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Summary. Associating genetic markers with a multidimensional phenotype is an important yet challenging problem. In
this work, we establish the equivalence between two popular methods: kernel-machine regression (KMR), and kernel distance
covariance (KDC). KMR is a semiparametric regression framework that models covariate effects parametrically and genetic
markers non-parametrically, while KDC represents a class of methods that include distance covariance (DC) and Hilbert–
Schmidt independence criterion (HSIC), which are nonparametric tests of independence. We show that the equivalence between
the score test of KMR and the KDC statistic under certain conditions can lead to a novel generalization of the KDC test that
incorporates covariates. Our contributions are 3-fold: (1) establishing the equivalence between KMR and KDC; (2) showing
that the principles of KMR can be applied to the interpretation of KDC; (3) the development of a broader class of KDC
statistics, where the class members are statistics corresponding to different kernel combinations. Finally, we perform simulation
studies and an analysis of real data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. The ADNI study
suggest that SNPs of FLJ16124 exhibit pairwise interaction effects that are strongly correlated to the changes of brain region
volumes.
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1. Introduction
To better understand and utilize genomic data, researchers
often study the associations between genetic variants and
disease phenotypes to decode the hidden information. To
this end, intermediate phenotypes have been attracting much
attention compared to the final disease diagnosis, since inter-
mediate phenotypes have the potential to contain stronger
connections to the genetic variants. In the case of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) study,
Ge et al. (2012), Stein et al. (2010a), and Stein et al. (2010b)
used the brain structural magnetic resonance imaging (MRI)
scans as the intermediate multiple phenotypes. They looked
for associations between genetic variants and phenotypes; the
detailed descriptions of the ADNI dataset are in Section 5. In
this work, we primarily focus on the problem of correlating
the genetic variants with the imaging data such as those from
ADNI, while adjusting for environmental covariates.

In earlier work on the ADNI study, Stein et al. (2010b)
applied linear regression using one genetic marker versus one
phenotype in a massively univariate manner across all markers
and all phenotypes. Such a method is feasible if the num-
ber of genetic variants and phenotypes is small. When both
the dimension of genotypes and phenotypes is very large, the
resulting test has limited power due to the issue of multi-
ple comparisons. To address this issue, two popular modeling
frameworks that could potentially be applied to the motivat-
ing example are the multivariate kernel machine regression

model (MV-KMR) (Maity, Sullivan, and Tzeng, 2012) and
the kernel distance covariance method (KDC) (Székely, Rizzo,
and Bakirov, 2007; Gretton et al., 2008; Székely and Rizzo,
2009).

MV-KMR is a multivariate outcome regression framework
based on kernel machine regression (KMR). KMR is a semi-
parametric regression approach that models the effect of the
covariates parametrically, and the effect of the genetic mark-
ers non-parametrically (Liu, Lin, and Ghosh, 2007; Kwee et
al., 2008). Specifically, the non-parametric effect of multiple
markers is modeled by a kernel. The Gaussian Radial Basis
Function (RBF) kernel is frequently used for quantitative
measurements, while polynomial kernels can be considered
for the qualitative variables. One advantage of this approach
is that it is able to greatly simplify the specification of a non-
parametric model for the effect of multiple markers (Liu et al.,
2007). Since we focus our discussion on multivariate pheno-
types in this work, we simply use KMR to denote the generic
approach for both univariate and multiple phenotypes.

KDC is a term that we define as a class of tests for
independence, and it includes distance covariance (DC) and
the Hilbert–Schmidt independence criterion (HSIC). DC was
established by Székely et al. (2007) to provide a test of
independence in high-dimensional settings that is consistent
against all alternatives. One advantage of DC is the compact
representation of the corresponding statistic in terms of the
product of expectations of pairwise Euclidean distances (L2).
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The statistic can be estimated empirically in a straightforward
manner. On the other hand, Gretton et al. (2008) formulated
the two-variable independence test (HSIC) using Reproduc-
ing Kernel Hilbert Spaces (RKHS), where the HSIC statistic
is able to test for dependence in multivariate spaces, and it is
consistent when a characteristic kernel (Sriperumbudur et al.,
2010) is used. Sejdinovic et al. (2013) demonstrated that DC
and HSIC are the same when the distance-induced kernel in
HSIC is chosen. The results in Sejdinovic et al. (2013) showed
that the HSIC test is more sensitive when the test statistic is
derived from kernels, and that the HSIC tests can be readily
extended to more structured and non-Euclidean spaces.

In this work, we establish the equivalence between KMR
and KDC. We first provide some review on distance proper-
ties of the sum of squares, and the outer product formulation
of linear models. This is then followed by an algebraic rep-
resentation of the multiple phenotypes version of KMR. We
show that the KDC statistic is equivalent to the KMR in the
absence of a parametric component and when a linear kernel
is used for the phenotype spaces. Furthermore, we propose a
new covariate-adjusted KDC test in the presence of the covari-
ates, and show that KDC is equivalent to the KMR of Maity
et al. (2012). Three major implications of the equivalence are
established in this work. First, the equivalence shows that
the principles of KMR can be applied to the interpretation
of KDC. Second, the new proposed covariate-adjusted KDC
test shows an increase in power relative to the original KDC
test in our simulation studies. Third, the KMR statistic is a
member of the KDC family, in that the members correspond
to distinct kernels. To conclude, our experiments suggest that
KDC may yield a more powerful result when tailored to the
application at hand.

2. Preliminaries

2.1. Distance Properties of the Sum of Squares

For each i, j ∈ 1, . . ., n, D = (dij) is an L2 of Y ∈ Rp, where
each component of dij is the square root of d2

ij = ∑p

r=1
(yir −

yjr)
2. Consider A ≡ (aij) as the sum of squares of Y with

(i, j)th entry, such that aij = ∑p

r=1
(yir − ȳ)(yjr − ȳ), where ȳ

is the total average of Y. We can also express the sum of
squares A as the centred inner product matrix,

A =
(

I − 1n1
′
n

n

)
YY′

(
I − 1n1

′
n

n

)
. (1)

where 1n is a n × 1 vector consisting of all ones, and I is
an n × n identity matrix. Gower (1966) showed that if YY′

in (1) is replaced by − 1
2
D2 = − 1

2
(d2

ij) (denoted as a Gower
distance), then the sum of squares A can be interpreted as a
centred distance matrix. In addition, Ch. 14 in Mardia et al.
(1980) proved that D is Euclidean if and only if A is a positive
semi-definite matrix.

2.2. Linear Model

Suppose for n subjects we observe the response Y ∈ Rp and
the predictor Z ∈ Rq. A typical approach to model the rela-
tionship between Y and Z is to apply multivariate analysis of
variance (MANOVA). Traditional multivariate analysis pro-
ceeds through partitioning of the total sum of squares based

on the trace of Y′Y, and the analysis can be done using the
linear model Y = Zβ + ε. For a test of the association between
Y and Z, we formulate the null hypothesis as H0 : β = 0, and
the least-squares estimate of β is β̂ = (Z′Z)−1Z′Y. There-
fore, the fitted values of Y are Ŷ = Zβ̂ = HY, where H =
Z(Z′Z)−1Z, and the matrix of residuals is R = Y − Ŷ, and
tr(Y′Y) = tr(Ŷ′Ŷ) + tr(R′R), where tr(·) is the trace opera-
tor. An appropriate statistic to test the null hypothesis of no
association between Y and Z is a pseudo F -statistic (McArdle
and Anderson, 2001):

F = tr(Ŷ′Ŷ)/(q − 1)

tr(R′R)/(n − q)
= tr(HYY′H)/(q − 1)

tr((I − H)YY′(I − H))/(n − q)
.

(2)

Furthermore, McArdle and Anderson (2001) suggested that
the above partitioning procedure can be done using the outer
product matrix, that is, tr(YY′), since tr(Y′Y) = tr(YY′).
Therefore, we can replace YY′ with any n × n distance matrix
D:

tr(HDH)/(q − 1)

tr((I − H)D(I − H))/(n − q)
. (3)

If D is a Gower distance matrix, then (3) is the same as (2);
if D is some other distance matrix, then the significance of
(3) can be tested using the permutation technique.

3. Methods

McArdle and Anderson (2001) applied the outer product for-
mulation to extend MANOVA to more general settings using
distance matrices. The advantage is that when the outer prod-
uct space is considered, one can apply other distances for
measuring the difference between two observations. There-
fore, the estimate is more flexible in capturing the nature of
both the response and the predictor variables. This inspires us
to apply the same method to the KMR model, and the result-
ing representation shows that KMR is equivalent to the KDC
when a common kernel is chosen. To understand this equiv-
alence between KMR and KDC, we first review the KMR
model without the covariates. We then consider the situation
when covariates are included, which leads to our proposal of
a new covariate-adjusted KDC test.

3.1. Without Covariates

To test dependence between two random vectors, that is, the
association between the phenotypes Y = (Y1, . . ., Yn)

t ∈ Rp

and the genotypes Z = (Z1, . . ., Zn)
t ∈ Rq, KDC (i.e., DC or

HSIC) can be used. Here, we use the same algebraic formula-
tion as in Gretton et al. (2008), and denote the kernel function
kij = k(Zi, Zj) as the element inxw row i and column j of the
kernel matrix K in Z, and lij = l(Yi, Yj) is the kernel function
of Yi and Yj in the kernel matrix L in Y space. Therefore, the
KDC statistic for the association between Y and Z is defined
as

KDCn = 1

n2
tr(KHLH) ∝ tr(KHLH), (4)
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where H = (I − 1n1
′
n/n) is a centering matrix, I is an identity

matrix of size n, and 1n is a n × 1 vector with each element
equal to 1. If both k and l are L2 distance kernels, then (4)
is the DC statistic (Székely et al., 2007); if other reproduc-
ing kernels are applied (4) is the HSIC statistic (Gretton
et al., 2008). In summary, the KDC statistic is used for test-
ing the dependence between Y and Z, where we do not have
to assume a certain distribution of Y or Z.

Another powerful test of dependence can be derived using
KMR, which we now briefly discuss. The linear model in Liu
et al. (2007) and Kwee et al. (2008) is given by

Y = β0 + h(Z) + ε, (5)

where h(·) is the non-parametric effect of genotypes on the
univariate response, Y , and it is determined by a speci-
fied positive semi-definite kernel function k(., .). To test the
hypothesis that h(·) = 0, Liu et al. (2007) proposed a hierar-
chical Gaussian process regression for the linear model (5):

Y |h(Z) ∼ N{β0 + h(Z), σ2}, h(·) ∼ GP{0, τK}.

The null hypothesis is that the phenotype Y and the SNPs, Z,
exhibit no association, and that one can test H0 : τ = 0 since
h can be treated as the subject-specific random effect with
mean 0 and covariance matrix τK. Thus, the corresponding
variance component score test is proportional to:

Q ∝ (Y − Ȳ)′K(Y − Ȳ)

= tr[(Y − Ȳ)′K(Y − Ȳ)]

= tr[K(Y − Ȳ)(Y − Ȳ)′]

= tr

[
K

(
I − 1n1

′
n

n

)
YY ′

(
I − 1n1

′
n

n

)]

= tr[KHYY ′H ] (6)

By using the property of “trace of a product” (6) can be
extended into two directions: first, the previous work in Liu
et al. (2007) and Kwee et al. (2008) focused on a single
phenotype Y , but we can also replace Y with a multivari-
ate phenotype Y, and therefore tr[KHYY′H ] is equivalent to
MV-KMR in Maity et al. (2012) in the absence of covariates.
Second, a common kernel is used in K for both KMR and
KDC, and by replacing the outer product YY ′ with any dis-
tance matrix L in (6) results in the equivalence of KMR and
KDC in (4).

3.2. With Covariates

In practice, we may want to know the relationship between the
genotypes (Z) and phenotypes (Y) adjusting for covariates
(X), with n observed samples from X ∈ Rm,Y ∈ Rp, and Z ∈
R

q. Under this setting, the multivariate traits KMR model is

Y = Xβ + h(Z) + ε,

where h(·) is an non-parametric function which describes the
effect of Z on Y adjusting for X. To test the effect of Z,

one can test H0 : τ1 = · · · = τp = 0 under the following repre-
sentation that is a multivariate extension of the hierarchical
Gaussian process regression from the previous section:

Y|(β, h(Z)) ∼ MVN{Xβ + h(Z), �}, h(·) ∼ GP{0, τK},

and the corresponding score test of H0 is proportional to

Q ∝ (Y − Xβ̂)′K(Y − Xβ̂)

= tr[(Y − Xβ̂)′K(Y − Xβ̂)]

= tr[(Ỹ − ¯̃Y)′K(Ỹ − ¯̃Y)]

= tr[KHỸỸ′H ], (7)

where Ỹ = Y − Xβ̂, and ¯̃Y is the average of Ỹ in (7) with H

being a centering offset (normalized constant) (I − 1n1
′
n/n).

Note that β̂ is the MANOVA estimate in Section 2.2. Hence
(7) is equivalent to the score test in KMR, and the outer
product ỸỸ′ can be replaced with any distance measure L̃

such that (7) becomes

tr[KHL̃H ]. (8)

The original KDC was presented as a test of independence
between Y and Z. Here, we extend it to the case when covari-
ates are present. Specifically, by applying a common kernel
on K for both statistics, and if L̃ is calculated by a linear ker-
nel, then KDC in (8) is again equivalent to (7) for the KMR.
For both cases when covariate effects are absent or present
in (6) and (7), respectively, we ignore the covariance matrix
structure of Y in order to establish the connection between
KDC and KMR. Our idea for this step is similar to the work
in Pan (2011) that treats the covariance term as the fixed
effects, while the covariance of Y is modeled in this work.
We demonstrate that the covariance of Y can be captured by
choosing a suitable kernel matrix in the simulation studies.

4. Numerical Simulations

The goal of the following simulations is to evaluate the perfor-
mance of KMR and KDC in terms of the empirical size and
power under different kernel combinations.

4.1. Kernel Choices

Many kernel choices exist for characterizing the similarity of
individuals with respect to the variations of genotypes and
phenotypes. In this work, we consider the identity-by-state
(IBS), L2, Gaussian RBF, linear and quadratic kernels for
our numerical analyses. These are their definitions:

(1) IBS kernel: k(Zi, Zj) = (2q)−1
∑q

r=1
(2 − |Zir − Zjr|),

where q is the number of loci considered in the cal-
culation.

(2) L2 kernel: k(Zi, Zj)= ‖Zi − Zj‖q =
√∑q

r=1
(Zir−Zjr)2.

(3) Gaussian RBF kernel: k(Zi, Zj) = exp{−ρ‖Zi − Zj‖2
q },

where ρ is the weight parameter.
(4) Polynomial kernel: k(Zi, Zj) = (〈Zi, Zj〉 + c)d , where

〈Zi, Zj〉 denotes the inner product of Zi and Zj, c and
d are the constants.
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Figure 1. Empirical size and power of KMR and KDC, rep-
resented as a heatmap with different kernels: linear, quadratic,
and L2 distance. K represents the kernel matrix for the geno-
types Z, and L̃ represents the kernel matrix for the adjusted
phenotype Ỹ . The header a’s and content values are displayed
in percentages. The heatmap colors are encoded by each col-
umn (given an a value): two tests have the same color which
indicates that their empirical values are the same.

Notice that the polynomial kernel can be simplified into
a linear kernel when c=0 and d = 1, or into a quadratic
kernel when c = 1 and d = 2.

4.2. Simulation 1

The first simulation examined the association between a sin-
gle phenotype Y and a multivariate genotype Z adjusted by
a single covariate X, and the design of the simulation was
based on Liu et al. (2007) where the model and parameter
settings were chosen according to the data from the Michigan
prostate cancer study (Dhanasekaran et al., 2001). We used
the same simulation study to compare the performance of
KMR and KDC. The true linear model was Y = β0 + β1X +
h(Z1, . . ., Zq) + ε, where h(Z) = ah1(Z), h1(Z) = 2 cos(Z1) −
3Z2

2 + 2 exp(−Z3)Z4 − 1.6 sin(Z5) cos(Z3) + 4Z1Z5, and X =
3 cos(Z1) + u. The Z′

js(j = 1, . . ., 5) were generated from uni-
form(0,1) while u and ε were generated from the standard
normal distribution.

To estimate the coefficients, we adopted the same pro-
cedure from Liu et al. (2007) which assumed the effect h

was zero, and used the lm function from the stat package
in R to obtain β̂0 and β̂1, and set Ỹ = Y − β̂0 − β̂1X. The
empirical size and power of the association tests between Ỹ

and Z were evaluated by generating data under a = 0 and
a = 25%, 50%, 75%, 100% at the significance level of 0.05.
The sample size was 60; the p-value of the statistic was
computed based on 104 permutations, and this experiment
was repeated 1000 times. In the following, we used K to
represent the kernel matrix for the genotypes Z, and L̃ to
represent the kernel matrix for the adjusted phenotype Ỹ .

Figure 1 shows the results of the empirical size and power
of the KMR and KDC tests, where linear and quadratic ker-
nels were used for K in KMR, and the L2 distance, linear
and quadratic kernels were used in both K and L̃ in KDC. As
seen in the heatmap, these two tests had the same color which
indicates that their empirical values are the same, therefore
providing a numerical validation of our claim of equivalence
between KMR and KDC in the linear case. The performance
of the quadratic kernel resulted in lower power relative to
the other kernel combinations. This suggests that for this
simulation scenario, a linear kernel or L2 distance is sufficient.

4.3. Simulation 2

For the second simulation, the design was based on Maity
et al. (2012), where the authors used estimates from the
CATIE study (Lieberman et al., 2005). The part of the CATIE
study relevant to our purposes focused on determining the
association between schizophrenia-associated SNPs with anti-
body responses of three neurotrophic herpesviruses. Here, we
wished to study the performance of KMR and KDC with
correlated responses. For k = 1, 2, 3, the data were generated
from the model

Yk = Xβk + hk(Z) + εk, (9)

where X = (X1, X2)
T were generated from bivariate nor-

mal distribution with mean vector (0.2, 0.4)T and identity
variance-covariance matrix. The εk were generated from a
multivariate normal distribution with mean zero vector and
variance-covariance matrix �, which will be defined shortly.
The q-dimensional SNP genotype data Z ≡ (Z1, . . ., Zq), with
q = 9, were simulated using the linkage disequilibrium struc-
ture of the gene SLC17A1. Two choices for the effects of hk

were considered. The first was the sparse effect, where h1 =
a(z1 + z2 + z3 + z1z4z5 − z6/3 − z7z8/2 + (1 − z9)), h2 = h3 =
0, and a = 0, 10%, 20%. The second was the common effect,
where h∗

1 = h1 + az3, and h2 = h3 = az3 with a = 0, 10%, 20%.
In addition, we also investigated the performance of KMR and
KDC by setting the variance–covariance matrix � to have
an independent structure (� = �1) and a more dependent
structure (� = �2), where

�1 =

⎛
⎝

0.95 0 0

0 0.86 0

0 0 0.89

⎞
⎠ �2 =

⎛
⎝

0.95 0.57 0.43

0.57 0.86 0.24

0.43 0.24 0.89

⎞
⎠ .

The empirical size (a = 0) and power (a = 10%, 20%) were
examined at a significance level of 5%. The sample size, n, was
100, the dimension of genotypes, q, was 9, and the dimension
of phenotypes, p, was 3. To adjust for X, we again used the
lm function from the stat package in R to obtain β̂, so that
Ỹ = Y − Xβ̂, where Y = (Y1, . . ., Yp), and β̂ = (β̂1, . . ., β̂p)

T .
The linear, quadratic, IBS and L2 distance kernels were used
in this simulation.

The empirical size of all tests for both sparse and com-
mon effects were all close to 0.05 (Web Figure 1), which
suggests that the tests were able to control type I error. Fig-
ure 2 displays the empirical power of case 1 when covariates
were adjusted for (test of independence between Z and Ỹ).
In Case 2, the covariates were excluded (test of independence
between Z and Y). The results showed that case 1 had greater
power than case 2. This suggests that our proposed covariate-
adjusted KDC test results in an increase in power. However,
the power gain depends on the choice of �.

Overall, when the independent covariance matrix �1 was
used, the KMR and KDC tests computed by a linear kernel
consistently resulted in good performance in terms of power
in both sparse and common effect. When the common effect
and the dependent structure �2 were considered, the KDC
with an L2 kernel on both L and K resulted in the largest
empirical power. This suggests that the L2 kernel was able to
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Figure 2. Power (a=10%, 20%) of KMR and KDC represented as a heatmap, including case 1: covariates included; and
case 2: covariate effect excluded. The different choice of kernels are linear, quadratic, IBS, and L2 distance for both cases.
K represents the kernel matrix for the genotypes Z, and L̃ represents the kernel matrix for the adjusted phenotype Ỹ . Note
that .̃ represents the kernel matrices that are adjusted by the covariates. The header a’s and content values are displayed in
percentages. The heatmap colors are encoded by each column (given an a value): two tests have the same color which indicates
that their empirical values are the same.

incorporate the information from the dependent covariance
structure, that is, �2, and identify the association between Y
and Z at the same time.

5. Experiments with the Alzheimer Disease
Neuroimaging Initiative (ADNI) Study

We now evaluate our approaches using simulated and real
data from the ADNI study. Data used in the preparation of
this article were obtained from the ADNI database. One of
the goals of the ADNI study is to perform genome-wide asso-
ciation tests, and identify the genetic variants that influence
the voxel-level differences in brain MRI. We used parts of
data from the ADNI study for the association test, where
the multiple phenotypes are the T1 weighted brain structural
MRI scans (31,662 brain voxels). Rather than using the orig-
inal MRI scans, where a voxel’s intensity value represents the
anatomical structure of the scanned subject, here we used
a tensor-based-morphometry (TBM) to compute a 3D map.
This map gives the difference in brain volume between each
scanned individual and an average brain template based on
healthy elderly subjects. Thus, a voxel’s intensity value rep-
resents the volumetric difference from that of a healthy brain.
The genotypes are encoded by 448,244 SNPs across the entire

genome, and the demographic variables include gender and
age.

In this work, the phenotypes were grouped from 31,662
total voxels into 119 regions-of-interest (ROIs), where the
mapping of the ROIs was based on the GSK CIC Atlas
(Tziortzi et al., 2011). The average voxel value of each region
was used to represent each of the 119 ROIs. With these 119
regions, Hua, Nichols, and Ghosh (2015)used the DC test and
discovered that the difference in brain volumes were highly
associated with a common variant rs11891634 in the intron
region of gene FLJ16124, with a total of 141 SNPs within
gene FLJ16124 that were identified by the SNP-gene map-
ping from Hibar et al. (2011). The subject pool consists of
741 subjects from the ADNI study that have passed the qual-
ity control filtering according to Stein et al. (2010b), which we
retained for the simulation and real data analysis. Figure 3a
describes the data preparation.

5.1. Simulation Based on ADNI

For this simulation study, a partial linear model Y = Xβ +
h(Z) + ε was used. To mimic the ADNI samples, a corre-
lated structure among the phenotypes was considered, and
this design was based on Vounou, Nichols, and Montana
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Figure 3. (a) Flow chart of the data preparation for our real data analysis; (b) all-pairwise correlations of the 358 MCI sub-
jects using eight (q = 8) prefrontal cortex regions (1–2: left and right (l/r) anterior dorsolateral, 3–4: l/r posterior dorsolateral,
5–6: l/r anterior medial, 7–8: l/r posterior medial) of the 119 region of interests (ROIs) for the corrected structure in ε.

(2010), where the authors suggest to use the frontal cor-
tex regions according to the GSK CIC atlas (Tziortzi et al.,
2011), and estimate the pairwise correlations from those
regions using subjects from the ADNI dataset with mild cog-
nitive impairment (MCI). We followed the same procedure as
in (Vounou et al., 2010) and used eight (p = 8) frontal cortex
regions of the 119 ROIs. Figure 3b shows all-pairwise corre-
lations of the eight frontal cortex regions that were based on
the 358 MCI subjects.

We then estimated the eight ROIs’ covariance matrix �

using data from the 358 subjects with MCI. They were
selected for the simulation design due to their relatively
uniform MRI voxel values, and ε was then simulated from
MVN(0, �). For the genotypes elements, all 141 SNPs on gene
FLJ16124 were used, that is, Z = (Z1, . . ., Z141). The effect
of h is defined as h(Z1, . . ., Z141) = a × h1, with only the first
5 SNPs, (Z1, . . ., Z5) of 141 Z’s were the causative SNPs,
such that h1(Z1, . . ., Z5) = 2 cos(Z1) − 3Z2

2 + 2 exp(−Z3)Z4 −
1.6 sin(Z5) cos(Z3) + 4Z1Z5. For the covariate effects, we con-
sidered gender and standardized age based on the same
358 MCI subjects, where gender (X1) was generated from a
Bernoulli distribution with p = 0.36, and standardized age
(X2) was generated from a standard normal distribution. A
total of 100 samples were generated, and the empirical size
(a = 0) and power (a = 5%, 10%) were computed based on
104 permutations. This simulation was repeated 1000 times
and the significance level was set at 0.05.

Figure 4 shows the results of empirical size and power with
the linear, quadratic, IBS and L2 distance kernel of KMR and
KDC. The KDC test with the L2 distance measure resulted
in the highest power among all the evaluated kernels. We also
implemented the KDC test with a Gaussian RBF kernel for
L̃ (ρ ∈ 0.1, 0.5, 1, 5, 10), and linear, quadratic, and IBS kernel
for K, and the results can be found in Web Table 1. The high-
est power was observed when a Gaussian RBF kernel (ρ=0.1)
was used for L̃ and a linear kernel for K of the KDC test (5%,

42.3%, and 97.6% when a = 0, 5%, and 10%, respectively). It
was close to the results of KDC with the L2 distance kernel
in Figure 4. This suggests that when the dimensions of phe-
notype and genotype are both very high, both the Gaussian
RBF kernel (with optimal ρ) and the L2 distance kernel are
able to model the high-dimensional interactions which results
in more powerful performance.

5.2. Real Data Analysis

The KMR and KDC tests were conducted to find the asso-
ciations between the genetic variants and the multivariate

Figure 4. Empirical type I error rate (a=0) and power
(a=5%, 10%) of KMR and KDC with different choice of ker-
nels: linear, quadratic, IBS and L2 distance. K represents the
kernel matrix on the genotypes Z, and L̃ represents the kernel
matrix on the adjusted phenotype Ỹ . The header a’s and con-
tent values are displayed in percentages. The heatmap colors
are encoded by each column (given an a value): two tests have
the same color which indicates that their empirical values are
the same.
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Figure 5. p-values of tests with (a) covariates included; and (b) covariate effect excluded. The dashed line shows the results
based on the eight frontal cortex ROIs, and the dash-dot line represents the results based on all 119 ROIs.

brain phenotypes with the demographic variables. We first
designed the analysis using all 741 subjects, 141 SNPs at gene
FLJ16124, eight frontal cortex regions, and two covariates,
that is, gender and age. In addition to using the eight ROIs,
we also considered a setting in which the entire 119 ROIs were
used as the multivariate response. Other than the KMR and
KDC test, we also added one more method as the baseline
comparison in which we extracted the first principal compo-
nent (PC) from both Z and Y/Ỹ, and applied Pearson’s r

to estimate their correlations. We denote this as the “simple”
method.

Figure 5a and b display the p-values with covariate effects
(left) and without covariate effects (right) of all the tests for
both the eight frontal cortex ROI and the 119 ROI settings,
where p-values were based on the 104 permutations.

From both plots of Figure 2, the p-values of KMR were
equivalent to KDC when a linear kernel was used for the
phenotype space. In addition to the equivalence, the p-values
with the covariates were all less than the p-values without
the covariates, and this implies that the proposed covariate-
adjusted KDC method is able to better detect the associations
between the 141 SNPs and the 119 brain regions, with the
demographic effects being taken into consideration. Also, the
dash-dot line was under the dashed line from both Figure 5a
and b, meaning that the p-values from the 119 ROIs were
more significant than the results from the eight frontal cor-
tex ROI setting, which suggests that the use of the entire 119
ROIs exhibit stronger associations to the genetic variants.

KMR (with K = quadratic) and KDC (with L̃ = linear,
K = quadratic) both identified the smallest p-value with the
covariate effects, meaning that applying a quadratic kernel
on the 141 SNPs yields the most powerful result among all
other evaluated kernels. This implies that there exist strong
pairwise interaction effects among the SNPs in FLJ16124
that associate with brain region volume changes when age
and gender are included. Finally, the simple kernels outper-

formed other kernel combinations, but the simple method
did not. This shows that the KDC test with simple kernel
combination (L̃=linear,K=quadratic) is able to detect non-
linear correlations in the dataset, while the simple method
(PC analysis + Pearson’s r) is not.

Furthermore, it is important to know whether to use the
eight frontal cortex ROIs or the entire 119 ROIs as the multi-
dimensional response for the ADNI genetic association study.
To investigate this, we proposed to adopt the jacknife (leave-
one-out) procedure for ranking the SNPs’ importance as a
criteria, and focused on the cases where the covariate effects
were included in the analysis, since the p-values from Fig-
ure 5a were all smaller than in Figure 5b. The steps of the
jacknife procedure were as follows:

(1) Given a kernel pair, compute the KDC statistic
between the 141 SNPs and the eight ROIs adjusted
by age and gender, denoted as T .

(2) Remove the ith SNP and compute the KDC statistic
between the 140 SNPs and the eight ROIs adjusted by
age and gender, denoted as T−i.

(3) Compute T − T−i, the difference between the settings
with and without the ith SNP.

(4) Repeat steps 2 and 3 for all SNPS, and rank them by
the differences.

(5) Apply steps 1–4 by replacing the eight ROIs with 119
ROIs.

(6) Use Cohen’s Kappa agreement test (Landis and Koch,
1977) to determine if the ranks from the eight ROIs
and the 119 ROIs are similar (fmsb in R).

Table 1 shows the Cohen’s Kappa agreement results, and the
statistics were all above zero with all p-values being less than
5%, which indicates that the ranks between the eight ROIs
and the 119 ROIs are in slight agreement. This implies that
for the purpose of genetic component selection, these two
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Table 1
Cohen’s Kappa agreement between the ranks of eight prefrontal cortex ROIs and all 119 ROIs. Note: the values are displayed

in percentages.

Test Cohen’s kappa statistic (%) p-Value (%) Judgement

KMR (K = linear) 2.857 3E−03
KMR (K = quadratic) 2.143 1E−01
KMR (K = IBS) 2.143 1E−01
KDC (L̃,K = linear) 3.571 3E−05
KDC (L̃ = linear,K = quadratic) 2.143 1E−01

Slight agreement
KDC (L̃ = linear,K = IBS) 2.143 1E−01
KDC (L̃ = quadratic,K = linear) 3.571 3E−05
KDC (L̃,K = quadratic) 7.857 2E−14
KDC (L̃ = quadratic,K = IBS) 2.857 3E−03

phenotypes show similar results; but for the purpose of the
association study, the association tests that applied on the
119 ROIs resulted in more significant outcomes than those
that used only the eight ROIs.

6. Conclusion and Discussion

In this work, we provided a formulation to show that KMR
is equivalent to the KDC statistic. The advantage of this
equivalence allows the use of regression modeling interpre-
tations to explain the KDC test. For instance, Liu et al.
(2007) and Maity et al. (2012) provided a restricted maxi-
mum likelihood (REML) based score test of KMR, and these
results in conjunction with our findings allow for a fast compu-
tation of the null distribution for the KDC test. Exploring the
parametric distribution of the KDC statistic deserves further
investigation, but is beyond the scope of this article.

In addition, the KMR tests can be treated as members of
a larger family of tests, and more powerful tests can theoret-
ically be designed by looking at the “optimal” kernel among
the family members. Although there was no single kernel that
was chosen as the best from our simulations, the linear kernel
for KMR or KDC achieved better performance than other
kernels in the settings with a single phenotype. For mul-
tiple phenotypes with multiple correlations or the presence
of dependent covariance, the Gaussian RBF or the L2 ker-
nel achieved better performance than other kernels. However,
the exact optimal choice of kernel is data-dependent, and the
strategy for selecting the optimal kernel from the KDC family
is worthy of further study.

Finally, several works have utilized the KDC/KMR family
members in applications that include genetic pathway anal-
ysis using KMR Liu et al. (2007), voxel-wise genome-wide
association studies using least squares KMR (Ge et al., 2012),
neuroimaging genome-wide association using DC (Hua et al.,
2015), and multiple change point analysis using DC (Matteson
and James, 2014). Some recent studies have presented and
discussed the equivalence between these statistics, such as
distance-based permutation test for between group compar-
isons from Reiss et al. (2010), the relationships between
Genomic Distance-Based Regression and KMR from Pan
(2011) and the equivalence between DC and HSIC from
Sejdinovic et al. (2013). Therefore, our establishment of the

KDC family (the tests of different kernel combinations) is an
important unification of all the above applications.

7. Supplementary Materials

An R code package implementing the proposed methods, and
Web Appendices, Tables and Figures referenced in Sections
4 are available with this paper at the Biometrics website on
Wiley Online Library.
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