMINGHAM’’.

Dataset SUPPORT PBC FRAM FLCHAIN

Events (%) 68.11 37.28 30.33 30.07
𝑁 9105 1945 11 627 6524
𝑑 (categorical) 44 (26) 25 (17) 18 (10) 8 (2)
𝑡𝑚𝑎𝑥 2029 14.31 8766 5167

For the genetics data, we first downloaded genotyping data from
ADNI 1, GO, 2, and 3 studies from the ADNI database (Shen et al.,
2014; Saykin et al., 2015; Shen and Thompson, 2020). Then, McCarthy
Group Tools (https://www.well.ox.ac.uk/~wrayner/tools/) were used
for alignment. We aligned the genotyping data to the Homo Sapiens
(human) genome assembly NCBI37 (hg19) genome builder, according
to 1000 Genome phase 3 dataset (1000 Genomes Project Consortium
et al., 2015). To complement the missing data, we imputed those
genotypes using the Michigan Imputation Server (Das et al., 2016)
with the 1000 Genome phase 3 reference panel of European ancestry.
We annotated our imputed genotyping data using ANNOVAR (Wang
et al., 2010). After alignment and imputation, we performed the quality
control (QC) using the following criteria: genotyping call rate > 98%,
minor allele frequency > 0.1%, Hardy-Weinberg Equilibrium > 1e-6,
missingness per individual < 5%. All the QC was performed using
PLINK 1.9 (Chang et al., 2015).

To further validate the effectiveness of the proposed method, we
also conducted experiments on four public benchmark datasets that are
all real-world datasets:

• SUPPORT (Knaus et al., 1995): The SUPPORT dataset is sourced
from a study conducted by Vanderbilt University that aims to esti-
mate the survival rate of seriously ill adults who are hospitalized.

• PBC (Fleming and Harrington, 2013): The dataset known as Pri-
mary Biliary Cirrhosis is commonly used to assess the perfor-
mance of survival analysis models that incorporate time-depen-
dent covariates.

• FRAMINGHAM (Dawber et al., 1951): The Framingham dataset
consists of 4,434 participants from the well-known and ongoing
Framingham Heart study. This dataset is utilized for studying the
epidemiology of hypertensive and arteriosclerotic cardiovascular
disease.
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• FLCHAIN (Kyle et al., 2006): This dataset is a mix of different peo-
ple, and half of the subjects from a study analyzing the correlation
between serum free light chain (FLC) and mortality. The original
sample covers around two-thirds of Olmsted County’s residents
aged 50 or above.

The statistics of the four benchmark datasets are summarized in Ta-
ble 2.

5.2. Metrics, baselines and settings

Metric We use ‘‘LogRank’’ to evaluate the clustering performance of
all the methods. LogRank is a statistical test that compares the survival
curves of two or more groups of subjects (Mantel et al., 1966) and is
popular and widely used for survival analysis. It tests whether or not
there is a significant difference in survival between the groups. It is
calculated by comparing the observed and expected number of events
in each group under the null hypothesis of no difference. To further
validate the efficacy of our framework, we also use genetic association
analysis to evaluate the clustering results. We want to identify the
genetic basis of different AD subtypes to validate our subtype findings.

Rather than the LogRank, we also incorporate ‘‘Concordance Index’’
(C-Index) (Harrell et al., 1982) as an additional metric to evaluate the
time-to-event prediction performance. The C-Index is a widely used
measure in survival analysis. It measures how well the order of survival
times matches with predictions made by models. Note that the time-
to-event prediction is actually not our goal. Our DCSM method is
specifically designed for clustering and it is sufficient if we our method
can achieve state-of-the-art clustering results and behave reasonably
well regarding time-to-event prediction.

Baseline For the clustering task, we compare our method with seven
baseline methods, which are either conventional or state-of-the-art:

• KMeans (Hartigan and Wong, 1979): a traditional and popular
clustering method that iteratively updates the clustering means
and cluster assignments.

• Cox PH (Cox, 1972): a classic survival model for survival risk
prediction, which assumes that the hazard rate for each instance,
known as the proportional hazard (PH), is constant over time.

https://www.well.ox.ac.uk/~wrayner/tools/
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Fig. 4. The Kaplan–Meier plots of KMeans, Cox PH, Deep Cox, DSM, SCA, Vadesc, NSC, SuSTaIn and our DCSM on dataset VBM. The cross mark on the curve means censoring.
Cluster 0 means low-risk group while Cluster 1 means high-risk group.
• Deep Cox (Katzman et al., 2018): a deep learning variant of Cox
PH that uses Cox PH loss to optimize the parameters of deep
neural networks, also called DeepSurv.

• DSM (Nagpal et al., 2021): the Deep Survival Machines model
learns different base distributions for different instances using
specified prior distributions.

• SCA (Chapfuwa et al., 2020): the Survival Clustering Analysis
model assumes that the latent space is a mixture of distributions
and uses the truncated Dirichlet process to realize the automatic
identification of the number of clusters.

• VaDeSC (Manduchi et al., 2021): the Variational Deep Survival
Clustering model uses a Gaussian mixture distribution to model
the features in a latent space and uses the Weibull distribution to
model the survival timing information.

• NSC (Jeanselme et al., 2022): Neural Survival Clustering is a
discriminative variant of DSM that uses neural networks to model
the base distributions for each instance.

• SusTaIn (Young et al., 2018): the Subtype and Stage Inference
method is designed to identify phenotypes with distinct temporal
progression patterns.

For Cox PH, Deep Cox, and DSM, we use the median of all the
risk scores as the threshold. In order to demonstrate the difference
between the clustering effectiveness of unsupervised learning and semi-
supervised learning methods, we also incorporate KMeans (Hartigan
7

and Wong, 1979) as the baseline besides the six survival models to
discover the subtypes. For the time-to-event prediction task, we only
report the results of all the survival models mentioned above without
KMeans.

Setting To obtain the clustering results, we follow the common practice
of training and testing on the entire dataset, similar to how other
typical clustering methods operate. After training, we down-sampled
the testing data (95% are sampled randomly) five times and obtained
the average LogRank values along with the standard deviation over the
five runs. For the time-to-event prediction task, we split the dataset
using the same random seed for all the methods to maintain consistent
training (70%) and testing (30%) datasets across experiments. The
training set is further divided into validation (1/7) and training (6/7)
subsets. Then the hyper-parameters are tuned exclusively on the valida-
tion set. Specifically, we perform a grid search for the hyperparameters,
including the trade-off parameter (also called discount) ([0.5, 0.75,
1]), the learning rate ([1e-2, 1e-3, 1e-4]), and the number of MLP
layers together with the output size ([[], [50], [50, 50]]), based on the
C-index performance on the validation set. We then train the model
using the optimal parameters on the entire training subset (excluding
validation data). We repeat the experiment with five different random
seeds to ensure statistical robustness. Finally, we report the mean and
standard deviation (std) over the five results from the five different
testing sets.
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Fig. 5. Targeted genetic association results of DCSM. In the parentheses of the vertical label is the name of the gene closest to the corresponding SNP. The darkness of each
blue patch represents the negative logarithm of 𝑝-𝑣𝑎𝑙𝑢𝑒 regarding each SNP. The darker the patch is, the more significant the SNP is. ‘‘x’’ marker on the patch means the SNP is
statistically significant after FDR correction. This figure indicates the discrepancy between the high-risk group and the normal group is as large as the discrepancy between the
high-risk group and the low-risk group, which reassures the performance of our DCSM algorithm.
Table 3
LogRank results comparison between KMeans, Cox PH, Deep Cox, DSM, SCA, VaDeSC,
NSC, SuSTaIn and DCSM on datasets AV45, FDG and VBM. The best one in each block
(for specific metric and dataset) is bold.

Methods AV45 FDG VBM

KMeans 66.96 ± 1.75 28.84 ± 1.36 16.17 ± 1.01
Cox PH 133.60 ± 3.65 117.80 ± 1.88 89.07 ± 3.97
Deep Cox 121.49 ± 10.99 95.39 ± 16.07 63.49 ± 2.76
DSM 160.62 ± 3.79 124.26 ± 1.74 120.41 ± 2.47
SCA 40.10 ± 26.47 18.15 ± 8.94 4.71 ± 3.41
VaDeSC 108.43 ± 131.86 133.69 ± 203.21 282.08 ± 157.12
NSC 160.88 ± 52.13 213.61 ± 82.60 65.52 ± 27.65
SuSTaIn 34.35 ± 13.94 21.19 ± 9.09 16.30 ± 2.83
DCSM 317.84 ± 31.89 384.62 ± 24.03 369.29 ± 26.87

5.3. Results on ADNI

5.3.1. LogRank results
Table 3 gives the LogRank comparison between KMeans, Cox PH,

Deep Cox, DSM, SCA, VaDeSC, NSC, SuSTaIn and DCSM on the AV45,
FDG, and VBM datasets. We can see that KMeans, which merely uses
the feature information, achieves the lowest LogRank compared to
other survival models excluding SCA. SCA cannot explicitly control the
number of clusters. It usually sets the upper bound of the number of
clusters as 25 and uses the Dirichlet process to automatically identify
the number of clusters, which makes it difficult to compare to other
baselines. To have a fair comparison, we set the upper bound of the
number of clusters as 2 for SCA which results in poor clustering perfor-
mance. Overall, the results in Table 3 demonstrate that incorporating
partial survival information allows survival models to better stratify
the groups such that the survival differences between the subgroups
are larger than their unsupervised counterparts. DCSM, specifically
designed for survival clustering, obtains the highest LogRank results
out of all the baseline methods.

To make the results more intuitive, we also provide the correspond-
ing Kaplan–Meier (KM) plots that are shown in Fig. 4. We only provide
the KM plots on the VBM dataset. Other similar results are deferred
to Appendix A. In general, the smaller the LogRank, the closer the
two survival curves. From Fig. 4 we can see that the two survival
curves of KMeans and SuSTaIn are closer to each other compared to
survival models. This shows that survival models can more effectively
stratify individuals into different subgroups concerning the risk of MCI
8

Table 4
C-Index results comparison between Cox PH, Deep Cox, DSM, SCA, VaDeSC, NSC and
DCSM on datasets AV45, FDG and VBM. The best one in each block (for specific metric
and dataset) is bold.

Methods AV45 FDG VBM

Cox PH 0.6365 ± 0.0305 0.6780 ± 0.0811 0.5981 ± 0.0453
Deep Cox 0.7566 ± 0.0131 0.7657 ± 0.0545 0.6423 ± 0.0286
DSM 0.7507 ± 0.0262 0.7928 ± 0.0406 0.6492 ± 0.0105
SCA 0.5175 ± 0.1136 0.5096 ± 0.1494 0.5122 ± 0.0462
VaDeSC 0.4168 ± 0.0475 0.4194 ± 0.0917 0.5169 ± 0.0632
NSC 0.6884 ± 0.0768 0.7699 ± 0.0498 0.5986 ± 0.0733
DCSM 0.7502 ± 0.0394 0.7770 ± 0.0250 0.6549 ± 0.0317

converting to AD. Despite the success of SuSTaIn in identifying phe-
notypes with distinct temporal progression patterns, it is not designed
for differentiating risk levels and thus performing inferior to survival
models. Note that the two curves of DCSM are farthest apart from each
other compared to the other methods with the exception of VaDeSC.
The two curves of VaDeSC are farther from each other than DCSM,
but the number of patients in Cluster 1 (with high risk) is only 4
which means that the two clusters are very imbalanced and thus not
effectively stratified. In addition, the cross marks on the curves indicate
censoring, i.e., we do not observe the event of MCI converting to AD.
Thus it should be with high probability that the censored samples have
low risk to convert to AD. Therefore, we expect that a good clustering
results should stratify more censored individuals to the low-risk group.
We can see that on the curve of Cluster 1 (with high risk) of DCSM,
the number of cross marks is small while most of the censored samples
are on the low-risk curve (Cluster 0). This validates the effectiveness of
DCSM.

5.3.2. C-index results
Our primary focus lies in clustering and subtype discovery, but

we also evaluate the time-to-event prediction performance of DCSM
in comparison to other methods with the exception of KMeans which
is not able to do time-to-event (risk) prediction. The results are sum-
marized in Table 4. Notably, our method demonstrates superior per-
formance compared to other approaches on the VBM dataset, while
maintaining competitive results on the other datasets. It is important
to emphasize that our method is not specifically optimized for risk pre-
diction; rather, our primary goal is to enhance clustering performance.
In this context, the observed outcome is considered acceptable.
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Fig. 6. Brain heat map of AV45, FDG, and VBM using the coefficient of our DCSM model. Each dataset includes three slices to display the brain region extensively. The heat maps
in the first row showcase all the brain regions of interest, where darker colors represent greater importance for risk prediction. The second row highlights the top ten significant
brain regions in each dataset, which are annotated in the legends below them.
5.3.3. Genetic association results
To biologically validate our clustering findings derived from the

proposed DCSM, we carried out targeted genetic association analyses.
Specifically, we first prioritized 57 single nucleotide polymorphism
(SNP) variants from ADNI 1, GO, 2, 3 studies using the list of AD loci
with genetic evidence compiled by the Alzheimer’s Disease Sequencing
Project (ADSP) Gene Verification Committee.4 These genetic variants
have been well-studied and verified to affect AD risk. Then, we con-
ducted genetic association analyses on the subtypes of ‘‘High risk vs.
Normal’’, ‘‘High risk vs. Low risk’’, ‘‘Low risk vs. Normal’’, ‘‘MCI vs.
Normal’’, and ‘‘MCI (half) vs. Normal’’, where we use half of the MCI
subjects (randomly selected) to make the comparison fairer, as the
number of subjects in this group is closer to the high-risk, low-risk, and
normal groups. The term ‘‘Normal’’ refers to the group of individuals
who are cognitively normal. In our approach, we employed univariate
logistic regression models, designating the risk of AD onset as the
dependent variables and individual autosomal SNP variants as inde-
pendent variables. To account for the potential confounding factors, we
adjust our model with age, sex, and population structure captured by
the first 10 principal components obtained from genotyping data. We
use the false discovery rate (FDR) to correct the multiple comparison
problems. The software used to perform the association analyses was
PLINK1.9 (Chang et al., 2015).

As shown in Fig. 5, we find more significant SNPs in the first two
columns than in the last three columns of each dataset. This indicates
that the discrepancy between the high-risk group and the normal group
is as large as the discrepancy between the high-risk group and the low-
risk group. In contrast, the discrepancy between the low-risk group and
the normal group, as well as between the whole MCI group and the
normal group, is much smaller. This is reasonable since the high-risk
group should be significantly different from other groups such as the
low-risk group or the normal group, while the discrepancy between
other groups should be small. These results validate the efficacy of our
DCSM clustering framework, where we successfully identified the high-
risk group that should be treated more carefully. Our study underscores
the robustness of our clustering findings and contributes to a better
understanding of the genetic foundations of AD risk subtypes.

We also showcase the targeted genetic association analysis results
of all the methods in Fig. B.12 for a comprehensive comparison in Ap-
pendix A. We expect to identify more significant SNPs in the first two
columns of each block for each dataset. To clearly compare them, we
sum up the number of ‘‘x’’ markers in the first two columns for each
method. Based on this, KMeans has 24, Cox PH has 20, Deep Cox has
23, DSM has 22, SCA has 16, Vadesc has 0, NSC has 29 and our DCSM
has 30, which demonstrates the superiority of the proposed method.

4 https://adsp.niagads.org/gvc-top-hits-list/
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5.4. Interpretability study

Fig. 6 shows the important brain regions that DCSM pays attention
to. We compute the importance of each brain region by calculating the
dot product of all the parameter coefficients with respect to the final
weight of each expert distribution. In particular, we first extract the
coefficients from the MLP Encoder 𝜙𝜽(⋅) whose input dimension is 116
and the output dimension is 50 in our experiment. Next, we extract the
parameter coefficients from 𝒘 as shown in Fig. 2, whose dimension is
50 × 2. Finally, we do the dot product of these two coefficients and ob-
tain our desired importance weight of brain regions whose dimensions
are 116 × 2 for high- and low-risk groups respectively. In Fig. 6, we only
illustrate the importance weight for the high-risk group in which we are
more interested. When plotting the feature importance using weights,
it is important to take the absolute value of each weight to indicate the
impact on the final prediction, regardless of its sign. After obtaining
the absolute values, the weights should be normalized by subtracting
the smallest value and dividing by the range of the weights (biggest
weight minus smallest weight). The importance weights for the low-
risk group are found to be the exact opposite of the weights for the
high-risk group. Normalizing them reveals that the final importance
weight for the low-risk group is the same as that for the high-risk group,
indicating a focus on the same brain regions for predicting risk in both
groups. As can be seen, the first row shows the AD risk importance
of all the regions, the darker the color is, the more important. The
second row highlights the top ten important regions for each modality.
For AV45 data, our method demonstrates high importance for AD
risk prediction on the left fusiform, medial orbitofrontal, posterior
cingulate, and precentral gyri. A significant abnormality in amyloid
levels has been observed in the medial orbitofrontal cortex in AD
patients (Collij et al., 2020). This region is associated with the episodic
memory and simulation network and is very susceptible to aging (Fjell
et al., 2014). Additionally, amyloid accumulation and gray matter atro-
phy occur simultaneously in AD patients in the fusiform gyrus (Chang
et al., 2016). Furthermore, many studies have reported a significantly
increased amyloid level in posterior cingulate (Huang et al., 2013; Collij
et al., 2020), and the amyloid accumulation is related to the executive
function and memory decline (Ali et al., 2022). It is evident from the
FDG data that the posterior cingulate and the precuneus gyri are two
potential AD biomarkers, which is consistent with prior studies showing
severe hypometabolism reductions in MCI and AD patients (Bailly
et al., 2015). Moreover, the reduction of metabolism caused by AD
starts from the posterior cingulate cortex and gradually spreads to
the frontal lobe such as the orbitofrontal gyrus (Mosconi, 2005; Bailly
et al., 2015). For VBM data, the right hippocampus demonstrates the
highest importance, and bilaterally hippocampus and amygdala regions
all show a high risk of AD. The hippocampal neurons register places and

people in memory, while the amygdala activates related cortical areas

https://adsp.niagads.org/gvc-top-hits-list/
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Table 5
C-Index and LogRank results compared to Cox PH, Deep Cox, DSM, SCA, VaDeSC, NSC and DCSM on benchmark datasets. The best ones are bold.

Metric Method SUPPORT PBC FRAMINGHAM FLCHAIN

C Index

Cox PH 0.8401 ± 0.0070 0.8476 ± 0.0126 0.7580 ± 0.0063 0.7984 ± 0.0046
Deep Cox 0.8053 ± 0.0058 0.8474 ± 0.0181 0.7612 ± 0.0057 0.7893 ± 0.0063
DSM 0.8300 ± 0.0045 0.8363 ± 0.0133 0.7593 ± 0.0050 0.8009 ± 0.0036
SCA 0.8203 ± 0.0121 0.8251 ± 0.0258 0.5311 ± 0.1235 0.7467 ± 0.0091
VaDeSC 0.8419 ± 0.0041 0.8278 ± 0.0085 0.5802 ± 0.0406 0.7886 ± 0.0100
NSC 0.8146 ± 0.0072 0.8178 ± 0.0275 0.7396 ± 0.0175 0.7980 ± 0.0052
DCSM (Ours) 0.8305 ± 0.0028 0.8359 ± 0.0109 0.7530 ± 0.0053 0.7916 ± 0.0074

LogRank

Cox PH 500.3282 ± 60.4977 198.2686 ± 17.3940 576.1450 ± 22.9621 399.0243 ± 25.7657
Deep Cox 326.1931 ± 54.7026 203.3091 ± 22.8343 593.7317 ± 14.4697 403.4643 ± 35.8034
DSM 563.4841 ± 0.0045 196.0912 ± 0.0133 587.5718 ± 0.0050 406.4549 ± 0.0036
SCA 212.5712 ± 26.2629 260.5682 ± 67.4875 278.3525 ± 51.1866 536.1056 ± 109.1680
VaDeSC 196.8495 ± 19.6887 118.9605 ± 77.4716 348.5500 ± 697.1000 95.5291 ± 108.9488
NSC 416.4572 ± 31.9528 300.5617 ± 21.3671 313.3190 ± 41.8324 713.7871 ± 40.9787
DCSM (Ours) 1067.6184 ± 271.6551 302.5395 ± 30.1043 751.9770 ± 48.9725 571.0441 ± 99.0101
Fig. 7. (a) The Kaplan–Meier plots of DCSM on dataset PBC. The cross mark indicates
censoring. The learned expert distributions are shown in (b). The shape of the two
expert distributions resembles our Kaplan–Meier curves, facilitating effective data
stratification.

to modulate recognition (Petrovic et al., 2008). The atrophy of the hip-
pocampus is widely considered as the AD biomarker for early detection
citedhikav2011potential, and the study found that amygdala atrophy is
related to hippocampus atrophy and global AD severity (Poulin et al.,
2011). These results also provide directions for discovering potential
AD biomarkers.

As for the interpretability from the expert distribution perspective,
we can interpret that each expert distribution represents a cluster
center. The Kaplan–Meier plot of DCSM on the PBC benchmark dataset
is displayed in Fig. 7. The plot is accompanied by CDF (Cumulative
Density Function) curves for expert distributions. Notably, the shapes of
the two expert distributions closely resemble the Kaplan–Meier curves,
offering an intuitive insight into how the expert distributions within
the DCSM model effectively steer the patient clustering process and
validate the robustness of data stratification. This alignment between
the expert distributions and the Kaplan–Meier curves further reinforces
the efficacy of our approach.

5.5. Results on benchmark datasets

Table 5 shows the C Index values on real data, including the average
results of five independent runs and their standard deviations. These
results indicate that our method achieves competitive performance
compared to other baselines. Although our model’s performance was
not the best on some datasets, the difference between the results of
DCSM and the best-performing model are not significant at a 95%
confidence interval.

Table 5 also summarizes the results of the LogRank tests. The
LogRank statistic evaluates how well the clustering results with regard
to the survival information. A larger value indicates better perfor-
mance. The results demonstrate that our method outperforms all the
baselines on SUPPORT, PBC and FRAMINGHAM and secure the second
position on FLCHAIN. This could be more useful than the time-to-event
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prediction because such information can facilitate personalized treat-
ment planning. Clinicians may not be able to decide how to provide
customized treatment merely based on the risk predictions. Instead,
clustering results more intuitively differentiate the patients into groups,
enabling more informed clinical decision-making.

5.6. Sensitive and ablation analysis of DCSM model

In this section, we conduct a sensitive analysis and ablation study
for our DCSM model. We study the performance change with differ-
ent event rates, learning rates, trade-off parameters (discounts), and
numbers of layers.

Event Rate To investigate the benefits of incorporating censored data,
we conducted extensive experiments with different event rates, ranging
from 1/8 to 1, by varying the number of censored samples. A smaller
event rate corresponds to a higher number of censored samples. When
the event rate is 1, it indicates that no censored data is included in the
dataset. For the time-to-event prediction task, the modified data with
specific event rates were divided into a 70% training set and a 30%
testing set. Fig. 8(a) shows that as the event rate increases (less cen-
sored data included), the C-Index performance worsens, highlighting
the importance of censored data for accurate time-to-event prediction.
For the clustering task, the training data consists of modified data with
specific event rates, while the testing data comprises the original entire
dataset to ensure a fair comparison across different cases. Fig. 8(b)
shows that a higher event rate will cause a lower LogRank performance,
demonstrating the benefit of incorporating censored data. The LogRank
performance outperforms the others when the event rate is 2/8 (1/4)
because the event rate of the original dataset is exactly 1/4. Maintain-
ing the same distribution between the training and testing results in the
best performance.

Learning rate and discount In Fig. 9A, D and Fig. 9B, E, we show the
sensitive analysis to different learning rates and discounts. We can see
that our DCSM model is not sensitive to these two hyperparameters,
especially for C-Index, which illustrates the robustness of the proposed
method.

Layer We test our model’s performance using four different layer
settings: [], [50], [50,50], and [50,50,50] for the MLP component. As
can be seen from Fig. 9C and Fig. 9F, for LogRank performance, there
is a significant performance improvement if we choose an appropriate
MLP while the empty bracket achieves the lowest performance demon-
strating that the design of the MLP plays an important role in clustering.
On the other hand, the C-Index performance does not change too
much showing that C-Index is robust to different model structures. It is
worthy to note that in all the baselines, only DSM (Nagpal et al., 2021)
and NSC (Jeanselme et al., 2022) share the same network structure as
ours. However, different numbers of layers or different output sizes can
yield different results. We conducted the same hyperparameter search
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Fig. 8. The performance of C-Index and LogRank for different event rate based on our DCSM model. The larger the event rate, the worse the performance indicating that the
censored data plays an important role in our DCSM’s performance.
Fig. 9. The performance of C-Index and LogRank for different hyper-parameters of DCSM model. Our model is robust to learning rate and discount. LogRank performance is
sensitive to layer indicating that the design of MLP plays an important role in our DCSM’s clustering performance.
protocol for all the baselines and selected the best performance for each
baseline to ensure a fair comparison. Thus, we did not set them with
the same structure.

6. Discussion

Generative and discriminative approaches each have their strengths
and weaknesses. Typically, a generative model assumes that the data
follows a specific distribution, like Gaussian or Weibull distributions.
This means that the model can be trained effectively even with a
relatively small amount of data, as long as the data matches the
assumed distribution. However, if the actual data distribution does not
match this assumption, the resulting model could be biased and lose its
ability to work well in different situations. For instance, consider the
VaDeSC (Manduchi et al., 2021) model mentioned in our paper. It is a
fully generative model that makes assumptions about both the features
and the survival information in the data. If either of these assumptions
is not satisfied, the model will be inferior. Discriminative models, on the
other hand, do not make any assumptions about the data distribution.
This means that they can learn the true pattern from the data, even
if the data is not well-behaved. However, this approach often requires
larger amounts of data to find the right parameters for the model. An
example of a discriminative model is NSC (Jeanselme et al., 2022). NSC
is a fully discriminative method that does not make any assumptions
about the data. However, if the sample size is small, the model may
not be able to learn the true pattern from the data.

A combination of discriminative and generative mechanisms can
mitigate the drawbacks of both approaches. In our case, we do not make
any assumptions about the features, as we believe that the distribution
of features can vary from case to case. Making assumptions about
the features can limit the model’s capability. Instead, we assume that
the survival information follows the Weibull distribution, which is a
commonly used distribution for modeling survival timing data. The
11
Weibull distribution is flexible in that it can mimic different distribu-
tions with different shapes and scales. For example, when the shape
parameter is close to 3, the Weibull distribution approximates a normal
distribution. When the shape parameter is equal to 1, the Weibull
distribution is equivalent to a two-parameter exponential distribution.
Therefore, the Weibull distribution is a suitable choice for modeling
survival timing information. Our method also has its limitations. For
example, if the number of samples is limited, the feature information
may not be learned well. This is a common problem in the medical
domain, where data are often scarce. This may be the reason why DCSM
does not outperform the baseline methods in time-to-event prediction
tasks. Additionally, if the survival timing data are too skewed to be
modeled by the Weibull distribution, the model’s performance may
also be degraded. There is no perfect method that can fit all cases.
However, by combining discriminative and generative mechanisms, we
can develop more robust models that can handle a wider range of data
distributions.

In addition, we want to emphasize that we only focus on two clus-
ters for MCI subtype discovery in this study. One subtype is associated
with a low risk of developing AD, and the other is associated with a
high risk. Our goal is to help patients and clinicians understand their
risk of developing AD. By identifying people who are at high risk,
we can emphasize the need for early intervention or more customized
treatment. While the high- and low-risk clusters are important, adding
a medium-risk cluster would only confuse patients and clinicians. This
would make our findings less clear and effective.

We intend to utilize the overlapping examples from the three modal-
ities of ADNI data to build multi-modality survival model to improve
both clustering and time-to-event prediction in the future work. The
demographic information (age, sex, headsize, etc.) may have some
effect on both the prediction and the imaging modalities. Thus, our
future work are going to explore the potential of multi-modality study
by incorporating various modalities such as demographic information,
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genetics data, and other AD related biomarkers. One approach involves
selecting overlapping samples from different modalities and combining
them to create a more comprehensive representation for each sample,
which we believe could enhance performance. Additionally, we aim
to explore and develop more effective multi-modal strategies such as
using attention mechanism from Transformer (Vaswani et al., 2017) or
Canonical Correlation Analysis (Zhou et al., 2024) to fuse the modal-
ities to further improve the clustering and time-to-event prediction
ability of our method.

7. Conclusion

In this paper, we have proposed a deep hybrid method that inte-
grates the discriminative and generative strategies into one framework.
Assuming the survival function for each instance is a weighted com-
bination of constant expert distributions, our method is capable of
learning the weight for each expert distribution discriminatively and
the distribution of the survival information generatively. We demon-
strate our method’s superiority by applying it to Alzheimer’s disease
subtype discovery. Genetic association studies along with feature im-
portance analysis further validate the effectiveness of our proposed
method.
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ppendix

In this appendix, we provide additional experimental details and
esults including the Kaplan–Meier plots for dataset AV45 and FDG
ppendix A, the targeted genetic association analyses for all the meth-
ds on all the ADNI datasets Appendix B, the statistics regarding
ge, Education and Sex Appendix C, the results on three clusters and
ifferent event rates Appendix D, and the impact of different threshold
n the cluster results of Cox PH, Deep Cox and DSM Appendix E.

ppendix A. KM plot on AV45 and FDG

In Figs. A.10 and A.11 we provide the Kaplan–Meier (KM) plots that
orresponds to Table 3. The smaller the LogRank, the closer the two
urvival curves. As can be seen, the two survival curves of KMeans and
uSTaIn are closer to each other compared to survival models. This
hows that survival models can more effectively stratify people into
ifferent subgroups with respect to MCI converting to AD. Especially,
he two curves of DCSM are farthest apart from each other. You may
otice that the two curves of VaDeSC are farther to each other than
urs, but the number of patients in cluster 1 is only 5 and 6 in Fig. A.10
nd Fig. A.11 respectively, which means that the two clusters are
ery imbalanced. In addition, the cross mark on the curve indicates
ensoring and it indicates that we do not observe the event of MCI
onverting to AD happens. Thus it is with high probability that the
ensored samples have low risk to convert to AD. We can see that in the
urve of Cluster 1 of DCSM, the number of cross marks is small while
ost of the censored samples are on the low risk data. This validates

he effectiveness of DCSM as well.

ppendix B. Targeted genetic association analyses for other clus-
ering methods

In Fig. B.12, we provide the targeted genetic association analysis
esults of all the methods. We expect to identify more significant SNPs
n the first two columns of each block for each dataset. To clearly
ompare them, we sum up the number of ‘‘x’’ markers in the first two
olumns for each method. Based on this, KMeans has 24, Cox PH has
0, Deep Cox has 23, DSM has 22, SCA has 16, Vadesc has 0, NSC has
9 and our DCSM has 30, which demonstrates the superiority of the
roposed method.

http://www.fnih.org
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Fig. A.10. The Kaplan–Meier plots of KMeans, Cox PH, Deep Cox, DSM, SCA, Vadesc, NSC, SuSTaIn, and DCSM on dataset AV45 of one run. The cross mark on the curve means
censoring. Cluster 0 means low-risk group while Cluster 1 means high-risk group.
Appendix C. Statistics regarding age, education and sex

We provide the statistics of high- and low-risk groups with respect
to Age, Education and Gender and use histogram to illustrate the
difference between low- and high-risk groups. Table C.6 summarizes
the subject characteristics of high- and low- risk group clustered by all
methods. Figs. C.13–C.15 shows the histogram of all methods. We find
that the average age of subjects in high-risk group are higher than that
in low-risk group. This is reasonable since older people are more risky
to have cognition impairment. Besides, the cluster results indicates that
more education time could reduce the risk to be diagnosed to be AD.
Finally, for AV45 and FDG datasets, the ratio of high risk and low risk
in female group are smaller than that in male group, while for VBM
dataset, the ratio of high risk and low risk in female group are larger
than that in male group.

Appendix D. C-index and LogRank results of three risk groups and
different event rates

To further demonstrate the superiority of our model, we also add the
experiment for 𝐾 = 3, where the patients are clustered into three risk
groups. The performance of LogRank results are presented in Table D.7
13
where we can see that our DCSM outperforms the seven baseline
methods. Besides, we also present the C-Index results in Table D.8.

To investigate the benefits of incorporating censored data, we con-
ducted extensive experiments with different event rates, ranging from
1/8 to 1, by varying the number of censored samples. A smaller event
rate corresponds to a higher number of censored samples. When the
event rate is 1, it indicates that no censored data is included in the
dataset. For the time-to-event prediction task, the modified data with
specific event rates were divided into a 70% training set and a 30%
testing set. Fig. 8a shows that as the event rate increases (less censored
data included), the C-Index performance worsens, highlighting the
importance of censored data for accurate time-to-event prediction. For
the clustering task, the training data consists of modified data with
specific event rates, while the testing data comprises the original entire
dataset to ensure a fair comparison across different cases. Fig. 8b shows
that a higher event rate will cause a lower LogRank performance,
demonstrating the benefit of incorporating censored data. The LogRank
performance outperforms the others when the event rate is 2/8 (1/4)
because the event rate of the original dataset is exactly 1/4. Maintain-
ing the same distribution between the training and testing results in the
best performance. The more detailed quantitative values are presented
in Table D.9. In this table, to obtain the mean and standard deviation
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Fig. A.11. The Kaplan–Meier plots of KMeans, Cox PH, Deep Cox, DSM, SCA, Vadesc, NSC, SuSTaIn, and DCSM on dataset FDG of one run. The cross mark on the curve means
censoring. Cluster 0 means low-risk group while Cluster 1 means high-risk group.
Table C.6
Subject characteristics of high- and low-risk group clustered by all methods.

Dataset Method Age Education Gender (M/F)

Risk Group High risk Low risk High risk Low risk High risk Low risk

AV45

KMeans 73.67 ± 6.78 70.82 ± 7.71 16.03 ± 2.84 16.28 ± 2.63 126/69 140/129
Cox PH 73.03 ± 7.15 70.99 ± 7.64 16.06 ± 2.86 16.29 ± 2.57 140/93 126/105
Deep Cox 73.32 ± 6.92 70.73 ± 7.76 16.04 ± 2.88 16.31 ± 2.55 136/95 130/103
DSM 73.18 ± 7.15 70.85 ± 7.59 15.99 ± 2.81 16.36 ± 2.62 133/99 133/99
SCA 73.56 ± 4.69 71.94 ± 7.57 15.59 ± 2.84 16.20 ± 2.71 13/9 253/189
VaDeSC 73.96 ± 5.53 71.99 ± 7.48 16.80 ± 1.10 16.16 ± 2.74 4/1 262/197
NSC 72.98 ± 7.42 71.31 ± 7.43 16.04 ± 2.82 16.27 ± 2.65 114/83 152/115
DCSM 73.67 ± 6.99 71.43 ± 7.54 15.93 ± 2.73 16.26 ± 2.71 69/52 197/146

FDG

KMeans 74.67 ± 6.69 68.85 ± 7.09 15.86 ± 2.83 16.50 ± 2.55 154/99 111/101
Cox PH 73.67 ± 7.25 70.35 ± 7.30 15.97 ± 2.89 16.33 ± 2.54 134/99 131/101
Deep Cox 73.42 ± 7.22 70.60 ± 7.44 15.86 ± 2.86 16.44 ± 2.55 137/96 128/104
DSM 72.82 ± 7.19 71.20 ± 7.64 16.16 ± 2.80 16.14 ± 2.65 141/92 124/108
SCA 75.79 ± 7.04 71.60 ± 7.39 15.48 ± 2.76 16.22 ± 2.71 25/21 240/179
VaDeSC 73.82 ± 7.87 71.99 ± 7.46 16.67 ± 1.03 16.14 ± 2.74 5/1 260/199
NSC 71.51 ± 7.41 72.23 ± 7.48 16.31 ± 2.68 16.08 ± 2.74 78/61 187/139
DCSM 73.40 ± 7.09 71.56 ± 7.52 15.99 ± 2.67 16.20 ± 2.74 62/51 203/149

(continued on next page)
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Fig. B.12. Targeted genetic association results of all the baseline methods and our DCSM. In the parentheses of the vertical label is the name of the gene closest to the corresponding
SNP. The darkness of each blue patch represents the negative logarithm of 𝑝-𝑣𝑎𝑙𝑢𝑒 regarding each SNP. The darker the patch is, the more significant the SNP is. ‘‘x’’ marker on
the patch means the SNP is statistically significant after FDR correction.
Table C.6 (continued).
Dataset Method Age Education Gender (M/F)

Risk Group High risk Low risk High risk Low risk High risk Low risk

VBM

KMeans 75.33 ± 6.60 69.01 ± 6.90 15.91 ± 2.85 16.37 ± 2.66 136/78 128/118
Cox PH 73.46 ± 7.29 70.44 ± 7.32 16.19 ± 2.76 16.12 ± 2.77 138/92 126/104
Deep Cox 73.46 ± 7.38 70.45 ± 7.23 16.20 ± 2.79 16.11 ± 2.74 131/99 133/97
DSM 73.44 ± 7.40 70.47 ± 7.23 16.13 ± 2.84 16.18 ± 2.68 138/92 126/104
SCA 73.25 ± 7.07 64.82 ± 5.15 16.12 ± 2.80 16.34 ± 2.53 242/147 22/49
VaDeSC 74.45 ± 9.38 71.93 ± 7.45 17.50 ± 1.91 16.14 ± 2.76 1/3 263/193
NSC 71.24 ± 7.02 72.41 ± 7.70 16.07 ± 2.70 16.21 ± 2.80 103/76 161/120
DCSM 74.24 ± 6.70 71.17 ± 7.55 16.30 ± 2.63 16.10 ± 2.80 72/45 192/151
15
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Fig. C.13. Distribution of (a) age, (b) education and (c) gender of high and low risk group. Dataset is AV45.
Fig. C.14. Distribution of (a) age, (b) education and (c) gender of high and low risk group. Dataset is FDG.
Fig. C.15. Distribution of (a) age, (b) education and (c) gender of high and low risk group. Dataset is VBM.
Table D.7
LogRank comparison for three risk groups. The best one in each block is in bold.

Methods AV45 FDG VBM

KMeans 64.33 ± 2.64 30.31 ± 1.58 15.03 ± 1.08
Cox PH 272.35 ± 6.26 211.68 ± 4.61 176.56 ± 9.55
Deep Cox 225.99 ± 10.51 273.15 ± 30.74 232.60 ± 8.97
DSM 320.61 ± 10.87 296.99 ± 14.27 257.73 ± 15.08
SCA 45.04 ± 28.08 22.25 ± 10.50 10.84 ± 5.53
VaDeSC 196.54 ± 142.24 158.62 ± 133.80 237.66 ± 182.73
NSC 209.17 ± 42.35 313.82 ± 79.63 241.32 ± 121.48
SuSTaIn 41.25 ± 5.09 23.36 ± 8.05 19.76 ± 9.10
DCSM 337.21 ± 14.18 371.52 ± 29.06 298.90 ± 10.32

(std) values of C-Index, we use five different seeds to split the data
and take the mean and std values over the five sets of results. For the
LogRank results, we use bootstrap to get 95% of the entire data as the
testing set for five times and get the mean and std values.

Appendix E. Different threshold of cluster results of Cox PH, Deep
Cox and DSM

To cluster MCI patients, we first obtain their predicted risk scores,
and then we set a threshold (usually the median or the mean of the
16

hole risk scores) to get the subtypes. The patients whose predicted risk
Table D.8
C-Index comparison for three risk groups. The best one in each block is in bold.

Methods AV45 FDG VBM

Cox PH 0.6958 ± 0.0259 0.6473 ± 0.0698 0.6311 ± 0.0327
Deep Cox 0.5775 ± 0.2511 0.7531 ± 0.0276 0.6703 ± 0.0257
DSM 0.7637 ± 0.0247 0.7429 ± 0.0295 0.6704 ± 0.0198
SCA 0.5208 ± 0.0801 0.5948 ± 0.1001 0.5382 ± 0.1011
VaDeSC 0.4187 ± 0.0535 0.4109 ± 0.0883 0.5149 ± 0.0641
NSC 0.7357 ± 0.0266 0.7535 ± 0.0360 0.6529 ± 0.0222
DCSM 0.7617 ± 0.0182 0.7426 ± 0.0250 0.7050 ± 0.0236

scores lower than the threshold are clustered as low risk group, while
the others are clustered as high risk group. We compared the perfor-
mance of LogRank using both median and mean as thresholds for the
Cox PH, Deep Cox, and DSM models, as presented in Table E.10. The
results show that using the median as a threshold produces significantly
better outcomes for these baselines. This presents a challenge for our
method, but it still outperforms the improved versions of the baselines.
The reason mode was not used as the threshold is that the mode can
appear anywhere in an ordered sequence only if that number repeats
more than other numbers, and thus may not provide a reasonable
stratification.
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Table D.9
C-Index and LogRank results of three dataset based on different event rate of our DCSM model.

Performance C-Index LogRank

Event rate AV45 FDG VBM AV45 FDG VBM

1/8 0.8317 ± 0.0316 0.8062 ± 0.0334 0.7466 ± 0.0401 196.17 ± 35.23 195.26 ± 11.61 163.57 ± 3.67
2/8 0.7878 ± 0.0396 0.7690 ± 0.0370 0.6820 ± 0.0382 298.90 ± 36.76 390.80 ± 21.27 321.02 ± 18.48
3/8 0.7225 ± 0.0087 0.7326 ± 0.0243 0.6989 ± 0.0308 262.49 ± 14.12 235.33 ± 8.60 186.62 ± 9.57
4/8 0.7017 ± 0.0332 0.6880 ± 0.0412 0.6623 ± 0.0331 106.00 ± 4.01 127.82 ± 5.65 97.44 ± 5.85
5/8 0.6726 ± 0.0531 0.6350 ± 0.0617 0.6462 ± 0.0570 116.53 ± 2.81 70.39 ± 6.58 72.68 ± 4.60
6/8 0.6859 ± 0.0353 0.6412 ± 0.0443 0.5791 ± 0.0469 108.67 ± 4.21 58.05 ± 2.44 55.30 ± 1.03
7/8 0.6433 ± 0.0297 0.6084 ± 0.0688 0.5788 ± 0.0535 65.94 ± 4.22 27.12 ± 1.21 15.94 ± 1.03
8/8 0.5201 ± 0.0352 0.5771 ± 0.0783 0.5267 ± 0.0418 70.61 ± 4.88 38.64 ± 3.62s 2.02 ± 0.61
Table E.10
LogRank comparison of Cox PH, Deep Cox, and DSM between using median
and mean as thresholds.

Cluster threshold Median (Ours) Mean

AV45
Cox PH 133.60 ± 3.65 37.89 ± 0.57
Deep Cox 121.49 ± 10.99 37.93 ± 5.84
DSM 160.62 ± 3.79 41.35 ± 4.09

FDG
Cox PH 117.80 ± 1.88 35.99 ± 1.15
Deep Cox 95.39 ± 16.07 21.42 ± 3.46
DSM 124.26 ± 1.74 46.55 ± 2.05

VBM
Cox PH 89.07 ± 3.97 40.96 ± 0.52
Deep Cox 63.49 ± 2.76 17.23 ± 3.98
DSM 120.41 ± 2.47 37.51 ± 1.42
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