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Hypotheses testing procedures based on quadratic inference functions are proposed to
test whether two Gaussian Bayesian networks are differential in structure, strength of
associations between nodes, or both. Bootstrap procedures are developed to estimate
p-values to quantify the statistical significance of the tests. Operating characteristics of
these testing procedures are investigated using synthetic data in simulation experiments.
Additionally, the proposed methods are applied to flow cytometry data from a designed
experiment, and data of bile acids from an observational study in the Alzheimer’s Disease
Neuroimaging Initiative.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

There has been an explosion of interest on graphical models among data scientists in the past two decades. Graphs used
or visualizing relationships between variables were initially formulated and developed within the artificial intelligence
ommunity, and quickly attracted attention of researchers in a wide range of scientific fields (Jensen, 1996; Lauritzen,
996; Edwards, 2012; Neapolitan, 2012; Pearl, 2014). A graph consists of nodes, i.e., vertices, representing variables of
nterest in a system, the relationships between which are depicted via edges connecting nodes. Formulating a probabilistic
raphical model involves the specification of a graph structure and a probability model for the nodes. A graphical model
ith undirected edges is an undirected network, also referred to as Markov network, which encodes the conditional
ependence relationships between nodes. A graphical model with directed edges is a Bayesian network, also referred to
s a directed acyclic graph (DAG) to signify that there exists no path that starts from one node and ends at the same
ode. When there is an edge pointing from one node to another node, these two nodes are referred to as a parent node
of the latter) and a child node (of the former), respectively. A Bayesian network satisfies the local Markov property in
he sense that, given its parents, a node is independent of its non-descendant nodes. Hence, a Bayesian network specifies
factorization of the joint distribution of all nodes in the graph. Following this factorization, one can more efficiently

mplement probabilistic inference on causal relationships between the nodes, and further deduce conditional dependence
elationships.

Applications of Bayesian networks include profiling gene maps in genetics studies, predicting a treatment outcome in
he medical field, and conducting financial analysis in econometrics, among many other examples. In particular, identifying
ifferential Bayesian networks is of great interest to many domain scientists. For example, comparing a cellular signaling
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network associated with a diseased population and its counterpart network associated with a healthy population can
provide insight on the impact of the disease on the concert work of relevant cells. In this article, we develop methods
to infer whether or not a Gaussian Bayesian network is differential between two populations. The study presented here
distinguish from existing relevant works in at least three aspects. First, we test differential directed networks as opposed
to differential undirected networks, with a sizable collection of existing literature on the latter yet very limited research
on the former. For instance, Gill et al. (2010) proposed a procedure to globally test differential undirected graphs based on
strength of genetic associations or interaction between genes. Jacob et al. (2012) tested multivariate two-sample means
associated with graphs of known structures using Hotelling’s T 2-tests. Zhao et al. (2014) developed a method to infer
ifferences in two precision matrices corresponding to two undirected networks. Xia et al. (2015) extended their work
n order to globally test differentiation of undirected graphs. Städler et al. (2017) also developed methods for testing
ifferentiations of undirected graphs based on precision matrices. Durante et al. (2018) studied associations of undirected
etworks with a feature of interest. Zhao et al. (2019) developed a general framework for testing differential connectivity
etween two undirected networks, which aims to qualitatively compare structures of two precision matrices instead of
uantitatively comparing entries of them. This highlighted feature in Zhao et al. (2019) relates to the second aspect that
akes our methods stand out from existing works, which is that our proposed testing procedures can test differentiation

n regard to solely graph structure, or strengths of associations between variables, or both. Third, the proposed inference
rocedures are applicable to data from an observational study or from designed experiments. Drawing inference for a
ayesian network can be more challenging than for an undirected network because a Bayesian network can be identified
ased on data from an observational study only up to a Markov equivalence class (Verma and Pearl, 1991; Andersson
t al., 1997; Chickering, 2002; Hauser and Bühlmann, 2012). Inclusion of interventional data from a designed experiment
mproves the identifiability of a Bayesian network. In such an experiment, one sets the values of some node(s) to be
re-specified values, which in effect destroys the causal dependencies of the intervened node(s). Ellis and Wong (2008)
eveloped a fast MCMC algorithm based on experimental data that include interventional data and observational data.
esides inclusion of interventional data, incorporating information of the topological ordering of nodes also improves
dentifiability. Given a directed graph structure, a topological ordering specifies a sequence of nodes such that a child
ode in the graph always comes after its parent nodes (Cormen et al., 2001, Section 22.4). We do not assume ordering
nown in our study. Lastly, we formulate and infer Bayesian networks under the regression framework with Gaussian
odel error, a framework that differs from most frameworks adopted in the artificial intelligence community (e.g., Chung
t al., 2006; Nielsen and Jensen, 2009), where one directly models edge probabilities in a Bayesian network for instance.
To prepare for methodology development, we first formulate regression models that characterize a Bayesian network in

ection 2. Section 3 presents an algorithm for inferring a network based on penalized score equations. Test statistics based
n quadratic inference functions are proposed in Section 4 for testing hypotheses relating to comparisons between two
etworks. To quantify statistical significance of the proposed test statistics, we develop bootstrap procedures in Section 5
o estimate the null distribution of the test statistics. Operating characteristics of the testing procedures are investigated
ia simulation experiments reported in Section 6. The proposed methods are applied to two real-life applications in
ection 7. Lastly, we summarize the contribution of the current study and discuss follow-up research agenda in Section 8.

. Model and data

Suppose that the same set of p nodes are considered for two populations. It is of interest to compare the underlying
ayesian networks involving this set of nodes associated with the two populations. Refer to node j of population k as X (k)

j ,
or j = 1, . . . , p, k = 1, 2. Suppose that associations between nodes in population k is specified by p linear regression
odels,

X (k)
j =

p∑
j′=1

X (k)
j′ B(k)

[j′, j] + ϵ
(k)
j , for j = 1, . . . , p, (1)

here ϵ
(k)
j ∼ N(0, σ 2

kj) is the model error independent of X (k)
j′ for j′ ̸= j, B(k) is the p × p matrix of regression coefficients,

f which the diagonal entries are equal to zero. We assume that each node has mean zero so that no intercept is needed
n (1). Note that X (k)

j′ is a parent of X (k)
j if and only if B(k)

[j′, j] ̸= 0, thus B(k) fully determines the graph structure, denoted
y Gk. Having the jth column B(k)

[ , j] equal to 0p×1 indicates that X (k)
j is parentless, in which case we call it a root node.

aving the jth row B(k)
[j, ] equal to 0T

p×1 means that X (k)
j is childless. Define X(k) as an Nk × p matrix that stores a data

set of size Nk from population k, for k = 1, 2.
The data may come from an observational study or a designed experiment. In the latter case, certain nodes are

intentionally inhibited or stimulated under different experimental conditions. To allow data from either type of study,
we let Ikj, with cardinality nkj, be the index set relating to rows of X(k) that contain interventional data for X (k)

j , and let
Okj, with cardinality n−kj = Nk − nkj, be the index set corresponding to the remaining rows in X(k) where observational
data of X (k)

j are stored. If data are from an observational study, or they are from a designed experiment where node j

is never intervened, then Ikj is the empty set and Okj = {1, . . . ,Nk}. When considering the jth regression model with

2
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X (k)
j as the response variable, one should only use the observational data associated with X (k)

j , i.e., X(k)
[Okj, ], because any

otential causal effect of other nodes on X (k)
j is suppressed by design in X(k)

[Ikj, ].
In this study, we develop procedures for testing hypotheses in regard to how the two networks compare based on X(1)

nd X(2). Hypotheses of research interest include Ha
0 : G1 = G2 versus Ha

1 : G1 ̸= G2 when the comparison focuses solely
on the graph structure, and a more detailed comparison regarding the strength of associations between nodes with the
null hypothesis Hb

0 : B(1)
= B(2), and the alternative hypothesis Hb

1 : B(1)
̸= B(2). Clearly, Ha

1 being true implies that Hb
0

s false, but not vice versa. To reject Hb
0 but not Ha

0 is to conclude that there exist associations between nodes that are
differential between two networks sharing a common graph structure. When testing these hypotheses, graph estimation
is involved, for which we describe an algorithm next.

3. Graph estimation

In this section, we suppress the population index k from the notations defined in Section 2 and focus on estimating one
graph using one data matrix in general. For instance, X is an N × p data matrix available for inferring causal relationships
between p nodes, and B is the p × p matrix of regression coefficients corresponding to the network. For node Xj, there
are nj(≥ 0) rows composed of interventional data with row index set Ij; the rest of n−j = N − nj rows, corresponding to
the index set Oj, contain observational data for Xj, for j = 1, . . . , p.

3.1. Parent selection

Under the regression framework, inferring a Bayesian network with p nodes translates to inferring p regression models
in (1) simultaneously under the acyclic constraint. To facilitate selecting parents for each node, we apply the score-
based variable selection method proposed by Huang and Zhang (2013) in conjunction with cycle elimination via Kahn’s
algorithm (Kahn, 1962). The following algorithm describes this estimation procedure, with Kahn’s algorithm relegated to
Section 3.2.

Step 1: Compute the least squares estimate of Bj = B[−j, j] based on data X[Oj, ]. Denote by B̂(0)
j this estimate, for

j = 1, . . . , p. Set the iteration index t = 0.

Step 2: For j = 1, . . . , p, use B̂(t)
j as the starting value to solve the following penalized score estimating equations,

n−1
−j

∑
ℓ∈Oj

Ψjℓ(Bj) − P̃λ(Bj) = 0, (2)

where

Ψjℓ(Bj) = (X[ℓ, j] − X[ℓ, −j]Bj)X[ℓ, −j]T, for ℓ ∈ Oj, (3)

is the normal score associated with the jth regression model evaluated at one data point, and P̃λ(Bj) is the partial
derivative of the SCAD penalty function (Fan and Li, 2001),

Pλ(t) = λtI(0 ≤ t < λ) +
(a2 − 1)λ2

− (t − aλ)2

2(a − 1)
I(λ ≤ t < aλ) +

(a + 1)λ2

2
I(t ≥ aλ),

in which λ is a tuning parameter, a = 3.7, and I(·) is the indicator function. More specifically, entries of the (p−1)×1
vector P̃λ(Bj) are given by, for i ̸= j,

∂

∂βij
Pλ(|βij|) = λ

{
I(|βij| ≤ λ) +

(aλ − |βij|)+
(a − 1)λ

}
sign(βij),

where βij = B[i, j]. The p sets of solutions to (2) give the p columns of an updated matrix of regression coefficients
estimates, B̂(t+1). Denote by G̃ the graph structure indicated by B̂(t+1).

tep 3: For i, j = 1, . . . , p and i ̸= j, compute the unpenalized estimate of βij, which is the least squares estimate, if Xi

is a parent of Xj according to G̃, and obtain the estimated standard error of the unpenalized estimate via sandwich
variance estimation for M-estimators. Compute the p-value based on the least squares estimate of βij along with
its estimated standard error for testing H0 : βij = 0 versus H1 : βij ̸= 0.

tep 4: Implement Kahn’s algorithm to inspect and eliminate cycles in G̃ based on the p-values from Step 3. More entries
in B̂(t+1) are set to zero during this cycle elimination process unless no cycle is detected. More details of this step
are given in Section 3.2.

tep 5: If |B̂(t+1)
− B̂(t)

|∞ > 10−4, set t = t + 1, and return to Step 2. Otherwise, output B̂(t+1) as the final estimate of B,
denoted by B̂, and denote the corresponding graph structure as Ĝ.
3
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Fig. 1. The algorithm for eliminating cycles in G and finding a topological ordering, T , compatible with the resultant acyclic G.

In Step 5, for a matrix A, |A|∞ denotes the largest entry of A in absolute value. In Step 2, one may consider other
penalty functions such as the LASSO (Tibshirani, 1996) and the adaptive LASSO (ALASSO) (Zou, 2006) in place of SCAD
when constructing the penalized estimating equations in (2). Both SCAD and ALASSO have been shown to enjoy the
appealing oracle properties in variable selections. Between the two penalty functions, we choose SCAD in order to avoid
specifying the adaptive weights required in ALASSO, and also because Aragam and Zhou (2015) showed that a concave
penalty, such as SCAD, offers improved performance in Bayesian network structure learning when comparing with an
L1-based penalty. To choose a value for the tuning parameter λ in (2), we adopt the score-based information criterion
inspired by the following quadratic inference function (Lindsay and Qu, 2003),

Qj =
{
n−1

−j Ψj(Bj)
}T {

Hj(Bj)
}−1 {

n−1
−j Ψj(Bj)

}
, (4)

where Ψj(Bj) =
∑

ℓ∈Oj
Ψjℓ(Bj) and Hj(Bj) = n−1

−j
∑

ℓ∈Oj
Ψjℓ(Bj)Ψjℓ(Bj)T. In particular, we choose λ so that the following

score-based information criterion evaluated B̂ is minimized,

SIC(B̂) =

p∑
j=1

(
Q̂j + ej

log n−j

n−j

)
, (5)

where the dependence of B̂ on λ is suppressed but implied by the above algorithm, ej is the number of parents of Xj

according to B̂, and Q̂j is equal to Qj in (4) evaluated at the unpenalized estimate of Bj, denoted by B̃j, which is the least
quares estimate of Bj given the graph structure Ĝ. It is shown in Huang and Zhang (2021) that SIC(·) is a consistent
nformation criterion under mild regularity conditions.

.2. Cycle elimination

In Step 4 of the graph estimation algorithm in Section 3.1, we use a topological sorting algorithm, known as Kahn’s
lgorithm, to detect and delete cycles in G̃. Given a generic directed graph, there may exist more than one topological
rdering compatible with it. For example, if there are two adjacent nodes in a sorted sequence that are not connected by
n edge in the graph, then swapping these two nodes yields a different ordering that is compatible with the same graph.
sorting algorithm typically is an iterative algorithm with a built-in check for cycles in a directed graph. Fig. 1 illustrates

he sorting algorithm we use to revise an initial directed graph structure G to yield an acyclic graph, during the process
of which a topological ordering of the nodes compatible with the final acyclic G is found. Before starting the algorithm,
ne sets up a queue, denoted by T , initially empty, for storing the sorted nodes as they come in.
Applying the algorithm depicted in Fig. 1 to G̃ in Step 4 of the graph estimation algorithm, we use B̂(t+1) resulting from

tep 2 to monitor updates in G̃ in four ways. First, to find a root node, one simply looks for a column in B̂(t+1) that contains
ll zeros. Suppose B̂(t+1)

[, j] = 0p×1, then Xj is a root node. Second, to remove out-going edges from a root node amounts
o setting all entries in the row corresponding to this node at zero, which effectively makes this node childless. Suppose
j is a root node, then one sets B̂(t+1)

[j, ] = 0T
p×1 to make Xj childless. Third, removing a childless root node from G̃ is

equivalent to deleting the row and the column corresponding to this node from B. Lastly, a weak edge in G̃ corresponds to
a non-zero entry in the current B̂(t+1) whose p-value is the largest among the p-values associated with remaining nodes
obtained in Step 3, since a larger p-value for βij implies a weaker association between Xi and Xj. Removing a weak edge
is to set this entry in B̂(t+1) at zero.
4
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Fig. 2. Construction of the two test statistics, Q1 for testing Ha
0 and Q2 for testing Hb

0 , based on data X(1) and X(2) .

By the time the queue T collects all p nodes, G̃ becomes a graph without a node, i.e., an empty graph. It is at this point
hen we retrieve an acyclic G̃ by deleting from the initial G̃ (resulting from Step 2) the weak edges that are removed
uring the sorting process depicted in Fig. 1. In other words, the outgoing edges from a root nodes being removed to create
hildless root nodes, and the childless root nodes being removed during the iterative algorithm are put back to recover
he final acyclic G̃, and so are the corresponding rows and columns of B̂(t+1). The computation time for this algorithm is
f order O(p + |EG̃G̃| ), where |EG̃G̃| denotes the number of edges in the initial G̃ resulting from Step 2.

. Test statistics

Equipped with a way to estimate a Bayesian network, we are now ready to construct test statistics for testing
a
0 : G1 = G2 and Hb

0 : B(1)
= B(2). The quadratic inference function in (4) is the building block of these test statistics. For

ase of exposition and comparison, Fig. 2 provides a flowchart for the construction of two test statistics, Q1 and Q2, to be
efined in the upcoming subsections.

.1. Testing Ha
0

To test Ha
0 : G1 = G2, we define the following test statistic,

Q1 =

p∑
j=1

⎧⎨⎩n−1
−2j

∑
ℓ∈O2j

Ψjℓ(B̃
(2)
j )

⎫⎬⎭
T {

Hj(B̃
(2)
j )

}−1

⎧⎨⎩n−1
−2j

∑
ℓ∈O2j

Ψjℓ(B̃
(2)
j )

⎫⎬⎭ , (6)

here Hj(B̃
(2)
j ) = n−1

−2j
∑

ℓ∈O2j
Ψjℓ(B̃

(2)
j )Ψjℓ(B̃

(2)
j )T, Ψjℓ(B̃

(2)
j ) is the normal score evaluated at B̃(2)

j and X(2)
[ℓ, ], and B̃(2)

j =

˜ (2)[−j, j] is the unpenalized estimate of the regression coefficients for the jth regression model computed using X(2)
[O2j, ]

hile assuming the graph structure Ĝ1 obtained from applying the graph estimation algorithm to X(1).
Under Ha

0 : G1 = G2, Ĝ1 is also a sensible estimate for G2, despite how B(1) and B(2) compare quantitatively. Hence, under
a
0 , assuming Ĝ1 while estimating B(2) based on X(2) amounts to estimating B(2) using data from the second population
hile assuming an asymptotically correct model (i.e., graph structure) for this population. Here, asymptotics relate to
ettings with p fixed and the amount of data information available for inferring each regression model diverge. By Lindsay
nd Qu (2003), as minj=1,...,p n−2j → ∞, Q1 is asymptotically the sum of p dependent χ2 random variables, whose
ealizations tend to be smaller compared to when a wrong model is assumed for the second population when estimating
(2). In conclusion, Q1 is a sensible statistic for testing Ha

0 : G1 = G2 versus Ha
1 : G1 ̸= G2, with a larger value of Q1

roviding more evidence in favor of Ha, regardless of the quantitative comparison between B(1) and B(2).
1

5
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4.2. Testing Hb
0

By revising the test statistic Q1 in (6), we obtain a test statistic for testing Hb
0 : B(1)

= B(2) as follows,

Q2 =

p∑
j=1

⎧⎨⎩n−1
−1j

∑
ℓ∈O1j

Ψjℓ(B̃
(2)
j )

⎫⎬⎭
T {

H∗

j (B̃
(2)
j )

}−1

⎧⎨⎩n−1
−1j

∑
ℓ∈O1j

Ψjℓ(B̃
(2)
j )

⎫⎬⎭ , (7)

here H∗

j (B̃
(2)
j ) = n−1

−1j
∑

ℓ∈O1j
Ψjℓ(B̃

(2)
j )Ψjℓ(B̃

(2)
j )T, in which Ψjℓ(B̃

(2)
j ) is the normal score evaluated at B̃(2)

j and X(1)
[ℓ, ], and

˜ (2)
j is the same as that appearing in Q1.
If Hb

0 : B(1)
= B(2) is true, B̃(2) is also a consistent estimator for B(1). Therefore, Q2 is a quadratic inference function

valuated at data from the first population, X(1), and a consistent estimator of B(1). Consequently, Q2 is asymptotically the
um of p dependent χ2 random variables (Lindsay and Qu, 2003) under Hb

0 . If H
b
0 is not true, evaluated at X(1) and an

nconsistent estimate of B(1), i.e., B̃(2), Q2 is asymptotically the sum of p dependent non-central χ2 random variables that
an be much larger than what is expected under Hb

0 .
In conclusion, Q2 can distinguish between Hb

0 : B(1)
= B(2) and Hb

1 : B(1)
̸= B(2), with a larger value of Q2 suggesting

ore evidence supporting Hb
1 , despite how the two graph structures compare. In Fig. 2, the topological ordering produced

uring the graph estimation procedures, T̂1, will be needed for estimating the null distributions of these test statistics, as
laborated in the next section.

. Bootstrap procedures

The distributions of Q1 and Q2 defined in Section 4 under Ha
0 or Hb

0 are intractable due to the complicated correlation
etween the p quadratic forms as the summands of these test statistics. In this section, we develop bootstrap procedures,
ollowing the idea of wild bootstrap (Wu, 1986) and pairs bootstrap (Freedman et al., 1981), to estimate the null
istributions of the proposed test statistics.

.1. Wild bootstrap for Q1 and Q2

As a parametric bootstrap strategy, wild bootstrap is widely applicable in regression settings. All existing variants
f wild bootstrap procedures involve repeatedly generating residuals under certain parametric model assumptions. In
he context of graph estimation, where a Gaussian Bayesian network is decomposed into p correlated regression models
n (1), we develop wild bootstrap procedures to generate bootstrap analogues of the proposed test statistics under a
ull hypothesis. Because each test statistic is the sum of correlated quadratic functions, we use a gamma distribution
o approximate the null distribution of a proposed test statistic, which is supported by empirical evidence presented in
ection 6 (see Figs. 4 and 5).
Fig. 3-(a) demonstrates such a wild bootstrap procedure for generating one copy of Q1 in the bootstrap world, denoted

y Q̃1,m. This procedure is repeated M times, yielding {Q̃1,m}
M
m=1. We then estimate the shape and scale parameters of a

amma distribution via the method of moments using the sample mean and sample variance of {Q̃1,m}
M
m=1. An estimated

-value associated with Q1 is defined as the probability that a random variable following this estimated gamma
istribution exceeds Q1.
A few remarks about this wild bootstrap procedure are in order. First, when raw data are from a designed experiment,

he bootstrap data X̃(2)
m keep the original interventional data from X(2). This is in the same spirit as using the same

esign matrix when generating bootstrap response data in the regression setting according to wild bootstrap. Second,
bservational data associated with different nodes are generated following the ordering of these nodes specified by
1̂. This shares the same rationale as generating bootstrap time series data recursively following the ordering in time.
hird, X̃(2)

m keeps the same data from X(2) for root nodes. This is because root node data are equivalent to data at the
nitial time point in time series, which are kept unchanged and used to start the recursion for generating bootstrap
ime series data. Finally, when generating the observational data in X̃(2)

m associated with node T̂1,j, the model errors,
∗

2,T̂1,j
, are generated from N(0, σ̂ 2

2,T̂1,j
), where σ̂ 2

2,T̂1,j
is the sample variance of n

−2,T̂1,j
residuals in {X(2)

[ℓ, T̂1,j] −

(2)
[ℓ, −T̂1,j]B̃

(2)
T̂1,j

T̂1,j}ℓ∈O2,T̂1,j
. Here, we use T̂1,j to refer to the jth node in the sorted sequence of nodes according to T̂1,

or j = 1, . . . , p.
Because the observational data in X̃(2)

m are regenerated using B̃(2), along with the root node data and the interventional
ata (when they exist) in X(2), X̃(2)

m can be viewed as a bootstrap analogue of X(2) provided that Ĝ1 is a consistent estimate
f G2, which is the case under Ha

0 : G1 = G2. Consequently, under Ha
0 , Q̃1,m is a bootstrap analogue of Q1 even if B(1)

̸= B(2).
Fig. 3-(b) depicts a similar wild bootstrap procedure for generating a bootstrap copy of Q2, denoted by Q̃2,m, for

= 1, . . . ,M . An estimated p-value associated with Q2 is similarly obtained as described for Q1.

6
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Fig. 3. Wild bootstrap procedures that generate an analogue of Q1 under Ha
0 : G1 = G2 , and an analogue of Q2 under Hb

0 : B(1)
= B(2) . Given the

topological ordering T̂1 , T̂1,j refers to the jth node in the ordering.

5.2. Pairs bootstrap for Q2

Pairs bootstrap is a nonparametric resampling strategy that does not require regenerating data based on certain
parametric model assumptions. The data generating scheme is to sample response data and covariates data together in
pairs. Besides simplicity, one motivation of this scheme is to preserve the correlation between the response and covariates
in the bootstrap data. A criticism of this scheme is that the designed matrix (based on the sampled covariate data) differs
from bootstrap sample to bootstrap sample, which is not appealing when one aims to infer the distribution of a response
conditioning on the original design matrix. Because of this criticism, some believe that pairs bootstrap is less suitable for
inferring the conditional distribution of a response given covariates, and more adequate for drawing inference for the joint
distribution of them. We are less concerned about this criticism because, for the purpose of comparing two networks, we
need to infer the joint distribution of p nodes, even though we decompose a network into p regression models, each of
which specifies a conditional distribution of one node given the rest.
7



X. Huang and H. Zhang Computational Statistics and Data Analysis 159 (2021) 107209
Fig. 4. QQ plots of Q2 from 300 Monte Carlo replicates generated according to a given graph configuration under (I): B(1)
= B(2) .

Fig. 5. QQ plots of Q1 from 300 Monte Carlo replicates generated according to a given graph configuration under (III): B(1)
̸= B(2) and G1 = G2 .

Noting that, under Hb
0 : B(1)

= B(2), the data generating process leading to X(1) is the same as that producing X(2),
we propose a pairs bootstrap procedure to approximate the distribution of Q2 under Hb

0 that involves sampling from
the (N1 + N2) × p combined data matrix defined as Xc = X(1)

∪ X(2). If data are from observational studies, we simply
8
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randomly permute N1 + N2 rows of Xc in each round of bootstrap indexed by m ∈ {1, . . . ,M}, and then use the first N1

rows of the resultant combined data matrix to be a bootstrap version of X(1), denoted by X̃(1)
m , and use the remaining N2

ows to be X̃(2)
m , a bootstrap version of X(2). If data are from designed experiments, we first permute n1j + n2j rows within

c[Ic,j, ] = X(1)
[I1j, ] ∪ X(2)

[I2j, ], for j = 1, . . . , p. After permuting within each block of interventional data across p
locks of Xc , we extract the first n1j rows in Xc[Ic,j, ] to form the rows of X̃(1)

m , and use the remaining n2j rows in the
ame block of the permuted combined data to form rows in X̃(2)

m , for j = 1, . . . , p.
Once the pairs bootstrap data sets, X̃(1)

m and X̃(2)
m , are generated, we use X̃(2)

m to estimate regression coefficients assuming
he structure of Ĝ1 to obtain unpenalized estimates of B, denoted by B̃(2)

m . Lastly, evaluating at X̃(1)
m and this B̃(2)

m yields a
ootstrap version of Q2 under Hb

0 . In this pairs bootstrap procedure designed for the scenario where data are from designed
xperiments, the resampling following permutation is implemented within each experimental condition to preserve the
riginal mixed structure of observational data and interventional data. It is worth pointing out that X̃(2)

m obtained from the
bove pairs bootstrap procedures will not be a sensible analogue of X(2) if Ha

0 is true but Hb
0 is not; and thus this procedure

annot be used or easily revised to create a bootstrap analogue of Q1. Indeed, creating pairs bootstrap data under Ha
0 while

llowing the possibility that Hb
0 is false is much more challenging than creating pairs bootstrap data under Hb

0 . We do not
ursue this for Q1 further in the current study.

.3. Calibration

In assessing the quality of moments estimation for the test statistics in empirical studies, we observe (often severe)
nderestimation of the variance and (usually mild) underestimation of the mean. These underestimations lead to an
nflated size of some tests. The inflation is more noticeable when experimental data are used for inference than when only
bservational data are available. When it comes to Q2, the inflation of Type I error is more substantial in the wild bootstrap
rocedure than in the pairs bootstrap procedure. We conjecture that the phenomenon can be partly explained by reusing

ˆ 1 in all bootstrap samples, and in part due to possible underestimation of error variances σ̂ 2
k,T̂1,j

. Re-estimating the graph

tructure each time new bootstrap data are generated is time-consuming and does not effectively correct the problem,
either does inflating the error variance estimates. We propose to correct for this problem by making two changes in the
ild bootstrap procedures depicted in Fig. 3, and similar changes in the pairs bootstrap procedure.
The first change is made to alleviate the concern of reusing Ĝ1 in all bootstrap samples, without adding too much

omputational burden. Recall that one needs to choose a tuning parameter λ in Step 2 of the parent selection algorithm
n Section 3.1. More specifically, we choose λ from a geometric sequence of K candidate values, λmax > qλmax > q2λmax >
· · > qK−1K-1λmax, starting from λmax that leads to a nearly empty graph, then gradually dropping the penalty with
∈ (0, 1) such that qK−1K-1λmax gives a fairly dense graph. Suppose λ∗ is the chosen tuning parameter based on SIC
sing data X(1). After a bootstrap analogue of X(1) of the same size, i.e., X̃(1)

m , is generated, we re-estimate G1 using a tuning
arameter equal to λ∗/qr1 , where r1 is a pre-specified non-negative integer (to be explained next). In other words, G1 is
e-estimated based on X̃(1)

m using a pre-specified value of λ that is no smaller than λ∗. This avoids the most time-consuming
art of graphical structure learning, which is the tuning parameter selection. Denote by Ĝ1,m the resultant estimate of G1.
hen the bootstrap versions of the test statistics, that is, Q̃1,m and Q̃2,m, are computed assuming the structure of Ĝ1,m.
hese modified bootstrap versions of test statistics yield much improved mean estimation and slightly improved variance
stimation.
The second change is made in the bootstrap sample size in order to further improve the variance estimation of a

est statistic. Take the wild bootstrap procedure for Q1 based on experimental data as an example. Besides the bootstrap
rocedure depicted in Fig. 3-(a) but with the added step of obtaining Ĝ1,m after X̃(1)

m is generated, we repeat this entire
ild bootstrap procedure using a subset of X(2), denoted by X(2)

∗ , that consists of n∗

2j = max(⌊r2n2j⌋, 3) rows randomly
elected from X(2)

[I2j, ], for j = 1, . . . , p, where r2 ∈ (0, 1) is a pre-specified quantity to be tuned via simulated data (to
e explained next). Denote by Q̃ ∗

1,m the counterpart of Q̃1,m resulting from applying the bootstrap procedure in Fig. 3-(a)
o X(2)

∗ . We then use the sample mean of {Q̃1,m}
M
m=1 and the sample variance of {Q̃ ∗

1,m}
M
m=1 as the two moments in the

ethod of moments for estimating a gamma distribution as the null distribution of Q1. When only observational data are
vailable, we choose ⌊r2Nk⌋ rows of X(k) randomly to create a subsample X(k)

∗ to begin a bootstrap procedure, for k = 1, 2.
hao (1996) and references therein discussed the idea of using a smaller sample size in bootstrap as a remedy when the
egular bootstrap procedure (with the bootstrap sample size equal to the original sample size) performs unsatisfactorily
n the context of model selection. As pointed out in these earlier works, a major hurdle in this remedy is that how much
maller the bootstrap sample size should go, determined by r2, depends on unknown true model settings. We face a similar
uestion relating to the first change above, that is, the amount of stepping-up from λ∗ to λ∗/qr1 when re-estimating G1
ased on bootstrap data, determined by r1. In what follows, we provide a simulation-based calibration method to choose
1 and r2.

After obtaining Ĝ1 and B̃(1) based on X(1), we treat the estimated model as the true model shared by the two populations.
hen, at a chosen combination of (r1, r2), for d = 1, . . . ,D, we generate two samples, X(1)

d and X(2)
d , according to this

ssumed ‘‘true" model, where X(k)
d is of the same size and structure as those of X(k), for k = 1, 2. A proposed testing

(1) (2)
rocedure is carried out based on Xd and Xd , reaching to a conclusion of rejecting or failing to reject a null hypothesis,

9
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for d = 1, . . . ,D, which gives an empirical size of a proposed test. We then choose (r1, r2) so that this empirical size
across D simulated pairs of samples is slightly below the nominal Type I error. For one data application, this calibration
procedure that involves trial-and-error can be implemented very quickly by using a moderate D (e.g, D = 100); and an
unsatisfactory attempt/guess (for values of r1 and r2) typically offers good clues leading to a more satisfactory outcome
in a small number of trials. Aiming at an empirical size slightly lower than the nominal level is to avoid an inflated Type
I error when using the final chosen (r1, r2) to the original data, X(1) and X(2), for a testing procedure.

To improve the stability of the calibration procedure and avoid an overly conservative choice of (r1, r2), we recommend
sing the sample that has richer information for graphical structure learning to obtain an estimated graph. In our notations,
his means that, when two samples are of different sizes, we always refer to the bigger data set as X(1). We implemented
he proposed calibration method in a simulation study, where 300 realizations of pairs of samples (X(1),X(2)) are generated
ccording to each of twenty graphs shared by the two populations. Across all Monte Carlo replicates, at the nominal level
f 0.05, the rejection rate of a testing procedure using the values of (r1, r2) chosen by this calibration method, where we
im at an empirical size of 0.03, is never above 0.05, although 20% of these replicates return a rejection rate below 0.03.

. Numerical study

.1. Simulation settings

In the simulation experiment, we set two levels for the number of nodes in each graph, p = 10 and 20, four levels
for the overall sample sizes N = N1 = N2 = t × p, with t = 5, 10, 15, 20, and two scenarios in regard to whether
or not interventional data are available. In the first scenarios, data are from designed experiments, where the number
of interventional data points per node is nkj = t , for k = 1, 2 and j = 1, . . . , p. In the second scenario, data are
from observational studies and thus no interventional data are available. When creating the underlying graph structures
associated with two populations, G1 and G2, we first randomly create a topological ordering of the p nodes. Then, following
the ordering, we randomly create 2p edges for each acyclic graph, with each node having at most four parents. One only
needs to generate one graph structure in a Monte Carlo replicate when generating data under Ha

0 or Hb
0 .

Once G1 and G2 are created, we generate data according to (1) for each node following the topological ordering. More
specifically, the model errors ϵ

(k)
j are generated from N(0, 1); and, under the first scenario, interventional data associated

with X (k)
j are generated from N(0, 1), independent of model errors, for k = 1, 2 and j = 1, . . . , p. Non-zero entries in B(1)

are generated from uniform(0.5, 2), and we consider three settings for B(2):

(I) B(1)
= B(2), corresponding to Hb

0 that also implies Ha
0 : G1 = G2;

(II) B(2) has non-zero entries generated from uniform(0.5, 2), independent of the random numbers generated for non-zero
entries in B(1), with G1 ̸= G2, which creates a scenario under Ha

1 that also implies Hb
1 ;

(III) non-zero entries in B(2) are generated from uniform(0.5, 2), independent of the random numbers generated for
non-zero entries in B(1), while G1 = G2, corresponding to the scenario where Ha

0 and Hb
1 hold simultaneously.

Fig. 4 provides QQ plots of Q2 based on 300 realizations of Q2 computed using data generated according to a given
graphical configuration under (I). The QQ plots of Q1 collected under the same scenario are similar to those in Fig. 4. Fig. 5
contains QQ plots of Q1 based on 300 data sets generated according to a given network configuration under (III). All QQ
plots suggest that the null distributions of the proposed test statistics can be well approximated by gamma distributions.
Both Figs. 4 and 5 are obtained under the first type of study that produces interventional data besides observational data
for each node. We observe similar QQ plots for the test statistics under Ha

0 and Hb
0 when only observational data are used.

6.2. Simulation results

Under each simulation setting, across 300 Monte Carlo replicates, we monitor how often each test statistic, pairing
with a bootstrap procedure with M = 300, rejects of a null hypothesis at the nominal level of 0.05. Fig. 6 presents these
rejection rates associated with Q1 and Q2 when data are from designed experiments.

As seen in Fig. 6-(a) where Hb
0 is true, the size associated with Q2 is close to or slightly lower than the nominal level.

The lower size can be due to the adjustment in the bootstrap sample size. The testing procedures based on Q2 outperform
that based on Q1 in detecting violation of Ha

0 . Regardless, designed for detecting differences in the graph structure only,
Q1 has a promising power when G1 ̸= G2 as seen in panel (b) of Fig. 6, although its Type I error rate is slightly inflated
when G1 = G2 but B(1)

̸= B(2) as seen in panel (c), especially when the graphs are sparser (with p = 20).
Fig. 7 provides counterpart results when data are from observational studies. In this case, all testing procedures retain

a size close to the nominal level. In both types of study presented in Figs. 6 and 7, all testing procedures have a higher
power to detect violation of a null hypothesis when the graph is sparser. With 2p edges in a graph in the simulation, the
graph with a larger p results in a sparser graph.

Although Q1 and Q2 are designed for testing different null hypotheses, combining inference results from both can shed
more light on the underlying truth. For example, a non-significant Q1 in conjunction with a significant Q2 provide evidence
from data suggesting that the two populations share the same graphical structure, although associations between some
10
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Fig. 6. Rejection rates associated with Q1 and Q2 when p = 10 (upper panels), 20 (lower panels) across 300 Monte Carlo replicates versus the
number of interventional data points per node, nkj , under three settings: (a) B(1)

= B(2) , (b) G1 ̸= G2 , and (c) B(1)
̸= B(2) while G1 = G2 . Each panel

contains three sets of rejection rates as nkj varies: rejection rates of Q1 (solid line), those of Q2 when wild bootstrap is used to estimate the p-value
(dashed line), and those of Q2 when pairs bootstrap is implemented to estimate the p-value (dash-dotted line). The red dotted line in each panel is
the reference line highlighting the nominal level 0.05.

Fig. 7. Rejection rates associated with Q1 and Q2 based on data from observational studies when p = 10 (upper panels), 20 (lower panels) across
00 Monte Carlo replicates versus the sample size N (common between two samples) under three settings: (a) B(1)

= B(2) , (b) G1 ̸= G2 , and
c) B(1)

̸= B(2) while G1 = G2 . Each panel contains three sets of rejection rates as N varies: rejection rates of Q1 (solid line), those of Q2 when wild
ootstrap is used to estimate the p-value (dashed line), and those of Q2 when pairs bootstrap is implemented to estimate the p-value (dash-dotted
ine). The red dotted line in each panel is the reference line highlighting the nominal level 0.05.
11
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Fig. 8. Rejection rates associated with Q1 and Q2 when p = 10 (left panels), 20 (right panels) across 300 Monte Carlo replicates versus the number of
interventional data points per node, nkj , when experimental data are available (upper panels), or versus the sample size N when only observational
ata are available (lower panels) under the true-model configurations where G2 results from randomly deleting 20% of the edges in G1 . Each panel
ontains three sets of rejection rates as nkj or N varies: rejection rates of Q1 (solid line), those of Q2 when wild bootstrap is used to estimate the
-value (dashed line), and those of Q2 when pairs bootstrap is implemented to estimate the p-value (dash-dotted line). The red dotted line in each
anel is the reference line highlighting the nominal level 0.05.

odes can differ in strength or direction between the two populations. One reaches a contradictory conclusion only when
he testing procedures produce a significant Q1 yet a non-significant Q2. Fortunately, this rarely happens according to
our extensive empirical study. In particular, across all ninety six simulation settings presented here (when varying p, the
sample size/structure and true-model configurations), only in nine of them did we observe a relative frequency of reaching
to this contradictory conclusion higher than 5% across 300 Monte Carlo replicates. Among these nine settings, the highest
relative frequency is merely 8.7%.

6.3. Additional results

In Setting (II) described in Section 6.1, we randomly create two graph structures, which usually lead to G1 and G2
very different from each other. Similar to this setting but with less drastically different G1 and G2, we add an additional
simulation where, after generating G1, we create G2 by randomly deleting 20% of the edges in G1. Fig. 8 shows the empirical
power of Q1 and Q2 based on different types of data under this setting. With the two populations differ less dramatically
in their graph structures, Q1 rejects Ha

0 much less frequently than what are observed under (II) in Figs. 6 and 7, even more
so when p is smaller, leading to two structures different in an even smaller number of edges. The empirical power of Q2
is still promising, although also lower than before as one would expect when violation of the null is less severe than that
under (II).

In the algorithm for inferring a Bayesian network described in Section 3.1, we adopt a score-based model selection
method developed in an earlier work (Huang and Zhang, 2013) in Step 2. This method entails selecting parents of one
node at a time. We thus call it the node-wise parent selection (NPS) algorithm. Other model selection methods can be
employed in this step in place of NPS. We conjecture that operating characteristics of Q1 and Q2 should not change too
much when a different model selection algorithm is used there, as long as one follows a consistent model selection.
To confirm this conjecture, we repeated part of the simulation presented in Section 6.2, using the pairwise coordinate
descent algorithm (PCD) proposed by Fu and Zhou (2013) in Step 2. Fig. 9 summarizes operating characteristics of the
proposed testing procedures observed in this repeated experiment when p = 10 based on experimental data. For ease of
comparison, we duplicate in Fig. 9 the top panel of Fig. 6, which are for results under the same setting but NPS is used
for network estimation.

These results confirm our conjecture that using a different consistent model selection method does not alter too much
the phenomena observed in Section 6.2. It is only under Setting (III) one sees substantial discrepancy in the power of Q
2

12
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Fig. 9. Rejection rates associated with Q1 and Q2 when p = 10 with Ĝ1 obtained via NPS (upper panels) and those via PCD (lower panels) across
300 Monte Carlo replicates versus the number of interventional data points per node, nkj , under three settings: (a) B(1)

= B(2) , (b) G1 ̸= G2 , and
(c) B(1)

̸= B(2) while G1 = G2 . Each panel contains three sets of rejection rates as nkj varies: rejection rates of Q1 (solid line), those of Q2 when wild
bootstrap is used to estimate the p-value (dashed line), and those of Q2 when pairs bootstrap is implemented to estimate the p-value (dash-dotted
line). The red dotted line in each panel is the reference line highlighting the nominal level 0.05.

when the wild bootstrap is used to estimate its p-value. We believe that this big gap can be mostly explained by different
amounts of calibration in the wild bootstrap. If an inconsistent model selection method is used, leading to an inaccurate
Ĝ1, the calibration procedure can still guard against size inflation of a test by design. However, the amount of calibration
needed to avoid an inflated Type I error will result in a substantial loss of power to reject a null hypothesis.

Lastly, a referee suggested yet another sensible test statistic for testing Hb
0 given by

Q̃2 =

p∑
j=1

⎧⎨⎩n−1
−2j

∑
ℓ∈O2j

Ψjℓ(B̃
(1)
j )

⎫⎬⎭
T {

H̃∗

j (B̃
(1)
j )

}−1

⎧⎨⎩n−1
−2j

∑
ℓ∈O2j

Ψjℓ(B̃
(1)
j )

⎫⎬⎭ ,

where H̃∗

j (B̃
(1)
j ) = n−1

−2j
∑

ℓ∈O2j
Ψjℓ(B̃

(1)
j )Ψjℓ(B̃

(1)
j )T, in which Ψjℓ(B̃

(1)
j ) is the normal score evaluated at B̃(1)

j and X(2)
[ℓ, ], and

B̃(1)
j is unpenalized estimate of B assuming the structure of Ĝ1. The wild bootstrap and pair bootstrap procedure developed

in Section 5 can be easily revised to approximate p-values associated with Q̃2. To better contrast Q̃2 with Q2, we re-express
Q̃2 as Q̃2(Ĝ1, B̃(1),X(2)), and write Q2 defined in as Q2(Ĝ1, B̃(2),X(1)). Now one can see that Q̃2 differs from Q2 first in that it
involves estimating B(1) while assuming the structure of Ĝ1, whereas Q2 requires estimating B(2) assuming the structure of
Ĝ1. If G1 = G2, then Ĝ1 also serves as an estimate for G2, and thus this first difference is not expected to cause noticeable
discrepancy between Q̃2 and Q2. If G1 ̸= G2, by estimating B(2) assuming a misleading estimated structure specified by
Ĝ1, Q2 has the potential to magnify the disagreement between two samples when evaluating it at B̃(2) and X(1).

Under simulation settings described in Section 6.1, we compare in Fig. 10 empirical power of Q̃2 with that of Q2 when
p = 10 based on experimental data. Although both are sensible test statistics for testing Hb

0 , Q2 is at least as powerful as
Q̃2 in the presence of either form of deviation from the null.

7. Real-life data applications

In this section we entertain data examples originating from two applications to test differential Bayesian networks
between two populations.

Example 1 (Flow Cytometry). In this example, we consider a flow cytometry data set consisting of p = 11 phos-
phomolecular measurements from each of 7466 human immune system cells collected in an experiment described
13
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n

Fig. 10. Rejection rates associated with Q2 and Q̃2 when p = 10 across 300 Monte Carlo replicates versus the number of interventional data points
per node, nkj , under three settings: (a) B(1)

= B(2) , (b) G1 ̸= G2 , and (c) B(1)
̸= B(2) while G1 = G2 . Each panel contains four sets of rejection rates as

kj varies: rejection rates of Q2 when wild bootstrap is used to estimate the p-value (dashed line), those of Q2 when pairs bootstrap is implemented
to estimate the p-value (dash-dotted line), and the counterpart rejection rates of Q̃2 depicted using blue lines of the same line types as above that
run through solid triangles. The red dotted line in each panel is the reference line highlighting the nominal level 0.05. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The estimated graph structures based on the two data sets obtained from (nearly) equal split of data within each experimental condition
across the nine conditions that yield the flow cytometry data.

in Sachs et al. (2005). In this experiment, a series of stimulatory cues and inhibitory interventions were imposed to
create nine experimental conditions described in Table 1 in Sachs et al. (2005), under which experimental data for the
eleven phosphorylated proteins and phospholipids are collected. Fu and Zhou (2013) applied a likelihood-based penalized
estimation method on the entire data set to infer one directed signaling network. Peterson et al. (2015) viewed this data
set consisting of nine samples coming from nine populations, treating data from one experimental condition as a sample
from one population, and inferred one undirected graph using each of the nine samples.

To illustrate an application of the testing procedures in a scenario under the null, we randomly split the data collected
under each experimental condition into two halves of equal or nearly equal size, then half of data under each condition
goes in X(1) and the other half contributes to X(2). This produces two data sets, each of size N1 = N2 = 3733, which can be
reasonably assumed to arise from some common underlying populations, creating a scenario under Hb

0 : B(1)
= B(2). Based

on Q1 computed from the so-obtained two samples, and using the wild bootstrap procedure proposed in Section 5.1 for
experimental data, we fail to reject Ha

0 : G1 = G2 with an estimated p-value of 0.991 using 300 bootstrap samples. We also
computed Q2, and applied the wild bootstrap and the pairs bootstrap to estimate its null distribution, and fail to reject Hb

0 ,
with estimated p-values being 0.964 and 0.120, respectively. The fact that Q2 fails to reject Hb

0 can also be interpreted as
data evidence in favor of Ha

0 since B(1)
= B(2) implies G1 = G2. Fig. 11 presents the two estimated graph structures. Even

though the graph in the right panel, Ĝ2, is denser than the one in the left panel, Ĝ1, the additional edges in Ĝ2 are much
less significant than other edges that also exist in Ĝ1. In particular, among the fifteen edges in Ĝ2 but not in Ĝ1, eleven
of them correspond to estimated regression coefficients whose p-values are above 10−2. All but three edges in Ĝ1 have
p-values below 10−4, so are most edges in Ĝ2 that are also in Ĝ1. This can be where the tuning parameter chosen based
on X(2) is not large enough to lead to a more parsimonious model. Despite these discrepancies in the selected models
based on X(1) and X(2), the proposed testing procedures are able to take into account the uncertainty in graph estimation
and lead to the correct conclusion that the current Bayesian network of eleven nodes is not differential between the two
(made-up) populations.

Example 2 (Bile Acids). There have been increasing evidence suggesting that biodirectional biochemical communication
between the brain and the gut contributes to a variety of neurodegenerative diseases, such as Alzheimer’s disease
14
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Fig. 12. The estimated network based on bile acids data from cognitively normal subjects (on the left) and the one based on data from subjects
ith Alzheimer’s disease (on the right). Edges in the AD graph that are also in the CN graph are highlighted in blue. The edge in the AD graph of
hich the estimated regression coefficient is of the opposite sign as the counterpart estimated regression coefficient in the CD graph is highlighted

n red (pointing from CDCA to GLCA). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

AD) (Mohajeri et al., 2018; Ambrosini et al., 2019; Ma et al., 2019; Mahmoudian Dehkordi et al., 2019). In this example,
e analyze levels of p = 10 primary bile acids in human serum samples of two groups of individuals who were recruited

in Alzheimer’s Disease Neuroimaging Initiative (http://adni.loni.usc.edu) Phase 2 study. The two samples used to infer the
two Bayesian networks of the ten bile acids are a sample of N1 = 182 cognitively normal (CN) subjects and a sample
f N2 = 132 AD subjects, respectively. The goal is to test, using data from an observational study, whether or not the
ayesian network of these ten bile acids is differential between the CN population and the AD population.

Applying the graph estimation algorithm in Section 3 to each of the two samples gives the two estimated graphs
hown in Fig. 12. We then computed Q1 and Q2 and estimated their p-values, obtaining estimated p-values of 0.390
or Q1 and 0.032 for Q2 when using the pairs bootstrap. We interpret these as evidence for potentially similar graph
tructures between the two networks but more substantial difference in associations between some bile acids across
he two populations. Looking more closely at the two estimated networks in Fig. 12, one can see that two graphs are
imilar in structure, sharing many common directed edges. In particular, the two graphs have the same edges connecting
CA, GDCA, and TDCA, and the corresponding estimated regression coefficients are of the same sign in B̂(1) and B̂(2).
hese three bile acids are among the key members along the bile acids metabolism primary pathway (see, e.g., Figure
in Mahmoudian Dehkordi et al., 2019). In contrast, the two graphs show different patterns of connections between
DCD, GLCA, and TLCA, the three bile acids in the alternative pathway of metabolism. These connected edges are either of
pposite directions (e.g., the edge connecting GLCA and TLCA) between the two graphs, or the corresponding estimated
egression coefficients are of opposite signs (for the edge pointing from CDCA to GLCA).

These statistical evidence suggest that the overall signaling pattern and functionality of the bile acids may be similar
etween the CN population and AD population, especially when the primary pathway of metabolism is concerned. But the
trength and direction of associations of bile acids along the alternative pathway may be altered due to AD, even though
he alternation is not significant enough to create an overall discrepancy in the two graph structures to be detected by
1.

. Discussion

Aiming to compare two Bayesian networks using data either from observational studies or designed experiments,
e propose two test statistics based on quadratic inference functions associated with the normal score function. The

irst proposed test statistic Q1 can tell apart two structurally different networks, and does not distinguish between
two networks of the same structure with different strengths of associations between nodes across two populations.
Consequently, the proposed testing procedure based on Q1 can be useful when connectivity between nodes is the focal
point of a study. The second proposed test statistic, Q2, serves as a sensitive indicator of the difference between the two
networks, whether the difference lies in the structure or the strength of association, or in both regards. An appealing
feature of Q1 and Q2 is that one only needs to estimate one graph structure G1 to compute them, and thus bypasses the
aunting task of learning multiple graph structures. Because this graph structure learning is the first step of the testing
rocedures, it is recommended to set the sample that contains richer information for structure learning to be X(1). This is
onsistent with the recommendation given in the calibration method in Section 5.3.
Motivated by a referee’s question relating to which sample is viewed as X(1) in our notations, we envision alternative

est statistics. Take testing Ha
0 as an example which is based on Q1. After one computes Q1 based on a given ordering

in terms of which sample is referred to X(1) and which is called X(2)), one flips the ordering and computes Q1 again.
hen one uses a weighted average of these two versions of Q1 to test Ha

0 . With an adequate choice of the weights, this
trategy can yield a statistic closer to a distance measure between two graphs that is invariant to which sample is viewed
15
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as X(1). Bootstrap procedures for estimating the null distributions of the so-constructed test statistics require more careful
development though.

Thanks to the regression framework employed in this line of study, we believe that these testing procedures can
e easily generalized to test differential non-Gaussian Bayesian networks, where regression models with non-Gaussian
odel errors are used to characterize a Bayesian network. Moreover, other score functions adapted to a regression
etting can be adopted in place of the normal score function to construct new test statistics based on quadratic inference
unctions that are robust to normality assumption or other parametric assumptions imposed on a Bayesian network. On
he computational side, the current test statistics can be easily computed for networks with a small or moderate number
f nodes p, but the computation can be challenging when p is large due to their dependence on the inverse of a p × p

matrix. To develop new testing procedures that are more scalable for large graphs is among our follow-up research goals.
Besides allowing a larger p, another future research direction is to consider more than two populations, say, K (> 2)

f them. Even though in this case one may carry out pairwise comparison based on the current testing procedures, one
eeds to adjust for multiple testing, which is not always trivial. Adopting notations introduced in Section 6.3, for testing
b
0 : B(1)

= · · · = B(K ), a sensible test statistic can be in the form of max1≤k≤K Q2,k(Ĝc, B̂c,X(k)), where X(k) is the sample
rom population k, for k = 1, . . . , K , Ĝc and B̂c are the estimated graph structure and regression coefficients matrix
btained using information from all K samples, assuming the null is true. The first challenge in this line of development
s to obtain sensible Ĝc and B̂c .

Even though the proposed tests are expected to distinguish between two equivalent classes of networks, as opposed to
wo networks, when only observational data are available, we did not always observe in the simulation study compromise
n power of the proposed testing procedures when applied to observational data only. Operating characteristics of these
ests based on data that present network identifiability complications deserve more systematic investigation. When
ome causal relationships can be identified owing to certain designs of interventions, new test statistics that incorporate
nference for causality can lead to more powerful tests. The current tests are developed by considering inference for
ssociation but not causality. When a null hypothesis is rejected by them, a natural follow-up task is to zoom in on a
mall collection of nodes between which causality relationships have high power to differentiate two populations. We
ave started tackling this problem borrowing ideas relating to causal inference in Peters et al. (2016).
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