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A multipredictor model to predict the conversion of mild
cognitive impairment to Alzheimer’s disease by using a
predictive nomogram
Kexin Huang1, Yanyan Lin1, Lifeng Yang1, Yubo Wang1, Suping Cai1, Liaojun Pang1, Xiaoming Wu2 and
Liyu Huang1 for the Alzheimer’s Disease Neuroimaging Initiative

Predicting the probability of converting from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) is still a challenging task.
This study aims at providing a personalized MCI-to-AD conversion estimation by using a multipredictor nomogram that integrates
neuroimaging features, cerebrospinal fluid (CSF) biomarker, and clinical assessments. To do so, 290 MCI patients were collected
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), of whom 76 has converted to AD and 214 remained with MCI. All
subjects were randomly divided into a primary and validation cohort. Radiomics signature (Rad-sig) was obtained based on 17
cerebral cortex features selected by using Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Clinical factors and
amyloid-beta peptide (Aβ) concentration were selected by using Spearman correlation between the converted and not-converted
patients. Then, a nomogram that combines image features, clinical factor, and Aβ concentration was constructed and validated.
Furthermore, we explored the associations between various predictors from the macro- to the microperspective by assessing gene
expression patterns. Our results showed that the multipredictor nomogram (C-index 0.978 and 0.956 in both cohorts, respectively)
outperformed the nomogram using either Rad-sig or Aβ concentration as individual predictors. Significant associations were found
between neuropsychological scores, cerebral cortex features, Aβ levels, and underlying gene pathways. Our study may have a
clinical impact as a powerful predictive tool for predicting the conversion probability of MCI and providing associations between
cognitive impairment, structural changes, Aβ levels, and underlying biological patterns from the macro- to the microperspective.
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INTRODUCTION
Alzheimer’s disease (AD) remains an irreversible neurodegenera-
tive condition characterized by progressive cognitive and memory
impairments, which have a vicious influence on an individual’s
daily life and the social healthcare system [1]. Since current drug
therapies cannot directly prevent the progression of AD, more
hope has been placed on early prediction of AD [2]. Related to
this, mild cognitive impairment (MCI), which is usually regarded as
an intermediate stage between normal aging and AD, is a
potential target for predicting individuals at risk of developing AD
[3]. Moreover, studies have shown that treatment decisions would
greatly benefit from early diagnosis, which may delay the
progression of AD [4–7]. Therefore, accurately predicting and
identifying the probability of deterioration in MCI patients is a
pressing need.
Several potential biomarkers have been identified as useful

predictors for early AD prediction, such as structural brain
changes, disrupted functional connectivity, and tau protein and
amyloid-beta plaque accumulation [8–11]. However, these bio-
markers often focus on one or several different aspects of AD

progression, and few studies have attempted to explore the
power of combining predictors from different aspects, which may
provide more precise information about risk assessment.
Hence, a simple, accurate, and reliable method to assist in

clinical prediction that considers several risk factors is needed to
refine the prognosis of patients with AD progression. Nomograms,
an emerging method for the support of precise clinical decisions,
combines several indicators rather than an analysis of individual
factors based on multivariable logistic analysis [12–14]. Moreover,
nomograms can predict individualized specific risk for each
patient [15]. In this study, we aimed to (1) select significant
predictors from structure imaging findings, cerebrospinal fluid
(CSF) markers, and clinical pathology using different strategies; (2)
build a multipredictor nomogram in a primary cohort; and (3)
validate the predictive power of the nomogram in an independent
cohort.
In addition, we noted that there may be associations that link

these predictors from the macro- to the microperspective, and
underlying biological patterns such as gene pathways might
reflect potential pathological information at the microlevel in AD
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progression. We explored the associations between these
predictors by adding gene expression patterns. We expect this
research to provide a powerful predictive tool for predicting the
conversion probability of MCI to AD and to provide new
information on manifestation-to-molecular associations in
neurodegeneration.

MATERIALS AND METHODS
Participants
All data were obtained from the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) database, including ADNI-1, ADNI-GO, and
ADNI-2 studies (http://adni.loni.usc.edu/). MCI patients with a
follow-up period of at least 6 months were considered eligible for
this study. Furthermore, we restrict our selection to the MCI
patients with a complete 3T magnetic resonance image (MRI) scan
and related neuropsychological assessments. The selected
patients were divided into two groups based on their Clinical
Dementia Rating (CDR) scores: converters (MCI_C), whose first
diagnosis of MCI (baseline CDR= 0.5) changed to AD (final CDR=
1) at the latest diagnosis, and nonconverters (MCI_NC), whose
diagnoses did not change and the CDR scores remained as 0.5 at
the latest diagnosis. Totally, we have selected 290 MCI patients.
Among them, 76 patients had converted to AD, and other 214
patients remained at MCI at their last entry. Two-thirds of all
patients (50 MCI_C patients and 141 MCI_NC patients in the
primary cohort) were used for feature selection and nomogram
training. The remaining one-third of the patients, including 26
MCI_C patients and 73 MCI_NC patients were used for validating
the selected features and nomogram as validation cohort.

Image acquisition
In this study, standard T1-weighted anatomical imaging was
obtained by volumetric three-dimensional magnetization-pre-
pared rapid gradient-echo (3D-MPRAGE) or equivalent protocols
with slightly different resolutions across patients. Only 3 T MRI
images were utilized in the validation cohort to remain consistent
with the primary cohort. The detailed imaging protocols are
provided at ADNI website (http://adni.loni.usc.edu/methods/
documents/).

Data preprocessing and image feature extraction
The preprocessing and feature extraction processes were con-
ducted by Freesurfer (http://surfer.nmr.mgh.harvard.edu/). Free-
surfer is a software package for the analysis and visualization of
structural MRI images that we used to extract cortical features in
this study. Preprocessing included the following: motion correc-
tion, skull stripping, coordinate transformation, gray–white matter
segmentation, reconstruction of cortical surface models, region
labeling, registration, and statistical analysis [16–19]. This process
was conducted with the “recon-all” script, and all settings were
held at the default values.

Image feature selection and radiomics signature construction
The image features were selected using a radiomics strategy. The
term radiomics has recently attracted increased discussion in
medical imaging research and refers to transforming medical
images into high-dimensional data and extracting significant
features by data-characterization algorithms. Advances in these
machine-learning methods have facilitated the development of
medical data mining, enabling personalized predictions, and
improving predictive accuracy. In our study, the Least Absolute
Shrinkage and Selection Operator (LASSO) method was conducted
to select significant features from Freesurfer between MCI_C and
MCI_NC patients in the primary cohort. LASSO is a robust method
that is especially suitable for the regression of high-dimensional
features in a radiomics strategy. The radiomics signature (Rad-sig),
which was defined as a linear combination of the selected

significant features with their weighted coefficients provided by
LASSO, was regarded as a predictor of structural brain changes.

Assessment and validation of the radiomics signature
The support vector machine (SVM) was used prior to nomogram
construction to validate the effectiveness of selected image
features based on Rad-sig. In particular, tenfold cross-validation,
which was applied on the primary cohort, can provide a reliable
estimation of the usefulness of the Rad-sig feature. Accuracy and
the receiver-operating characteristic (ROC) curve were used to
represent the performance of the selected features. We calculated
the average accuracy and ROC after tenfold cross-validation as the
measure of performance in the primary cohort. Then, we validated
the feature performance in the validation cohort.

Collection and selection of clinical and CSF indicators
Clinical indicators, including demographic information and
neuropsychological scale scores, were obtained from the ADNI
assessment files (http://ida.loni.usc.edu/pages/access/studyData.
jsp?categoryId=12). The demographic information included age,
sex, and education level for all patients. Furthermore, we collected
the scores from six neuropsychological scales, including the
Functional Activities Questionnaire (FAQ), the Alzheimer’s Disease
Assessment Scale (ADAS, both 13 and 11 questionnaires), the
Mini-Mental State Examination (MMSE), the Neuropsychiatric
Inventory Questionnaire (NPI-Q), and the Geriatric Depression
Scale (GDS), as candidate clinical predictors [20–24].
The CSF indicators collected from the ADNI database were the

concentrations of the amyloid-beta peptides (Aβ) in CSF aliquot
samples, which were analyzed by 2D-UPLC-tandem mass spectro-
metry in the UPenn ADNI Biomarker Core laboratory (https://ida.
loni.usc.edu/pages/access/studyData.jsp?categoryId=
11&subCategoryId=33). Aβ, which has been recently considered
as one of the core neurobiological factors in AD progression [25].
2D-UPLC-tandem mass spectrometry is a reliable method that can
provide accurate results for peptide levels [26]. Each value for a
patient was the average of analyses of duplicate 0.1 -mL aliquots
from each CSF sample.
Statistical analyses were conducted for both the clinical and CSF

indicators. In this study, we calculated Spearman correlation of the
scores or concentrations between the patient status (converted=
1, stable= 0) to select the predictors that were most relevant to
MCI conversion.

Development and assessment of a multipredictor nomogram
A nomogram is a graphical calculating device, a two-dimensional
diagram designed to allow the approximate graphical computa-
tion of a mathematical function. A multipredictor nomogram
could visualize the results of logistic regression or cox regression
with several predictors. For each patient, it calculates a total score
by summing up all scores of predictors, and obtain the probability
of occurrence of each patient event by a conversion function
between the score and the probability. In this study, the calculated
Rad-sig, selected clinical measures, and CSF biomarkers were
separately entered into the nomogram as individual predictor.
Then, we combined those predictors to built a multipredictor
nomogram.
We used the primary cohort to construct the nomogram and

used the validation cohort to assess the performance of the
constructed predictive nomogram. To obtain a more reliable
model, bootstrapping validation with 1000 resampling was
conducted to overcome the overfitting problem. The predictive
power was measured by the concordance index (C-index),
which ranges from 0.5 to 1. A higher value represents a higher
predictive accuracy [27]. The calibration curve provided a
comparison between the expected and observed conversion
probabilities. The whole process was performed in R 3.3.2 (http://
www.r-project.org/).
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Association analysis of predictors from macro- to microperspective
To explore the causal synergy in the pathophysiology, we
calculated Spearman correlations with SPSS 23.0. The FAQ score,
which usually reflects disease degree and clinical manifestations of
the patients, may be associated with changes in the cerebral
cortex. The abnormal Aβ concentration may be one of the factors
causing structural changes. To further analyze the underlying
genetic mechanisms that may be associated with the concentra-
tion of Aβ, we added RNA gene expression data (http://ida.loni.
usc.edu/pages/access/geneticData.jsp) into the chain of associa-
tion. The gene expression profile for 49,395 gene transcripts was
analyzed on Affymetrix chips and obtained from the ADNI
database. Differential expression analysis and enrichment analysis
between MCI_C and MCI_NC patients were conducted by the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) v6.8 (https://david.ncifcrf.gov/) to enrich the significant
biological pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database. In this study, we summed the
expression values of the differentially expressed genes in a

significant pathway and defined this value as the pathway
expression indicator. Then, we identified associations between
underlying gene pathways and Aβ concentrations. Figure 1a
shows the prediction process of this study, while Fig. 1b shows the
process of the association analysis.

RESULTS
Demographic and clinical characteristics
As shown in Table 1, data from a total of 290 MCI patients were
collected from the ADNI database, including 76 MCI converters
(MCI_C) and 214 MCI nonconverters (MCI_ NC). We randomly
divided them into the primary cohort (n= 191) and validation
cohort (n= 99). The average age of the patients was 72.53 years in
the primary cohort, and 71.73 years in the validation cohort. The
overall percentage of men was 55.5% (161 of 290). The average
education level of all patients was 16.11 years. There were no
significant differences between the MCI_C and MCI_NC in age and
education level in either the primary or validation cohorts.

Fig. 1 The flow diagram for the whole study process. a The construction of nomogram. b Association analysis of predictors by adding gene
expression patterns
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The concentrations of Aβ peptides in CSF and neuropsycholo-
gical scale scores are also shown in Table 1. Levels of three Aβ
peptides, including Aβ1–42, Aβ1–40, and Aβ1–38, which have been
indicated to be related to AD, were provided by the UPenn
laboratory. However, only Aβ1–42 showed a significant difference
between the MCI_C and MCI_NC groups according to Student’s t
test. All neuropsychological scale scores showed significant
differences between the two groups (P < 0.05).

Extraction of image feature and construction of the radiomics
signature
Image features were extracted by Freesurfer, which is a tool that
can calculate cortical indicators, including average thickness,
standard deviation of thickness, integrated rectified Gaussian
curvature, integrated rectified mean curvature, intrinsic curvature
index, folding index, and gray matter volume. In this study, to
obtain more detailed features to enhance the prediction accuracy,
we used the Destrieux atlas, which divided the whole cortex into
148 regions. Then, a feature set with a total of 1036 features
(148 × 7= 1036) was used. Feature selection was conducted by
LASSO regression in the primary cohort. Each feature has a
coefficient as its weight provided by LASSO, as shown in Fig. 2a.
When the binomial deviance was minimized, 17 significant
features, i.e., image predictors, were selected from among all the
features. Figure 2b shows the feature selection process by LASSO.
The Rad-sig was a linear combination of the selected features and
their coefficients. The full name and abbreviations of the selected
features, as well as the Rad-sig calculation formula, are shown in
Supplementary Material 1.

Assessment and validation of the radiomics signature
The SVM classifier based on the radial basis function kernel
estimated the performance of the Rad-sig. The accuracy of the
SVM classifier in the primary cohort was 86.4%, and the mean area
under the curve (AUC) after tenfold cross-validation was 89.6%. To
further verify the classification effect of the Rad-sig, we also used
the SVM classifier to classify the data in the validation set. The

accuracy was 80.0%, and the AUC was 84.6%. Figure which
provided in the Supplementary Material 3 shows the ROC curve in
the primary and validation cohorts in black and red, respectively.

Selection of the clinical and CSF predictors
We calculated Spearman correlations between the indicators and
patients’ status. As shown in Supplementary Material 2, the FAQ
score was the most significant indicator with the largest
correlation coefficients among all clinical indicators, and Aβ1–42
was the only indicator with a significant correlation with patient
status. As shown in Table 1, according to t tests, there were also
significant differences in the FAQ scores and Aβ1–42 concentra-
tions between the MCI_C and MCI_NC groups. Hence, in this
study, we chose the FAQ scores and Aβ1–42 concentrations as
predictors in the nomogram.

Estimation of the performance of the individual predictors
We estimated the performance of the Rad-sig, FAQ scores and
Aβ1–42 CSF concentrations as individual predictors, and the results
are shown in Supplementary Material 3. The performance of all
three predictors was good in predicting MCI conversion. The
predictive accuracy of the FAQ scores was the highest among all
predictors, with a C-index of 0.921 in the primary cohort and 0.910
in the validation cohort. The Rad-sig had a C-index of 0.90 in the
primary cohort, and 0.869 in the validation cohort. The C-index of
the Aβ1–42 concentrations was 0.769 and 0.831 in the primary and
validation cohorts, respectively.

Construction and validation of the multipredictor nomogram
The nomogram that combined the three significant predictors was
constructed. Figure 3a shows the predictive nomogram developed
in the primary cohort, which obtained a C-index of 0.978 (95% CI,
0.960–0.995). Figure 3b shows the calibration curve of the
predictive nomogram. The closer the calibration curve is to the
diagonal, the better the predictive power of the nomogram. Then,
we validated the nomogram in the validation cohort, and the C-
index was 0.956 (95% CI, 0.919–0.992). The performance of the

Table 1. Characteristics of MCI patients in the primary cohort and validation cohort

Primary cohort (n= 191) P-value Validation cohort (n= 99) P-value

Characteristics MCI_C (n= 50) MCI_NC (n= 141) MCI_C (n= 26) MCI_NC (n= 73)

Demographic information, mean (SD), years

Age 73.22 (7.29) 72.29 (7.374) 0.444 74.85 (6.488) 70.62 (7.72) 0.293

Sex (M/F) 26/24 80/61 – 13/13 42/31 –

Education level 15.85 (2.84) 16.28 (2.69) 0.671 15.85 (2.84) 16.04 (2.65) 0.753

Amyloid-Beta peptides in CSF aliquot samples, mean (SD), pg/mL

Aβ1–42 829.12 (301.55) 1239.38 (587.0) 0.000 691.69 (217.76) 1312.6 (644.15) 0.000

Aβ1–40 7878.66 (1983.14) 8525.8 (2482.07) 0.098 8368.23 (2370.74) 8256.6 (2587.40) 0.340

Aβ1–38 1835.54 (487.50) 1949.06 (574.48) 0.214 1948.96 (622.44) 1884.01 (596.35) 0.639

Neuropsychological scales, mean (SD)

ADAS11 score 17.5 (5.89) 7.89 (3.26) 0.000 19.10 (8.85) 7.53 (3.18) 0.000

ADAS13 score 27 (7.39) 12.66 (5.25) 0.000 28.53 (10.85) 12.37 (5.75) 0.001

CDR score (baseline) 0.5 0.5 – 0.5 0.5 –

CDR score (latest) 1 0.5 – 1 0.5 –

FAQ score 14.16 (6.31) 2.1 (3.37) 0.000 11.12 (5.95) 1.73 (2.94) 0.000

GDS score 2.38 (2.56) 1.74 (1.39) 0.029 2.92 (2.29) 1.83 (1.64) 0.162

MMSE score 24.68 (5.91) 28.40 (1.53) 0.000 23.38 (3.38) 28.38 (1.48) 0.000

NPI-Q score 4.72 (4.07) 2.09 (3.02) 0.004 4.00 (4.71) 2.31 (2.86) 0.014

MCI_C the converter group, MCI_NC the stable group, CSF cerebrospinal fluid, Aβ1–42 amyloid-beta 1–42, Aβ1–40 amyloid-beta 1–40, Aβ1–38 amyloid-beta 1–38, SD
standard deviation, ADAS Alzheimer’s Disease Assessment Scale (with 11 and 13 questionnaires, respectively), CDR clinical dementia rating, FAQ functional
activities questionnaire, GDS geriatric depression scale, MMSE mini-mental state examination, NPI-Q neuropsychiatric inventory questionnaire
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nomogram which combined multiple factors was significantly
increased as compared to the model used only individual
predictor (P < 0.05 in both primary and validation cohorts).

Association analysis
Furthermore, an association study was conducted to delineate the
relationship between the features employed in nomogram
construction and gene expression pattern. Our results showed
that there exists a significant association between the FAQ scores
and the cortical anatomic changes. As shown in Fig. 4, there were
significant associations between the FAQ scores and the thickness
of the superior frontal sulcus, the intraparietal and transverse
parietal sulci, the superior temporal sulcus and the inferior
temporal sulcus in the left hemisphere, as well as the thickness
of the planum polare of the superior temporal gyrus and the
inferior temporal sulcus in the right hemisphere. The folding
index of the right superior temporal sulcus and the gray matter
volume of the left superior temporal sulcus also showed
correlations to the FAQ scores. Especially, we found the cortical
thickness and gray matter volume which correlated with the FAQ
scores, also had significant associations with the Aβ1–42
concentrations.

To identify the associations between Aβ1–42 concentration level
and the underlying gene patterns, we employed differential
expression analysis and enrichment analysis by using the R script
with the Limma package and DAVID v6.8. As shown in Fig. 4, 11
pathways were enriched based on the KEGG pathway map (see
Supplementary Material 4 for the detailed characteristics). Among
them, two pathways, including the calcium signaling pathway and
the serotonergic synapse pathway, were found to be correlated
with Aβ1–42.

DISCUSSION
Biomarkers have become increasingly important in predicting
neurodegenerative processes in AD. As one of the newly
discovered core neuropathological factors related to AD, Aβ
peptides have attracted extensive attention. Aggregated Aβ
peptides form plaques and fibrils and eventually lead to synapse
loss and cell apoptosis [28]. In our study, only Aβ1–42 showed a
significant correlation with patient status. Studies have proven
that Aβ1–42 seems to be sensitive because it is more prone to
accumulate than other isoforms [29]. Hence, the concentration of
Aβ1–42 in CSF has been used to predict conversion to AD in many

Fig. 2 Feature selection using the LASSO binary logistic regression model. a LASSO coefficient of the total 1036 features. A coefficient profile
plot was provided against the log (Lambda) sequence. b Feature selection in the LASSO model used tenfold cross-validation via minimum
criteria. Blue-dotted vertical lines were drawn at the optimal values by using the minimum criteria (minimize the mean-squared error), the
value 17 represents that 1036 features were reduced to 17 nonzero features by LASSO
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studies [30–32]. In our study, the predictive accuracy of Aβ1–42 was
0.769 in the training cohort, and 0.831 in the validation cohort,
slightly lower than other predictors. The possible reason is that the
progression of AD is unstable, and CSF biomarkers tend to gain
more accuracy when assessed earlier in the process. A previous
meta-analysis had shown that memory impairment and CSF
abnormalities have approximately equal predictive power >4
years before the final diagnosis [33].
Neuroimaging is a critical technique in the clinical diagnosis of

neurodegenerative conditions. However, it has always been used
as a subjective or qualitative tool in traditional diagnostic
situations. The development of computer science and image-
processing technology has made it possible to quantify medical
image information [34]. The use of newly developed radiomics
approaches has pushed conventional research up to a transla-
tional level. This process includes converting images into a high-
dimensional feature set and extracting significant biomarkers by
selecting an algorithm to build a radiomics signature that provides
reliable support for the identification and prediction of patient

status. In this study, the Rad-sig based on LASSO-selected features
had the C-indexes of 0.90 and 0.869 in the primary and validation
cohorts, respectively. Surprisingly, we found that most selected
features were located in the temporal cortex, such as the superior
temporal sulcus and inferior temporal sulcus (see Supplementary
Material 1). In fact, the temporal cortex has been referred to as one
of most significant characteristics of the structural changes
associated with AD progression [35, 36]. The above studies, as
well as our findings, highlighted that structural changes in the
temporal cortex may be more sensitive to AD progression,
especially for MCI conversion. There were other features in the
frontal and parietal cortices, which have also been identified in
previous studies [37, 38].
The scores on the FAQ, as one of the widely used traditional

neuropsychological scales, were the most accurate in predicting
the MCI-to-AD progression (0.921 in primary cohort and 0.910 in
validation cohort). Similarly, previous studies have found that
neuropsychological scales have more predictive power than
image features and CSF biomarkers [29, 39]. These results

Fig. 3 a Predictive nomogram integrates the functional activities questionnaire (FAQ), concentration of the amyloid-beta peptides (Aβ) in CSF
aliquot samples and the radiomics signature based on selected features. b Calibration curve of the nomogram. Calibration curve represents
the calibration of the nomogram, which shows the consistency between the predicted probability of conversion and actual conversion
probability of MCI patients. The x-axis is the predicted probability by nomogram and the y-axis is the actual conversion rate of MCI patients.
The black-dotted line represents a perfect prediction by an ideal model, and the purple solid line shows the performance of the nomogram, of
which a closer fit to the dotted line means a better prediction
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demonstrated that neuropsychological assessments are a very
reliable and necessary predictor of AD progression.
However, individual predictors have significant challenges in

predicting patient clinical outcomes. Abnormalities in Aβ peptides
play a central role in AD neuropathology, but they might be less
powerful as a single predictor. Neuroimaging has become an
indispensable aid in the diagnosis of and research on neurode-
generative diseases, but cannot detect microscopic changes in AD
progression. Although the neuropsychological scales had been
proven to be a powerful predictive factor in MCI and AD, they had
some shortcomings due to subjectivity. To address these issues,
we constructed and validated a composite multipredictor
nomogram for the estimation of the conversion risk of MCI
patients from the ADNI. The proposed nomogram had better
performance than the models based on the individual predictors
alone. This result indicated that from a pragmatic perspective,
using all the available data could make predictions that are more
accurate and appear optimal in clinical practice.
In addition, we explored the associations between features from

macro- to microperspective in the validation cohort. The FAQ scores,
which represent the clinical manifestations and cognitive function of
the MCI patients, were supposed to be correlated with the structural
changes [40, 41]. As shown in Fig. 4, the FAQ scores indeed had
strong correlations with five image features, including lh_S_intra-
pariet&P_trans_thickness, lh_S_temporal_sup_thickness, lh_G_tem-
poral_inf_thickness, rh_G_temp_sup-Plan_polar_thickness and
rh_S_temporal_inf_thickness. Interestingly, all of these features were
also found to have strong associations with the concentrations of
Aβ1–42 in the CSF. Several studies have demonstrated that the levels
of Aβ in CSF are related to structural brain changes [42–45].
Combining our results with previous studies, we suspect that the
concentrations of Aβ1–42 in the CSF might be correlated with cortex
changes in the brain, especially in the temporal cortex.
Furthermore, we added a gene expression profile to further

analyze the association between Aβ1–42 concentrations and the
underlying gene pathways associated with AD. The differentially
expressed genes were enriched in 11 gene pathways (see
Supplementary Material 4 for detailed characteristics). We found
only two pathways that were associated with Aβ1–42 concentra-
tions by correlation analysis, including the calcium signaling
pathway and serotonergic synapse pathway. A previous study
found that Aβ influenced calcium homeostasis and impaired
redox homeostasis in brain endothelial cells [46]. In particular,
accumulated Aβ1–42 could disturb calcium homeostasis and lead

to cell death [47, 48]. Convergent findings demonstrated that
serotonin signaling could alter Aβ levels (i.e., regulation of amyloid
precursor protein processing by serotonin signaling). Patients with
AD who were treated with antidepressant drugs showed reduced
Aβ1–40 and Aβ1–42 levels [49]. Consequently, treatment with
selective serotonin reuptake inhibitors, as an anti-Aβ strategy,
might be effective in preventing or halting Aβ plaque accumula-
tion in the early stages of AD [50].
The limitations of this study included the lack of external

validation and an in-depth exploration of pathological mechan-
isms. The patients in this study were all from the ADNI database,
and an independent validation set is needed to acquire more
evidence for the stability of the nomogram. Moreover, we lacked a
pathological analysis of the associations between the predictive
factors, and this work should be explored in the future.
In summary, our research constructed a powerful nomogram

based on multiple factors to predict the conversion probability for
MCI patients. Furthermore, we found significant associations
between cognitive impairment, structural changes, Aβ level, and
underlying gene patterns. With this study, we expect that the
nomogram method will be fully developed to help clinical
diagnosis and prediction. In addition, the associations from the
macro- to microperspective would provide new information for
the further exploration of neurodegeneration.
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