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Tensor-based morphometry (TBM) is a powerful method to map the 3D profile of brain degeneration in
Alzheimer's disease (AD) and mild cognitive impairment (MCI). We optimized a TBM-based image analysis
method to determine what methodological factors, and which image-derived measures, maximize statistical
power to track brain change. 3D maps, tracking rates of structural atrophy over time, were created from 1030
longitudinal brainMRI scans (1-year follow-up) of 104 AD patients (age: 75.7±7.2 years; MMSE: 23.3±1.8, at
baseline), 254 amnestic MCI subjects (75.0±7.2 years; 27.0±1.8), and 157 healthy elderly subjects (75.9±
5.1 years; 29.1±1.0), as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). To determine which
TBM designs gave greatest statistical power, we compared different linear and nonlinear registration
parameters (including different regularization functions), and different numerical summary measures
derived from the maps. Detection power was greatly enhanced by summarizing changes in a statistically-
defined region-of-interest (ROI) derived from an independent training sample of 22 AD patients. Effect sizes
were compared using cumulative distribution function (CDF) plots and false discovery rate methods. In power
analyses, the best method required only 48 AD and 88 MCI subjects to give 80% power to detect a 25%
reduction in the mean annual change using a two-sided test (at α=0.05). This is a drastic sample size
reduction relative to using clinical scores as outcome measures (619 AD/6797 MCI for the ADAS-Cog, and 408
AD/796 MCI for the Clinical Dementia Rating sum-of-boxes scores). TBM offers high statistical power to track
brain changes in large, multi-site neuroimaging studies and clinical trials of AD.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is the most common form of dementia in
people over the age of 60 (Jellinger, 2006). The disease affects more
than 26 million people worldwide, including over 5 million in the U.S.
pson).

l rights reserved.
alone (with an estimated economic cost of 156 billion USD per year;
Wimo et al., 2006). From onset to death, AD gradually erodes memory,
language, and higher-order cognition over a time course of 10–
15 years (DeKosky and Marek, 2003; Goldman et al., 2001; Jellinger,
2006; Price and Morris, 1999). People with amnestic mild cognitive
impairment (MCI)—a preclinical stage of AD—convert to AD at a rate
of 10–25% annually (Petersen, 2000; Petersen et al., 2001; Petersen
et al., 1994). Increasing efforts are directed towards treating those
with MCI (Jack et al., 2008b; Jack et al., 2005) and people at
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heightened genetic risk, e.g., those with amyloid precursor protein
(APP) or presenilin mutations (Goate, 2006; Goate et al., 1991),
apolipoprotein E (APOE) ɛ4 carriers (Reiman et al., 2001; Reiman et
al., 1996; Reiman et al., 2004), or Down's syndrome (Haier et al., 2003)
(reviewed in Dickerson and Sperling, 2005). As new treatments are
being developed, neuroimaging measures are urgently required to
assess whether treatments slow disease progression in the brain.
Ultimately, therapeutic agents aim to improve cognitive function
(reduce symptoms), and also resist the advance of neurodegeneration
that can be detected in vivo using neuroimaging (Clark and Karlawish,
2003; Fillit, 2008; Ivinson et al., 2008; Mueller et al., 2006).

Clinical or cognitive measures, such as the Alzheimer's Disease
Assessment Scale (ADAS-Cog) (Rosen et al.,1984), aremost commonly
used to evaluate treatment efficacy in clinical trials, but their low test–
retest reliability makes it necessary to use large sample sizes and long
observation times (Mueller et al., 2006). To address this, several
neuroimaging consortia, including the Alzheimer's Disease Neuroima-
ging Initiative (ADNI), are determining which combination of neuro-
imaging, CSF, genetic, and cognitive biomarkers can collectively
provide a more accurate early diagnosis of AD and monitor disease
progression with greatest statistical power (Mueller et al., 2005a;
Mueller et al., 2005b). There is great interest in determining which
brain imaging methods can track disease progression in AD and MCI
most powerfully. Ideal neuroimaging measures, or so-called bio-
markers of disease progression, would correlate with cognitive
performance, predict future clinical decline, and track longitudinal
progression with high reliability and statistical power (Halperin
et al., 2009; Mueller et al., 2006; Mueller et al., 2005b; Shaw et al.,
2007). Eventually, clinical trials will need to provide the evidence
needed to determine whether the effects of established disease-
slowing treatments on MRI or other biomarkers predict a clinical
benefit for regulatory agencies to approve future treatments based
solely on these biomarker surrogate endpoints (Reiman and
Langbaum, in press).

Structural MRI, in particular, has been proposed and tested for
monitoring treatment effects in AD (Grundman et al., 2002; Jack et
al., 2008b; Jack et al., 2003; Scheltens et al., 2002). Neuroimaging
measures, such as hippocampal volumes (Jack et al., 2002; Jack et al.,
1999; Morra et al., 2009b; Morra et al., 2009c; Schuff et al., 2009),
ventricular volumes (Carmichael et al., 2006; Chou et al., 2008,
2009a,b; Thompson et al., 2004a), and brain boundary shift integral
(BBSI) measures (Fox et al., 2000), have been shown to differentiate
patients from controls, correlate with changes over time in clinical
and cognitive scores, correlate with pathologically confirmed neuro-
nal loss, and predict future conversion from preclinical to sympto-
matic AD.

All of these neuroimaging approaches typically provide single
numeric summaries (e.g., the volume of a structure) from each
patient's 3D image set. There is growing interest in whether 3D brain
mapping methods, which provide a detailed image of brain differ-
ences, can provide greater power to track disease progression than a
single number derived from a scan (e.g., hippocampal volume).
Tensor-based morphometry (TBM), for example, is a promising image
analysis technique that computes the locations and rates of tissue
atrophy. Changes are determined by elastically or fluidly aligning
successive MRI scans of the same subject, using a registration
algorithm. Maps of local expansion or compression factors can be
used to estimate the local rates of tissue loss or CSF space expansion at
each voxel (Ashburner and Friston, 2003; Chung et al., 2001; Fox et al.,
2001; Freeborough and Fox,1998; Riddle et al., 2004; Studholme et al.,
2001; Thompson et al., 2000). TBM can also measure volumetric
differences in cross-sectional studies by nonlinearly registering
individual brain scans to a common anatomical template (Ashburner
and Friston, 2003). TBM-derived measures also have several char-
acteristics of an ideal AD biomarker as they have been shown to
correlate with cognitive performance, and predict conversion from
MCI to AD, in both cross-sectional (Hua et al., 2008a; Hua et al.,
2008b) and longitudinal studies (Leow et al., 2009).

In this study, we investigated which methodological parameters,
and which image-derived measures, provided the greatest power for
tracking AD and MCI progression using TBM. First, we examined TBM
designs with different linear and nonlinear registration parameters
(including different regularizing functions (Leow et al., 2005;
Yanovsky et al., 2008a)), which control the way in which the images
deform. Second, we tested whether statistical power was increased if
we summarized the changes detected in the maps using a more
restricted region-of-interest (ROI). This ROI was defined statistically as
the voxels with highest effect sizes for change over time in an
independent training dataset (an approach advocated by Reiman,
Chen and their colleagues for PET imaging; (Chen et al., 2009; Reiman
et al., 2008). As the ROI approach provided substantial benefits, we
subsequently performed exploratory analyses to determine how the
minimal sample size estimates depended on how the ROI was
thresholded and applied to the data. Differences in the statistical
maps due to variations in the TBM design were examined by (1)
ranking cumulative distribution function (CDF) plots that assess effect
sizes for voxel-based maps, and (2) assessing minimal sample sizes to
detect slowing of AD and MCI.

We hypothesized that TBM would lead to greatly reduced sample
size estimates for clinical trials compared to existing cognitive
measures, and would perform comparably to, and in some cases
better than, other imaging measures for which power estimates have
been reported. In addition, we expected empirically-defined statistical
ROIs to boost power even further.

Materials and methods

Subjects

Longitudinal brain MRI scans and associated clinical data were
downloaded from the Alzheimer's Disease Neuroimaging Initiative
(ADNI) public database (http://www.loni.ucla.edu/ADNI/Data/).
ADNI is a large five-year study launched in 2004 by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies and nonprofit organizations, as a
$60 million public–private partnership. The primary goal of ADNI has
been to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessments acquired at multiple sites
(as in a typical clinical trial), can replicate results from smaller single
site studies measuring the progression of MCI and early AD.
Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to monitor
the effectiveness of new treatments, and lessen the time and cost of
clinical trials. The Principal Investigator of this initiative is Michael W.
Weiner, M.D., VA Medical Center and University of California, San
Francisco.

Longitudinal brain MRI scans (1-year follow-up) of 515 subjects
were analyzed in this study (i.e., 1030 scans total), including 104 AD
patients (age at initial scan: 75.7±7.2 years), 254 individuals with
amnestic MCI (75.0±7.2), and 157 healthy elderly subjects (75.9±
5.1). These subjects are from the same cohort as those in our prior
TBM studies of 676 subjects analyzed at baseline (Hua et al., 2008b),
and 100 subjects studied longitudinally (Leow et al., 2009). All
subjects underwent thorough clinical and cognitive assessment at the
time of scan acquisition. Cognitive tests examined here included the
Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog),
a 70-point scale designed to measure the severity of cognitive
impairment, which is currently the most widely used cognitive
measure in AD trials (Rosen et al., 1984). It consists of 11 tasks
assessing learning and memory, language production and compre-
hension, constructional and ideational praxis, and orientation. The
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sum-of-boxes Clinical Dementia Rating (CDR-SB), ranging from 0 to
18, measures dementia severity by evaluating patients' performance
in six domains: memory, orientation, judgment and problem solving,
community affairs, home and hobbies, and personal care (Berg,
1988; Hughes et al., 1982; Morris, 1993). The Mini-Mental State
Examination (MMSE) provides a global measure of mental status,
evaluating five cognitive domains: orientation, registration, atten-
tion and calculation, recall, and language (Cockrell and Folstein,
1988; Folstein et al., 1975). The maximum MMSE score is 30; scores
of 24 or lower are generally consistent with dementia. For both
ADAS-Cog and CDR-SB, higher scores indicate poorer cognitive
function, whereas for MMSE, higher scores denote better cognitive
function. All AD patients met NINCDS/ADRDA criteria for probable
AD (McKhann et al., 1984). Please refer to the ADNI protocol for
detailed inclusion and exclusion criteria (Mueller et al., 2005a;
Mueller et al., 2005b).

This dataset was downloaded on or before June 1, 2008, and
reflects the status of the database at that point; as data collection is
ongoing, we focused on analyzing all available baseline and 1-year
follow-up scans, togetherwith associated clinical and cognitive scores.
The study was conducted according to the Good Clinical Practice
guidelines, the Declaration of Helsinki and U.S. 21 CFR Part 50—
Protection of Human Subjects, and Part 56—Institutional Review
Boards. Written informed consent was obtained from all participants
before experimental procedures, including cognitive tests, were
performed.

MRI acquisition and image correction

All subjects were scanned with a standardized MRI protocol
developed for ADNI (Jack et al., 2008a). Briefly, high-resolution
structural brain MRI scans were acquired at 59 ADNI sites using 1.5 T
MRI scanners. ADNI also collects a smaller subset of data at 3 T but it
was not analyzed here. A direct comparison of 3 T versus 1.5 T field
strengths, using a smaller subset of subjects scanned at both field
strengths, is reported separately in a different publication (Ho et al.,
in press).

Using a sagittal 3D MP-RAGE scanning protocol, the typical 1.5 T
acquisition parameters were repetition time (TR) of 2400 ms,
minimum full TE, inversion time (TI) of 1000 ms, flip angle of 8°,
24 cm field of view, and 192×192×166 acquisition matrix in the x-,
y-, and z-dimensions, yielding a voxel size of 1.25×1.25×1.2 mm3,
later reconstructed to 1 mm isotropic voxels (Chou et al., 2009b).

Image corrections were applied using a processing pipeline at
the Mayo Clinic, consisting of: (1) correction of geometric distortion
due to gradient nonlinearity (Jovicich et al., 2006), i.e. “gradwarp”,
(2) B1-correction for adjustment of image intensity inhomogeneity
due to B1 nonuniformity (Chou et al., 2009b), (3) N3 bias field
correction for reducing residual intensity inhomogeneity (Sled et al.,
1998), and (4) geometrical scaling for removing scanner- and
potential session-specific calibration errors using a phantom scan
acquired for each subject (Gunter et al., 2006). All original image
files as well as images with all of these corrections are available to
the general scientific community at http://www.loni.ucla.edu/
ADNI/Data/.

Image pre-processing

To adjust for linear drifts in position and scale within the same
subject, the follow-up scan was linearly registered to its matching
baseline scan using a 6-parameter (6P) or 9-parameter (9P) regis-
tration, driven by a mutual information (MI) cost function (Collins et
al., 1994). The 9P registration allows scaling of the scan along 3
orthogonal axes, whereas the 6P registration is a rigid-body
alignment and does not allow scaling. To account for global
differences in brain scale across subjects, both mutually aligned
scans were then linearly registered to the International Consortium
for Brain Mapping template (ICBM-53) (Mazziotta et al., 2001),
applying the same 9P transformation to both mutually aligned scans.
Globally aligned images were resampled in an isotropic space of 220
voxels along x-, y- and z-dimensions with a final voxel size of 1 mm3.
All scans were original images after image corrections thus no brain
mask was used.

Tensor-based morphometry (TBM) and three-dimensional
Jacobian maps

Using high-dimensional nonlinear registration, individual Jaco-
bian maps (i.e., maps of local expansion or compression) were
created to quantify 3D patterns of atrophic rates by warping the
follow-up scan to match the baseline scan. All the elements of this
process are automated; there is no user intervention apart from that
required to select scans to analyze and to specify covariates and
statistical models. Two separate methods were compared: one
method (termed “3DMI”) (Leow et al., 2005), was driven by a
mutual information cost function, and a regularizing term based on
the linear elasticity operator. A second, alternative, algorithm
(termed “sKL-MI”) used the symmetric Kullback–Leibler (sKL-MI)
distance, another measure from information theory, with varying
registration parameters, sigma (σ) and lambda (λ), denoted as S and
L respectively to differentiate from the σ used in power analysis, that
control the Jacobian field smoothness and weighting of the
regularization, respectively (Yanovsky et al., 2009; Yanovsky et al.,
2008a). Briefly, the registration method based on linear elasticity is
more commonly used in brain imaging, and has been used in several
of our prior TBM studies (e.g., (Gogtay et al., 2008; Hua et al.,
2008b)). It models the deforming image as if it were embedded in a
deforming physical medium obeying continuum-mechanical laws
(Alexander et al., 2001; Broit, 1981; Leow et al., 2006a; Leow et al.,
2006b; Shen and Davatzikos, 2002; Thompson et al., 2000). The sKL
model causes images to deform in a slightly different way, such that
the expansion factor or compression factor (Jacobian determinant) is
as spatially uniform as possible in regions where both images have
homogeneous intensity. This model, based on information theory,
has been advocated as it can avoid statistical bias in the maps of brain
change when no true changes are present (Leow et al., 2006a; Leow
et al., 2007; Yanovsky et al., 2007a; Yanovsky et al., 2009; Yanovsky et
al., 2008b; Yanovsky et al., 2007b). Essentially, each method tends to
interpolate the deformation into white matter regions in slightly
different ways, and as there is no ground truth (i.e., reference or
“gold standard” method) to compute changes in those regions, it is of
interest to see which method provides best power for detecting
statistical effects on anatomy.

The sKL-MI method solves for the deformation (or, equivalently,
for the 3D displacement field) minimizing a compound energy
functional consisting of two terms, (1) the image matching term FMI,
and (2) a regularization term based on the symmetric Kullback–
Leibler divergence, RsKL. There are 2 free parameters (S and L) that can
be set by the user, so we also examined their impact on the results.
Briefly, the 3D vector-valued flow field u is obtained by driving image
I2 into registration with image I1 using a force field (Yanovsky et al.,
2009):

f uð Þ = − AFMI

Au
I1;I2;uð Þ− λ

ARsKL

Au
uð Þ;

where λ(L) is the weight on the regularization term RsKL. The
instantaneous velocity field v is obtained by convolving f with a
Gaussian kernel Gσ of variance σ2 (S2):

v = G Tf uð Þ:

http://www.loni.ucla.edu/ADNI/Data/
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Given the velocity vector field v, the displacement vector field u is
obtained by advancing the following partial differential equation in
time t:

Au
At

= v − v �ju:

For both methods, color-coded maps of the Jacobian determinants
(the local expansion or compression factors) were used to illustrate
regions of volume expansion (i.e., with det J(r)N1), or contraction
(with det J(r)b1) (Ashburner and Friston, 2003; Chung et al., 2001;
Freeborough and Fox,1998; Riddle et al., 2004; Thompson et al., 2000;
Fig. 1. These plots show how different analysis choices can boost the statistical power to de
(CDFs) are based on p-value maps detecting group differences in atrophic rates between (a) A
with different choices of regularizing functions (sKL-MI or 3DMI). Nonlinear registration para
by the user (sigma (S)=6 or 9; lambda (L)=0.5, 1, 2, 5, 8, or 10). According to the defin
significancemap, is the q-value, i.e., the highest p-value threshold for which at most 5% false p
q-value generally indicates a more powerful statistical effect—in our case, a greater statistic
ranking and the q-values, the best TBM design for this dataset used the sKL regularizing fun
Toga, 1999) over time. These maps of tissue change rates were also
spatially normalized across subjects by nonlinearly aligning all
individual Jacobian maps to a minimal deformation template (MDT),
for regional comparisons and group statistical analyses. The MDT was
constructed based on images from 40 normal controls as detailed
elsewhere (Hua et al., 2008a; Hua et al., 2008b).

Pair-wise group comparisons

To illustrate systematic differences in atrophic rates between
groups, we constructed voxel-wise statistical maps based on the
Student's t statistic.We corrected for themultiple comparisons implicit
tect group differences in the rates of brain atrophy. Cumulative distribution functions
D and normal controls, and (b) MCI and normal controls, using a variety of TBM designs
meters were also varied in the case of sKL-MI, which has free parameters that can be set
ition of FDR, the rightmost nonzero intersection of the y=20x line and the CDF for a
ositives are expected in themap. If other factors are equal (such as sample size), a larger
al distinction between patient (AD or MCI) and normal groups. As shown by the CDF
ction, with registration parameters S=6 and L=8 (denoted by sKL-MI S6L8).
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inmaking a statistical map, by using permutation tests (Bullmore et al.,
1999; Chiang et al., 2007a; Chiang et al., 2007b; Nichols and Holmes,
2002; Thompson et al., 2003). In brief, a null distribution for the group
differences in Jacobian (atrophic rate) at each voxel was constructed
using 5000 randompermutations. For each test, the subjects' diagnosis
was randomly permuted and voxel-wise t-statistics were calculated. A
ratio, describing the fraction of the time the t-statistic was more
extreme in the randomized tests than the original test, was calculated
to give a permutation-based p-value for the significance at each voxel.
A “global P-value”, describing the fraction of time the suprathreshold
volume (pb0.01, uncorrected) was greater in the randomized maps
than the real effect (the original labeling), was calculated to determine
whether any significant change could be detected across the brain. This
procedure has been used in many prior reports (Braskie et al., 2008;
Chiang et al., 2007a; Chou et al., 2009b). This is one of several standard
ways to set up a permutation test and is sometimes called set-level
inference. It deems a map significant when the total quantity of voxels
with p-values lower than a fixed a priori threshold exceeds that
obtained in 95% of random simulations.

Cumulative distribution functions (CDF)

CDF plots of the p-values were used to compare the effect sizes of
(and therefore the power to detect) statistical effects when using (1)
TBM designs with different regularizing functions (3DMI versus sKL-
MI), (2) different sKL-MI nonlinear registration parameters
(sigma=6 or 9; lambda=0.5, 1, 2, 5, 8, or 10), and (3) different
choices for the pre-TBM linear registration step (6P versus 9P linear
registration of follow-up and baseline scans). CDF plots are commonly
generated when using false discovery rate methods to assign overall
significance values to statistical maps (Benjamini and Hochberg,1995;
Genovese et al., 2002; Storey, 2002). CDFs can also be used to compare
effect sizes of different methods based on the expected proportions of
voxels with significance above any given statistical threshold under
Fig. 2. Global scaling improves power. We examined how effect sizes (for detecting group d
registration was used to align successive scans before performing TBM. Comparisons are
differentiation between groups in rank order from the bottom to top. The 9P linear registrat
registration (dotted lines in matching colors). This was found regardless of the choice of reg
versus normal).
the null hypothesis. We have used this CDF ranking method in several
prior reports to compare the power of different methods applied to
the same set of images (Chou et al., 2008; Hua et al., 2008a; Lepore et
al., 2008; Morra et al., 2009b).

The q-value refers to the point (corresponding value from the x
axis) at which CDF plot intersects with the line y=20x, and this
represents the highest statistical threshold for which at most 5% false
positives are expected in the map. Significance is declared if the CDF
intersects the y=20x line (other than at the origin), as this shows that
the volume of supra-threshold statistics is more than 20 times the
value that would be expected by chance alone, under null-hypothesis.
The q-value is a measure of the overall significance of each p-value
map, with q=1 indicating full power to always control the false
positive rate and q=0 signifying that no thresholding of the data can
adequately control the false positive rate (i.e., the findings are null).
The empirical CDF of p-values is not to be confused with the more
common FDR PP plot, which is the flip of this plot (i.e., the axes are
interchanged). This procedure has been used in several of our prior
publications (Chou et al., 2009a; Hua et al., 2008a;Morra et al., 2009c).

Regions of interest (ROIs) and mean atrophy rate

Both anatomically and statistically-defined ROIs were used in this
study. First, a temporal lobe ROI, including the temporal lobes of both
brain hemispheres, was manually delineated on the MDT template by
a trained anatomist using the Brainsuite software program (Shattuck
and Leahy, 2002). Secondly, an alternative statistically-defined ROI
(subsequently called the “stat-ROI”) was defined based on voxels with
significant atrophic rates over time (pb0.001) within the temporal
lobes, in a nonoverlapping training set of 22 AD patients available at
the time of image download, i.e., independent of the testing set used
to compute the power numbers (see Fig. 4 for an example). Note that
this is a somewhat arbitrary threshold approach to selecting an ROI; in
principle the ROI could be chosen specifically to provide maximal
ifferences in atrophic rates) depended on whether 9-parameter or 6-parameter linear
based on CDFs of p-values within the temporal lobe ROI. The curves show increasing
ion (solid lines) showed superior effect sizes relative to those based on rigid-body (6P)
ularizing function (sKL-MI S9L5 or 3DMI) and patient group (AD versus normal or MCI



Fig. 3. 3D maps show the mean local atrophic rate in 104 AD subjects (a) and 254 MCI
subjects (b) relative to the normal group (157 controls). The left columns of panels a
and b show the mean rate of atrophy as a percentage tissue loss, or a percentage
increase in ventricular expansion in a year. The right columns of a and b show the voxel-
wise significance of these inter-group differences, showing where the group of interest
has faster atrophy than normal. Both groups show faster degeneration than that seen in
normal aging, with amorewidespread pattern in AD and amore anatomically restricted
pattern of (significant) active atrophy in MCI. Global P values (corrected significance
values) showed significant group differences in atrophic rates between AD and normal
controls (Pb0.0001) and between MCI and controls (P=0.0004).
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power (see later, for more on this topic). A separate stat-ROI was
generated and applied for each TBM design with different algorithms
(3DMI versus sKL-MI) and different parameter settings (6 versus 9P
linear registration and different S and L). A numeric summary—the
mean atrophy rate for all voxels with in the ROI—was computed for
each person, to summarize annual change within the ROI. We note
that ROIs based on independently generated statistical maps have
been advocated for use in PET studies by Reiman et al. (Chen et al.,
2009; Reiman et al., 2008), and it is also common in fMRI studies to
threshold statistical maps using regions identified in orthogonal
statistical contrasts or based on independent analyses.

Sample size calculation and power analysis

A power analysis was defined by the ADNI Biostatistics Core to
estimate the sample size required to detect a 25% reduction in the
mean annual rate of atrophy, using a two-sided test and standard
significance level (α=0.05) for a hypothetical two-arm study
(treatment versus placebo). We used the individual mean atrophic
rates computed within the stat-ROI for sample size calculations. In
brief, β denotes the estimated annual change (average of the group)
and σD refers to the standard deviation of the rate of atrophy across
subjects. The estimated minimum sample size for each arm is
computed from the formula:

n =
2 σ̂ 2

D z1−α =2 + zpower

� �2

0:25β̂
� �2 :

Here zα is the value of the standard normal distribution for which
P[Zbzα]=α and in this case we set α to its conventional value of 0.05
(Rosner, 1990). We estimated the sample size required to achieve 80%
and 90% power (subsequently we will refer to these as n80 and n90).

Controlling false positives: hypothesis-driven and post hoc
exploratory tests

Because we are testing a large number of methodological
alternatives, it is necessary to take precautions to avoid inflating the
false positive rate due to the large number of comparisons conducted.
For example, it is not legitimate to compute effect sizes and minimal
sample sizes for a method, and then vary the free parameters of the
method until the effect sizes are as large as possible. The latter
approach can be used for exploratory purposes but not for drawing
statistical inferences regarding the sample sizes. As such, we declared
one method at the outset as the “default” TBM method, namely using
TBM with our most recent implementation of nonlinear registration.
We therefore declared the default method to be the sKL-MI method
with parameters set to default values used in our prior papers (S=9,
L=5, after 9P linear registration (Yanovsky et al., 2009); we also
thresholded the statistical ROI at an a priori statistical threshold of
p=0.001. The estimation of sample sizes for the default method
may be considered as appropriate for purposes of statistical inference.
We additionally explored the influence of varying free parameters
(S=6 or 9; L=0.5, 1, 2, 5, 8, or 10) on sample size estimates, as post
hoc tests to see if sample sizes could be further improved.We note that
these power improvements should be regarded as post hoc findings
while the best model would then provide the best parameter set and
ROI combination for future studies and clinical trials. Particularly, we
chose a subset of parameters that covered a dynamic range with
relatively small increment to capture a potential nonlinear trend on
statistics derived from the CDF and sample size estimates. We did not
attempt to test all possible parameter combinations, as each test run
required the computation of N=515 Jacobian maps and permutation-
based t tests with an average computation time of 144 h on the LONI
computer cluster, which is equipped with 1152 dedicated Sun
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Fig. 4. Statistical ROI. Here the statistically-defined ROI, based on using the TBM design that showed greatest power in the prior experiments (sKL-MI S6L8, pb0.001), is shown
overlaid (in red colors) on selected slices of the MDT. The stat-ROI was computed based on an independent training sample of N=22 AD subjects, considering only voxels that
showed progressive atrophy over time, so long as they also fell within the temporal lobe ROI defined earlier. The stat-ROI was used to further improve the detection power by
averaging the signals within the regions known to have highest atrophy rates (or, strictly speaking, highest effect sizes for atrophy rates) in the AD training sample.
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Microsystems 64-bit 2.2–2.4 GHz processors with 8–16 GB of memory
per node.

Results

Optimizing the TBM design by ranking CDFs

First, CDF plots were used to compare the effect sizes of brain
changes over time, as detected using different TBM designs. In Figs.
1 and 2, the CDFs of the p-values observed for the statistical
comparison of atrophic rates of patients (AD or MCI) versus normal
controls were plotted against the corresponding p-value that would
be expected under the null hypothesis of no group difference.
Greater effect sizes are represented by larger deviations (upswings)
near the origin of these CDF plots. The curves show increasing effect
sizes, in rank order from bottom to top, for detecting voxels with
statistical differences between groups. In other words, the most
Fig. 5.Mean atrophy rate and sample size estimates required to detect a 25% slowing of atrop
section for caveats on interpreting these samples sizes before and after varying the free param
regularization (spatial smoothness of the recovered changes). For all these experiments, the
deliberately focuses on voxels that changed the most in an independent (nonoverlapping) d
slightly higher than the mean atrophic rates measured by methods that consider overall ana
lobes, for example, which do not deliberately reject voxels where atrophic rates are slower.
mean atrophy rate decreased monotonically when the smoothness parameter Lwas increase
some extent. The effect of varying S (from 6 to 9) had relatively little influence on sample siz
deviation (i.e., a lower effect size) and thus led to higher sample size estimates compared t
powerful methods are shown at the top, but all curves that cross the
y=20x line are considered to have detected significant findings. By
comparing AD and MCI with the control group, the greatest
differentiation was achieved by the nonlinear registration based
on the sKL-MI regularizing function with S=6 and L=8, though a
few TBM designs attained very similar effect sizes, e.g., sKL-MI S9L8
and S9L10 (Fig. 1).

The 9P linear registration, used prior to the steps of TBM, yielded
superior effect sizes compared to using a 6P rigid-body registration,
regardless of the choice of regularizing function (Fig. 2). Group
differences are therefore easier to detect if some global scaling is
allowed when aligning the baseline and follow-up MRIs from the
same subject. This is consistent with prior observations in long-
itudinal MRI studies by Paling et al. (2004). In summary, the optimal
TBM design consists of using 9P linear registration of the follow-up to
the baseline scans, with subsequent nonlinear registration regular-
ized by sKL-MI, using parameter settings S=6 and L=8. The group
hic rates with 80% power (n80), using various TBM designs. See Materials and methods
eters of the method. The nonlinear registration parameter L controls the level of sKL-MI
mean atrophic rate was computed in the statistically-defined ROI shown in Fig. 4, which
ataset of AD subjects (pb0.001). As such, the average atrophic rates, reported here, are
tomical regions of interest defined by an atlas, such as the whole brain or the temporal
As expected from theoretical considerations, the average and standard deviation of the
d. The parameter S controls the fluid regularization or the Jacobian field smoothness, to
e estimates. The 3DMI deformation model showed an inferior ratio of mean to standard
o sKL-MI.



Table 1
Estimated sample sizes needed to detect a 25% reduction in the mean annual change
with a two-sided test and α=0.05 at 80% (n80) and 90% (n90) power, for a two-arm
study, using a statistically-defined ROI versus an anatomically-defined temporal lobe
ROI.

TBM designs AD MCI

Stat-ROI Temporal-ROI Stat-ROI Temporal-ROI

n80 n90 n80 n90 n80 n90 n80 n90

sKL-MI S6L1 60 81 52 70 93 124 74 99
sKL-MI S6L5 49 65 52 70 86 116 89 119
sKL -MI S6L8 48 64 55 74 88 118 99 132
sKL-MI S9L1 52 70 62 83 75 100 98 131
sKL-MI S9L5 52 69 72 96 85 114 132 176
sKL-MI S9L8 55 73 78 104 93 124 148 198
3DMI 125 167 183 244 323 433 401 536

The default method (whose parameters were chosen a priori) is shown in bold. The
method that subsequently yielded the smallest sample sizes after allowing the free
parameters of the method to vary, is shown underlined. There is very little difference
between these methods—all giving excellent power—when the statistical ROI is used.

Table 2
Sample size required to detect a 25% slowing of atrophic rates with 80% (n80) and 90%
(n90) power, using biomarkers defined by TBM versus clinical measures in the same
sample of subjects.

AD MCI
n80/n90 N80/n90

sKL-MI S9L5 (a priori)a 52/69 85/114
sKL-MI S6L8a 48/64 88/118
3DMIa 125/167 323/433
ADAS-Cog 619/828 6797/9092
MMSE 1078/1442 3275/4381
CDR-SB 408/546 796/1065

We note that these may differ slightly from prior reports as they depend to some degree
on the cohort studied.

a sKL-MI stands for the nonlinear registration algorithm that is driven by a mutual
information (MI) cost function and that has a regularizing term based on the symmetric
Kullback–Leibler (sKL) distance. S and L denote registration parameters sigma and
lambda, controlling the Jacobian field smoothness and the weighting of the
regularization, respectively. 3DMI stands for the alternative nonlinear registration
algorithm that is driven by a MI cost function, and a regularizing term based on the
linear elasticity operator. Power analysis was based on mean atrophic rate computed
within the stat-ROI that was defined as including voxels with a significant atrophy rate
(pb0.001) within the temporal lobes, computed in an independent AD training sample
(N=22), using the TBM design of sKL-MI and 3DMI respectively.
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difference maps and sample size estimates, reported from this point
onwards, were based on the 9P linear registration, as it was part of
the default method.

3D profiles of brain atrophy

From the individual Jacobian maps computed with the optimal
TBM design (sKL-MI S6L8), we derived maps of mean group
differences in atrophic rates, and statistical maps of group differences
based on the permutation-based t test, corrected for multiple
comparisons. The 3D maps contrasting AD with normal controls
revealed much higher rates of ongoing atrophy in the hippocampi,
temporal lobes, and almost all of the white matter, accompanied by
progressive CSF expansion in the lateral ventricles and circular sulcus
of the insula (Fig. 3a). The only regionwhere progressivewhite matter
atrophy was not found to be faster in AD than in healthy subjects was
the white matter of the prefrontal cortex, as seen in Fig. 3a. This is
consistent with the anatomical trajectory of AD in the cortex, inwhich
temporal and parietal areas typically undergo fastest atrophy in the
earliest stages of the disease, and structural atrophy moves into the
frontal poles only relatively late in the disease (Braak and Braak, 1991;
Braskie et al., 2008; Thompson et al., 2003).

The MCI group displayed similar patterns and locations of ongoing
atrophy as in AD, but the regions in which atrophic rates were faster
than for controls was more anatomically restricted and was
concentrated on the temporal lobes (Fig. 3b). Of course, there may
be active atrophy in all brain regions; these maps only emphasize
where the patient groups show detectably faster atrophy than normal
controls. As expected, AD patients (global Pb0.0001) andMCI subjects
(global P=0.0004) showed overall faster atrophic rates than controls
(both P values were corrected for multiple comparisons using
permutation testing).

Minimal sample size estimates and power analyses

For a two-arm study, the sample size required to detect a 25%
reduction in the mean annual change with a two-sided test and
α=0.05, was estimated using a power analysis. The stat-ROI was used
to further improve the detection power by concentrating on the
signals within the regions that were already known to be undergoing
detectable atrophy in a nonoverlapping sample of AD training subjects
(Fig. 4). All power analyses (based on stat-ROIs) excluded the 22 AD
training subjects, to ensure a fair comparison. We used the mean
atrophy rates computed within the stat-ROI for sample size
calculations.

As indicated by the mathematical formula and illustrated in Fig. 5,
the sample size estimate depends on the mean annual change and its
standard deviation in the sample analyzed. Clearly, the required
sample sizes are smaller for methods for which the mean rate of
change in the parameter measured is higher and/or its standard
deviation is lower. The nonlinear registration parameter L controls the
sKL-MI regularization. Increasing the value of L leads to more uniform
Jacobian determinant values in regions of homogeneous intensity in
the scan (e.g., across white matter regions). As a result, both the mean
and standard deviation of the mean atrophy rate decreased mono-
tonically when L was increased. The parameter S controls the fluid
regularization or the Jacobian field smoothness. Increasing the value
of S makes the Jacobian fields smoother, or less noisy. The effect of
switching S from 6 to 9 had relatively little influence on sample size
estimation, so was not considered further.

Based on the CDF rankings (Fig. 1), and the minimal sample size
estimates (Fig. 5), we concluded that the best TBM design is based on
sKL regularization with parameters set to S=6 and L=8, leading to
48 and 88 as sample size estimates for detecting clinically meaningful
changes (25% reductions in the mean atrophic rate) in AD and MCI
respectively, with 80% power (Fig. 5 and Tables 1, 2). Detection power
was greatly enhanced by using a stat-ROI, defined by an independent
training sample of 22 AD patients, compared to an anatomically
defined temporal lobe ROI (Table 1).

Although varying the sKL-MI parameters influenced the mean and
standard deviation of the average atrophic rate, the sample size
estimates remained relatively stable (Fig. 5). The results suggested
that sKL-MI is a highly robust method, at least within a plausible range
of parameters, and the results were relatively stable regardless of the
choice of registration parameters.

The sample size estimates based on TBM (with sKL-MI and 3DMI
registration methods) are presented together with those based on
standard clinical and cognitive measures (rates of change in ADAS-
Cog, MMSE, and CDR-SB) in Table 2. The TBM-derived numeric
summaries are about 8 times more powerful than the best clinical
assessments (in this case, CDR-SB), in terms of minimal sample size
requirements. TBM-derived mean atrophy rates within the stat-ROI
offered greatly reduced sample size estimates (i.e., gave superior
statistical power) for a hypothetical clinical trial design that assesses
reductions in the mean rate of atrophy.

Influence of the threshold used to define the statistical ROI

In a post-hoc exploratory analysis, we examined how the group
mean atrophy rate and sample size estimates (Fig. 6) were affected by



Fig. 6.Mean atrophy rate and estimated sample sizes required to detect a 25% slowing of atrophic rates with 80% power (n80), using various levels of statistical thresholding to define
the statistical ROI inwhichmean atrophic rates are computed. As a post hoc exploratory experiment, the influence of the stat-ROI threshold was examined for the TBM designs sKL-MI
S6L8 (a) and 3DMI (b). The default threshold was pb0.001. Smaller ROIs improve the power of the 3DMI method but they matter less for sKL-MI, which is the method with the
highest power anyway.
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the statistical threshold chosen to define the statistical ROI. Clearly, if a
region is defined for signal averaging in an image, a very small region
can be defined by setting the statistical threshold very high, but this
might not give the highest effect size for the mean atrophic rate in
new subjects, as different subjects show slight differences in
anatomical localization for the location of greatest atrophy. As such,
there is no immediate theoretical basis for choosing the extent or
threshold for the statistical ROI; these depend on empirical factors
(and the sample size of training images).

Reducing the statistical threshold used to define the ROI had little
impact on the group mean atrophy rates and sample size estimates
when sKL-MI was used to measure atrophic rates (Fig. 6a). However,
sample size estimates were gradually improved in the scenario of
3DMI, with stable mean atrophy rate but lower standard deviation as
the threshold was decreased and the ROI became smaller (Fig. 6b).
This differential influence of the stat-ROI threshold was somewhat
expected. In theory, the sKL-MI makes the Jacobian maps more
spatially homogeneous in large areas with homogeneous intensity,
e.g., the white matter. In a sense, the sKL statistical maps tend to have
higher spatial autocorrelation (i.e., are spatially smoother), thus the
exact value used for thresholding them has minimal impact. A more
detailed understanding of these correlations in deformation maps can
be gained by studying the 6-dimension Green's function (spatial
covariance function) of the differential operator governing the
deformation mappings, a topic that we have investigated previously;
the Green's function can also be learned empirically from data (Brun
et al., 2009a; Brun et al., 2009b; Fillard et al., 2007; Fillard et al., 2005;
Gee, 1999; Grenander and Miller, 1998).

Discussion

Here we found that a regional numeric summary, derived from
TBM, provided a drastically reduced sample size estimate in a power
analysis for detecting brain change, with 48 and 88 subjects required
in AD andMCI groups respectively for a clinical trial designed to detect
25% improvement in the rate of decline with 80% power. In Table 2,
sample size estimates using TBM-basedmethodswere comparedwith
those based on clinical scores in the same group of subjects (N=515).
The best clinical measure was CDR-SB, but even this measure required
relatively large sample sizes (n80: 408 for AD, 796 for MCI). These
sample sizes are around 8 times higher than those required by the
TBM-derived imaging measure. Our power estimates for the clinical
measures (MMSE, ADAS-Cog) are similar to those computed by
Schuff et al., 2009, in other ongoing ADNI studies. As confirmed by
other independent studies, the required sample sizes were
drastically lower for structural MRI versus clinical measures (Fox
et al., 2000; Jack et al., 2004; Schuff et al., 2009). Specifically, when
TBM was used in combination with an empirically-defined statis-
tical ROI, the resulting numeric summary was comparable to, or
better than, other imaging measures for which power estimates
have been reported (Beckett et al., 2008; Chen et al., 2009; Tosun et
al., 2009). We note that for summarizing our TBM measures, the
average of all voxels in the ROI was taken, as it was the simplest and
most intuitive numerical summary that can be derived from an ROI.
Other approaches are clearly possible, such as taking a weighted
average—by weighting the voxels according to their effect sizes in
the stat-ROI—or using a machine learning method to select the
subset of most informative voxels when used jointly for group
discrimination (see Sun et al., (in press) and Ferrarini et al., (2008)
for examples of the latter approach). Other map-based numeric
summaries will be the topic of future study.

In this large-scale analysis—to our knowledge, the largest long-
itudinal TBM study to date—we evaluated different TBM designs with
optimized linear and nonlinear registration parameters, to maximize
the power to detect progressive brain atrophy in AD and MCI. We
tested twelve different combinations of TBM modules, with each test
involving 515 high-dimensional nonlinear registrations and subse-
quent CDF-based statistical analyses. Even though computational
requirements were immense, our findings of the best parameters and
analysis choices can now be used in future studies to expedite them.

These results offer several insights regarding the choice of TBM
design, including the choice of the regularizing function (sKL-MI
versus 3DMI), selection of nonlinear registration parameters that
affect the smoothness of the recovered changes (parameters S and L
for the sKL method), as well as the type of linear registration (rigid or
nonrigid) that spatially aligns the scans before nonlinear registration.
Using CDF plots, we ranked different TBM designs in terms of their
power to detect significant effects and compared q-values from an
FDR analysis. The best power, represented by the top CDF curve and
the highest q-value, was achieved with a TBM design with the sKL-MI
regularization (with parameters S=6, L=8), and 9P-linear registra-
tion. The parameter settings chosen as defaults in our prior work
(S9L5) gave very similar sample sizes (52 AD, 85MCI) (Yanovsky et al.,
2009). It is conceivable that the best settings may depend somewhat
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onwhether AD or MCI is the target of the study, and they may depend
somewhat on the inter-scan interval (here 1 year), with shorter
follow-up periods giving noisier data and requiring even greater
spatial regularization.

From the CDF plots (Fig. 1), we concluded that first, the elastic
deformation model (3DMI) performed approximately as well as the
deformation model based on information theory (sKL-MI), with sKL-
MI performing slightly better or worse depending on how its
parameters were set. When using the optimal combination of
parameters (S=6, L=8), the sKL-based method demonstrated
superior statistical power versus the 3DMI-based TBM design. The
sKL method has been advocated in our prior work (Yanovsky et al.,
2008a) as it avoids some of the drawbacks with standard image
warping methods. For example, brain changes over time detected by
most of the registration methods in the literature do not have a mean-
zero null distribution when no true biological changes are present,
due to asymmetry in the registration process (see Leow et al., (2007)
for a detailed discussion and mathematical derivations). Second, all
deformation models successfully detected differences in atrophic
rates between AD and controls, and MCI and controls, as is evident
from the fact that all the CDFs rise sharply near the origin and all cross
the y=20x line. This means that for all methods and models, the
results were significant in this very large study, but the effect sizes at
each voxel differed slightly. Put another way, there is a range of
statistical thresholds [0,q] that control the expected false discovery
rate to be below 5%, and q is higher for the more powerful methods,
meaning that a greater range of thresholds can be used to control the
false discovery rate. Thirdly, and as expected, the curves showingMCI-
control differences had lesser effect sizes than those showing AD-
control differences, which make sense intuitively as atrophic rates in
AD are the fastest of all, and atrophic rates in MCI are significantly
faster than in controls.

The nonlinear registration parameter L controls the sKL-MI
regularization. Increasing the value of L leads to lower mean and
standard deviation of the atrophy rate (Fig. 5). This is because the
heavier sKL-based regularizations (i.e., higher values of L) tend to
reduce bias in homogeneous regions by producing uniform Jacobian
determinant maps (e.g., in regions of white matter and ventricles
where spatially coherent tissue loss and expansion are expected
respectively). In a sense, sKL-based regularization is a type of spatial
smoothing that is dominant only within inherently homogeneous
regions. Therefore, it does not have the disadvantage of general
smoothing which tends to average out signals from adjacent regions
with distinct features as well as tissue change rates. For example, at
the boundary of gray matter and CSF, it would be unfavorable to
average or smooth the signals with opposite signs, i.e. loss of GM and
expansion of CSF. Whereas in homogeneous regions of white matter
and inside the ventricles, it is ideal to apply smoothing to generate
uniform tissue change rates, in default of any other information that
would lead to greater spatial resolution. This is at least conceptually
related to the intensity consistent filtering approach designed to filter
contractions and expansions in neighboring tissues separately so that
anatomical boundaries are preserved (Studholme et al., 2003).

The type of linear registration (required as a pre-processing step
before nonlinearly warping one scan onto the other) also affected the
power to detect group differences in atrophic rates. Alignment of
scans over time using scaling (9P linear registration) outperformed
the rigid-body registration (6P), probably because the 9P registration
can correct for scanner voxel size variations in large studies involving
multiple sites, scanners and acquisition sequences. Prior longitudinal
MRI studies found that using 9P scaling is advantageous for
registration over time, even when significant cerebral atrophy is also
occurring in the images (Paling et al., 2004). The concept of using 9P
registration for serial MRI analysis was counterintuitive at first as one
might suspect that important biological changes over time might be
eliminated and incorrectly discounted, if scans were registered using
9P scaling. However, for studies of cerebral atrophy in dementia or
other neurodegenerative diseases, the population of interest is
relatively old and thus the skull size—one of the major driving forces
in registration—is relatively stable. In TBM studies of early develop-
ment (Gogtay et al., 2008; Hua et al., 2009), where there is substantial
dynamic growth of the brain and skull, 6P registration may be more
suitable, despite not correcting for possible geometric calibration
errors due to scanner drift and effects of magnetic field re-shimming
over time.

Some of the image correction steps in ADNI (e.g., gradwarp, and
phantom-based image scaling) were not implemented in the study by
Paling et al. (2004). Here we were able to achieve greater effect sizes
using 9-parameter image registration instead of 6-parameter (rigid
body) registration (Fig. 2). This suggests that standard image pre-
processing pipeline in ADNI might not be sufficient to correct for all
scanner variations, and applying 9P registration over time provided
additional benefit. It is also worth noting that we did not apply brain
mask prior to linear registration, unlike Paling et al. who delineated
the brain region in their images using a semi-automated approach.
Hence 9P scaling can be applied to longitudinal studies with and
without nonbrain tissues, to correct for any remaining scanner voxel
size variation that was not accounted for by image correction
algorithms. Also, a very recent paper (Clarkson et al., 2009) suggests
that 9-parameter registration was equally good or even superior to
using phantom-based image corrections in the ADNI data specifically.

There is some debate as to whether it makes sense to compute
minimal sample sizes from the changes in the patient group only,
without taking into account the aging changes normally occurring in
controls. Perhaps controversially, the consensus in the AD literature
has been to base sample size estimates on the effect sizes for change
computed in the patients only, even though such an approach can be
biased in several respects. First, if changes that normally occur with
normal aging are not considered, it is assumed that the goal of therapy
is to reduce the patients' atrophic rate by 25%, even if a more
achievable target would be to reduce the patient–control difference
(which is smaller) by 25%. Second, if any apparent shrinkage of the
brain occurred due to a systematic (nonrandom) error in scanner
calibration at some acquisition sites, or due to phantom errors,
geometric drifts over time, or unforeseen biases in image processing,
then the cause of the error may not be easy to detect in the absence of
a control group, but would be taken into account in the statistics if a
control groupwas also used, as their imageswould presumably also be
prone to the same drift effects. To avoid these issues in the current
study, we did not rely solely on sample size estimates (n80 and n90)—
which were based on the patient groups only—but we also examined
effect sizes in comparisons between patients and matched healthy
controls. We computed CDFs from statistical maps of group differ-
ences between patients and controls, and we used FDR-based q-values
to evaluate the power of different TBMdesigns. As seen in Figs.1 and 5,
the TBM designs offering best sample size estimates (e.g., sKL-MI S9L1
for MCI) may not always best discriminate patients from controls,
indicated by inferior CDF ranking and lower q-value. Clearly the
former depends solely on the effect sizes for the change in the
patients, while the latter also depends on the effect sizes for change
observed in controls.

The idea of implementing a statistically-defined ROI based on an
independent training sample was advocated by Reiman et al. (Chen
et al., 2009; Reiman et al., 2008) for analysis of positron emission
tomography (PET) images. This is a variant of a strategy that has long
been used in functional MRI studies, where it is common to limit the
search region for statistical effects to circumscribed anatomical
regions or regions generally implicated in past studies. These regions
can be based on maps derived from statistically orthogonal (and
therefore independent) contrasts computed from the same sets of
images. Here we showed that a statistically-defined ROI can be used to
improve the detection power by concentrating the signals that change
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most in AD, as determined from a nonoverlapping sample of AD
patients (Table 2).

The use of a statistically-based ROI was so much better than using
an atlas-based ROI that it motivates further study of how best to use
an ROI to optimize power. Different weights could be given to the
component voxels, for example; rather than using a simple thresh-
olding of the ROI to compute the mean value, the values in the ROI
could be weighted using their effect sizes (e.g., t statistics derived
from an independent sample). More sophisticated machine learning
procedures could be used to select a subset of voxels in the ROI that
are most informative when used jointly (for example using an
adaptive boosting technique or a committee based learning method;
see (Morra et al., 2009a) for a review of these methods). For example,
we recently measured gray matter thickness at 64,000 cortical
surface points in MRI data from 36 schizophrenia patients and 36
controls, and a machine learning algorithm (Sun et al., in press)
picked a selection of points scattered across the cortex that optimally
predicted disease status (patient or control). This achieved an
excellent 86.1% classification rate when validated on independent,
nonoverlapping, data. By distilling a whole image of features into
those that are most predictive, dimension reduction is achieved;
these features may also form a spatially distributed anatomical
network revealing areas jointly involved in the disease. As the chosen
features are all assessed simultaneously, changes in one region that
are not necessarily strong enough on their own to be predictive are
assessed in conjunction with all others, and systems of co-occurring
changes can be identified (Zhang et al., 2008). This is the premise of
several machine learning methods that have been applied to brain
mapping, such as multivarate network analysis (Alexander et al.,
2008), adaptive boosting, online learning, and their variants (see
Morra et al., (2009a; 2009b), for a review).

We found that the hippocampus has a high rate of atrophy, and
shows faster atrophy in MCI and AD than in controls when the full
sample is analyzed (Fig. 3). However, in the stat-ROI (Fig. 4), which
was defined in the training set of 22 AD subjects, the effect sizes for
atrophic rates were great outside the hippocampus, in the rest of the
temporal lobe. The effect size for detecting changes in the hippo-
campus can be negatively influence by the following three aspects.
(1) The hippocampus is immediately adjacent to CSF voxels that are
expanding, resulting in high variance and low statistical effect size at
the boundaries. (2) Inherent variability in anatomy across subjects,
which combined with the smallness of the structure, makes it
difficult to align maps of change perfectly across subjects. (3) the
effect size of stat-ROI is limited by the size of training set—only 22 AD
patients were used to generate the stat-ROI. Adding more subjects to
the training set will increase the effect size but at the cost of reducing
the sample size of the testing set.

TBM has some specific advantages as a biomarker of disease
progression in AD. The serialMRI protocol onwhich it is based tends to
have high test/re-test reliability, and TBM can be used to assess,
explore, or confirm the stability of serial MRI by computing changes
across short intervals such as 2 weeks (Leow et al., 2006b), where
biological changes are minimal. The effects of phantom-based
corrections, image inhomogeneity corrections (Boyes et al., 2008),
and other image processing steps on longitudinal stability can also be
extensively explored, monitored, and optimized, as are effects of the
field strength of the scanner (3 versus 1.5 T) (Ho et al., in press) and
image reconstruction algorithms on statistical power.

In future studies, we plan to compare the power of several
complementary MRI-derived measures, including volumes and maps
of hippocampal and ventricular anatomy (Chou et al., 2009a; Morra
et al., 2008; Morra et al., 2009c; Schuff et al., 2009), whole-brain and
ventricular boundary shift integrals (Fox et al., 2001), automated
volumetric parcellations (Fischl et al., 2002), voxel-based morpho-
metry (Alexander et al., 2007; Ashburner and Friston, 2000; Good et
al., 2001), abnormality scores derived from high-dimensional pattern
classification (Misra et al., 2009), other tensor-based morphometry
methods (Studholme et al., 2005) and cortical thickness mapping
(Aganj et al., 2009; Thompson et al., 2003; Thompson et al., 2004b) on
the same subset of ADNI data. Additionally, longitudinal declines
during the different pre-clinical and clinical stages of AD may not
necessarily be linear. Thus, one will need to see the extent to which it
affects power in more severely affected AD patients or over different
trial durations. At the same time, one could develop optimal statistical
ROIs tailored to the subject characteristics of future subjects (e.g., mild
versus moderately severe AD and the time-line of the proposed
study).

It is unlikely that one single biomarker will outperform all others in
terms of its power to track change, correlate with clinical decline, or
predict outcomes. Furthermore, different biomarkers may differ in the
extent to which they are modified by a treatment, predict a
treatment's clinical benefit, or are affected in a confounding way
unrelated to the treatment's therapeutic effects (e.g., increased
volume loss measured by brain boundary shift integral (BBSI) was
found in antibody responders compared with nonresponders in the
clinical trial of AN1792 immunotherapy (Fox et al., 2005)). Use of
genetic or CSF biomarkers, as well as other imaging measures (from
PETor DTI) will be advantageous. In themeantime however, structural
MRI measures offer a dramatic reduction in sample sizes required for
clinical trials (an 8-fold difference relative to the best clinical measure
in this study). Future efforts will focus on combining measures to
reduce this sample size still further.
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