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Deep neural networks have recently been recognized as one of the powerful learning techniques in
computer vision and medical image analysis. Trained deep neural networks need to be generalizable
to new data that are not seen before. In practice, there is often insufficient training data available,
which can be solved via data augmentation. Nevertheless, there is a lack of augmentation methods to
generate data on graphs or surfaces, even though graph convolutional neural network (graph-CNN) has
been widely used in deep learning. This study proposed two unbiased augmentation methods, Laplace-
Beltrami eigenfunction Data Augmentation (LB-eigDA) and Chebyshev polynomial Data Augmentation
(C-pDA), to generate new data on surfaces, whose mean was the same as that of observed data.
LB-eigDA augmented data via the resampling of the LB coefficients. In parallel with LB-eigDA, we
introduced a fast augmentation approach, C-pDA, that employed a polynomial approximation of
LB spectral filters on surfaces. We designed LB spectral bandpass filters by Chebyshev polynomial
approximation and resampled signals filtered via these filters in order to generate new data on
surfaces. We first validated LB-eigDA and C-pDA via simulated data and demonstrated their use
for improving classification accuracy. We then employed brain images of the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and extracted cortical thickness that was represented on the cortical
surface to illustrate the use of the two augmentation methods. We demonstrated that augmented
cortical thickness had a similar pattern to observed data. We also showed that C-pDA was faster than
LB-eigDA and can improve the AD classification accuracy of graph-CNN.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Deep neural networks have recently been recognized as one of
the powerful learning techniques in computer vision and medical
image analysis (Litjens et al., 2017; Shen, Wu, & Suk, 2017).
Training deep neural networks requires a large dataset so that
they are generalizable to data that have never been seen be-
fore. This is challenging especially in the field of medical image
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analysis. Building big medical image datasets is expensive and
labor-intensive to collect, and is related to patient privacy, and
requires medical experts for labeling. Not having enough data
could overfit training data so that network models are not gener-
alized to new data. Moreover, studies on rare diseases or medical
screening also face the problem of class imbalance with a skewed
ratio of majority to minority samples (Ker, Wang, Rao, & Lim,
2017; Mazurowski et al., 2008). These obstacles have led to many
studies on image data augmentation (see review in Leevy, Khosh-
goftaar, Bauder, & Seliya, 2018). Data augmentation assumes that
additional information can be extracted from an original dataset.
It is a very powerful approach for overcoming overfitting in deep
learning.

Image augmentation inflates the size of training data via
either image transformation or oversampling. New images can
be generated by warping existing images via geometric (rotation,
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flipping) and color transformations (Shorten & Khoshgoftaar, 2019),
random erasing (Zhong, Zheng, Kang, Li, & Yang, 2017), and
adversarial training (Ganin et al., 2016; Goodfellow, Shlens, &
Szegedy, 2014) such that their labels are preserved. In contrast,
oversampling augmentation creates synthetic data by mixing
existing images, auto encoder-decoder (DeVries & Taylor, 2017;
Kingma & Welling, 2013), and generative adversarial networks
(GANSs) (Goodfellow et al., 2014; Yi, Walia, & Babyn, 2019). Even
though GANs are powerful, their computation is more expensive
compared to image warping methods.

Among existing image augmentation methods (DeVries & Tay-
lor, 2017; Goodfellow et al., 2014; Kingma & Welling, 2013;
Shorten & Khoshgoftaar, 2019; Yi et al, 2019; Zhong et al.,
2017), image data are defined on an equi-spaced grid in the
Euclidean space. However, medical images in the Euclidean space
may not fully characterize the geometry of human organs that
encompass their intrinsic and complex anatomy, as well as phys-
iological functions. For example, the cerebral cortex is composed
of ridges (gyri) and valleys (sulci). Due to the way gyri and
sulci are curved, the cortex is thicker in gyri but thinner in
sulci. Hence, it is preferred to represent brain images in a way
that the underlying geometrical information is encoded. One can
express the cerebral cortex as a surface embedded in the 3D
Euclidean space. Existing literature has demonstrated that such
representation incorporates useful geometry information of the
brain into machine learning for disease diagnosis (Apostolova
et al., 2006; Fan et al., 2008; Qiu, Fennema-Notestine, Dale, Miller,
& the Alzheimer’s Disease Neuroimaging Initiative, 2009; Yang,
Goh, Chen, & Qiu, 2013). Recently, a number of deep neural
networks, such as diffusion-convolutional neural networks (DC-
NNs) (Atwood & Towsley, 2015), PATCHY-SAN (Duvenaud et al.,
2015; Niepert, Ahmed, & Kutzkov, 2016), gated graph sequen-
tial neural networks (Li, Tarlow, Brockschmidt, & Zemel, 2015),
DeepWalk (Perozzi, Al-Rfou, & Skiena, 2014), and spectral graph
convolutional neural networks (graph-CNN) (Bruna, Zaremba,
Szlam, & LeCun, 2013; Defferrard, Bresson, & Vandergheynst,
2016; Henaff, Bruna, & LeCun, 2015; Kipf & Welling, 2016; Ktena
et al, 2017; Shuman, Ricaud, & Vandergheynst, 2016; Yi, Su,
Guo, & Guibas, 2017) can take data on surfaces for classification.
The core challenge for implementing CNN on surfaces lies in
defining convolution on surfaces. These existing neural network
approaches focus on how to process vertices whose neighborhood
has different sizes and connections for the convolution in the
spatial domain. Alternately, convolution can be defined as a
multiplication involving a diagonal matrix in the graph Fourier
transform derived from a normalized graph Laplacian in the
spectral domain. Hence, existing image warping augmentations
on equi-spaced grids (e.g., flipping, rotation, shifting) may not
directly apply to data on surfaces since the points on surfaces are
not on the equi-spaced grid of the Euclidean space. Nevertheless,
there is a lack of augmentation approaches to generate data on
surfaces.

This study proposed two unbiased augmentation methods,
Laplace-Beltrami eigenfunction Data Augmentation (LB-eigDA)
and Chebyshev polynomial Data Augmentation (C-pDA), to gen-
erate new data on surfaces. These two approaches preserved
the mean of observed data in each class, which is crucial for
classification problems. These two approaches were motivated
by the Fourier representation of signals in equi-spaced Euclidean
grids. A signal in equi-spaced Euclidean grids can be created as
a linear combination of Fourier bases, where the corresponding
Fourier coefficients can be generated via the resampling of the
Fourier coefficients of existing signals (Ravanbakhsh, Schneider,
& Poczos, 2016; Tang, 2013; Wang, Ombao, & Chung, 2018).
We adopted this idea and computed the eigenfunctions of the
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Laplace-Beltrami (LB) operator on a surface. New data on the sur-
face can be constructed via the resampling of the LB coefficients
among observed data on the surface.

In parallel with LB-eigDA, we introduced a fast augmentation
approach, C-pDA, that employed a polynomial approximation of
LB spectral filters on surfaces. C-pDA was designed to be in line
with graph-CNN (Defferrard et al., 2016; Shuman et al., 2016),
where spectral filters were implemented via Chebyshev polyno-
mial approximation such that the resulting convolution can be
written as a polynomial of the adjacency matrix of a graph. This
avoided the cost of calculating the eigenfunctions of a large-scale
graph Laplacian. In Defferrard et al. (2016) and Shuman et al.
(2016), it was shown that the kth order Chebyshev polynomial
formation of the graph Laplacian is equivalent to k-ring filtering.
In C-pDA, we designed LB spectral bandpass filters by Chebyshev
polynomial approximation and resampled filtered observed data
to generate new data. Due to the recurrence relation of Cheby-
shev polynomials, the computation of the C-pDA method can be
efficient. We validated LB-eigDA and C-pDA using simulated data
with the ground truth of class labels. We further employed the
methods to the cortical surface data in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). We first demonstrated that aug-
mented cortical thickness data had a similar pattern to observed
data. Second, we showed that C-pDA was much faster than LB-
eigDA. Last, we illustrated the use of C-pDA to improve the AD
classification of the graph-CNN (Defferrard et al., 2016).

The main contributions of this study were as follows.

e We introduced two augmentation methods to generate new
data on surfaces using the LB eigenfunctions and LB spectral
filters.

e We showed that C-pDA was computationally more efficient
than LB-eigDA.

e We demonstrated that C-pDA improved the graph-CNN per-
formance on the classification of AD patients.

2. Methods

In the field of medical image analysis, triangulated surface
meshes are often used to represent the geometry of cells, tissue
and organs. They are generated from 3D segmented images and
comprised of vertices and edges. In the following, we will intro-
duce LB-eigDA (Fig. 1) and C-pDA (Fig. 2) methods for generating
new data on such triangulated surface meshes. We will employ
the Laplace-Beltrami (LB) operator due to its incorporation of the
intrinsic geometry of triangulated surface meshes.

2.1. Augmentation based on the Laplace-Beltrami representation of
signals on a surface mesh

We introduce a data augmentation method based on the LB
representation of signals on a surface mesh. We denote the sur-
face as M with the LB-operator A on M. Let y; be the jth
eigenfunction of the LB-operator with eigenvalue ;

A =AY (1)

where 0 = Ag < A; < Ay < ---.Asignal f(x) on the surface M can
be represented as a linear combination of the LB eigenfunctions

=) g¥x) ()
j=0

where ¢; is the jth coefficient associated with the eigenfunction
Yj(x). Consider n observations (real samples), fi(x), ..., fa(X).
The ith observation f;(x) can be represented as

fi) =" M) .
j=0
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Fig. 1. Flowchart of the proposed LB-eigDA method for generating n augmented
samples from n observations (original samples) on a hippocampus triangulated
surface mesh. The hippocampal surface is represented by a triangulated mesh
with 1184 vertices and 2364 triangles.

where c;') is the jth coefficient associated with the jth LB eigen-
function for the ith observation. We like to generate new data
based on the frequency resampling of these n observations. This
is similar to creating new samples via permuting Fourier coef-
ficients (Wang et al., 2018). Let S, be the permutation group
of order n (Chung et al, 2019) and T € S, be an element of
permutation given by

(1 2
t= 7(1)

7(2)
7(i) indicates that element i is permuted to z(i). We resample
the LB coefficients to obtain new data, and the i'th augmented
sample fy(x) can be written as:

n
7(n)

(3)

(o]
T ="y . (4)
j=0
where 7j(-) is the permutation on the jth LB coefficients among
the n observations. We will refer this approach as LB eigenfunction
Data Augmentation (LB-eigDA). Fig. 1 illustrates the flowchart of
the LB-eigDA. N
Based on Eq. (4), one can show that the mean of fy(x) over
every possible permutation is the same as that of observed f;(x)
since the permutation function z(-) does not change the mean of
the LB coefficients.

2.2. Augmentation via Chebyshev polynomials

Previous research suggests that the augmentation strategy of
Gaussian filters leads to the best validation accuracy in med-
ical imaging classification tasks (Hussain, Gimenez, Yi, & Ru-
bin, 2017). We now introduce the second data augmentation
approach, Chebyshev polynomial Data Augmentation (C-pDA). As
illustrated in Fig. 2, the idea of C-pDA is similar to the aug-
mentation strategy of Gaussian filters in equi-spaced grids of
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the Euclidean space by designing LB spectral filters on surfaces.
We design LB spectral filters that are similar to spectral filter
banks (Tan & Qiu, 2015). We can then approximate observed data
on surfaces using these LB spectral filters and resample the LB
spectral filtered signals of observed data in order to generate
new data on surfaces. To avoid the direct computation of the
LB eigenfunctions, we will employ the Chebyshev polynomial
approximation of LB spectral filters, which is computationally
efficient. In the following, we first describe the Chebyshev poly-
nomial approximation of an LB spectral filter and then design LB
spectral bandpass filters for the C-pDA approach.

2.2.1. Chebyshev polynomial approximation of LB spectral filters
Consider an LB spectral filter g on the surface M with spec-
trum g(A) as

[e ]
gx.y) =Y gOYxY(). 5)
j=0

Based on Eq. (2), the convolution of a signal f with the filter g can
be written as

(o]
h(x) =g *f(x) =Y gO)cv(x). (6)

j=0
As suggested in Coifman and Maggioni (2006), Defferrard et al.
(2016), Hammond, Vandergheynst, and Gribonval (2011), Kim
et al. (2012), Tan and Qiu (2015) and Wee et al. (2019), the filter

spectrum g(A) in Eq. (6) can be represented as the expansion of
Chebyshev polynomials, Ty, k =0, 1, 2, ..., 0o, such that

g =) aTn). 7)
k=0

0 is the kth expansion coefficient associated with the kth Cheby-
shev polynomial. T is the Chebyshev polynomial of the form
Ti(X) = cos(k cos™! A) with recurrence

T 1(A) = (2 = Sko)A Ti(X) — T_q(R),

where 6o is Kronecker delta. The convolution in Eq. (6) can be
rewritten as

h(x) =g #f(x) = ) _ T AN (x).

k=0

(8)

This Chebyshev polynomial approximation of the spectral filter
has previously used in diffusion wavelet transform (Coifman &
Maggioni, 2006; Donnat, Zitnik, Hallac, & Leskovec, 2018; Ham-
mond et al., 2011; Kim et al,, 2012), graph convolutional neu-
ral network (Defferrard et al., 2016; Wee et al.,, 2019), spectral
wavelet transform (Tan & Qiu, 2015), and heat diffusion (Huang,
Lyu, Qiu, & Chung, 2020) on graphs. The polynomial method
avoids the direct computation of the LB eigenfunctions through
the recursive computation of T,(A)f(x) and preserves local ge-
ometric structure of the surface (Defferrard et al., 2016; Huang
et al., 2020).

2.2.2. C-pDA
We design a series of LB spectral bandpass filters, g, [
1,2,...,L, based on Eq. (7) such that

@) =) OuTe(1)
k=0

where 0y is the kth Chebyshev expansion coefficient of the Ith
bandpass filter. The frequency band of the Ith bandpass filter is
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Fig. 2. Flowchart of the proposed C-pDA method for generating n augmented
samples from n observations (original samples) on a hippocampus triangulated
surface mesh. The hippocampal surface is represented by a triangulated mesh
with 1184 vertices and 2364 triangles.

A € [€ €141]. Now, a signal f(x) on surface M can be approximated
using these filters such that

L
fR)~ho+ > @AY (x) (9)

=1

where hg is the mean of f(x) over the surface.If g;, [ =1,2,...,L,
together span the entire spectrum of f(x), then the spectral infor-
mation of f(x) is retained.

We develop the C-pDA approach in a way similar to the LB-
eigDA approach in Eq. (4) such that the i'th augmented sample
fr(x) can be written as

@

L
he?+ 3 (s adi)
I=1

where 7i(-) is the permutation on the Ith filtered signal among
the n observations (real samples) fi, f,...,f: such that the
ith observation is permuted to the 7(i)th observation. Hence, C-
pDA generates new data via resampling the Ith filtered outputs
among the n observations and summing the resampled signals
across L filters. Again, we can show that the mean of f, (x) over
every possible permutation is the same as that of fi(x) since
the permutation function z(-) does not change the mean of the
filtered signals.

With the Chebyshev polynomial approximation, we can
rewrite Eq. (10) as

L 00 i

filx) = (10)

firx) (11)

2.3. LB-eigDA and C-pDA numerical implementation

For the implementation of the LB-eigDA in Eq. (4), we adopt
the discretization scheme of the LB-operator in Tan and Qiu
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(2015), where surface M is represented by a triangulated mesh
with a set of triangles and vertices v;. The ijth element of the
LB-operator on M can be computed as
A = Gj/Ai, (12)
where A; is estimated by the Voronoi area of nonobtuse trian-
gles (Meyer, Desbrun, Schréder, & Barr, 2003) and the Heron’s
area of obtuse triangles containing v; (Meyer et al,, 2003; Tan &
Qiu, 2015). The off-diagonal entries are defined as C;; = —(cot 6+
cot ¢;)/2 if v; and v; form an edge, otherwise Cj; = 0. The diagonal
entries G; are computed as C; = — Z CU Other cotan discretiza-
tions of the LB-operator are dlscussed in Chung, Qiu, Seo, and
Vorperian (2015), Chung and Taylor (2004) and Qiu, Bitouk, and
Miller (2006). When the number of vertices on M is large, the
computation of the LB eigenfunctions can be costly (Huang et al.,
2020).

For the numerical implementation of the C-pDA method in
Eq. (11), we need to first determine the order of Chebyshev
polynomials while gi(1) have less overlap for C-pDA. One can
quantify the overlap among the filters g; via training the spectral
band between the passband and stopband (Oppenheim, Schafer,
& Buck, 1999). A higher-order filter has a narrower transition
band than a lower-order filter. Fig. 3 shows the transition band-
width over order K for Chebyshev polynomials when the filter
band is A € [0.05Amax, 0.1 max], Where An.x is the maximum
eigenvalue of the LB-operator. In this study, we empirically de-
termined the order of Chebyshev polynomials as K 5000
for C-pDA, which achieves the transition bandwidth as small as
3.5 x 107* as illustrated in Fig. 3. L depends on the spectral
distribution of the observations and thus is application-specific.
This study empirically determines L in the below applications.

We take the advantage of the recurrence relation of the Cheby-
shev polynomials and compute C-pDA recursively. We now de-
scribe steps for the numerical implementation of Eq. (11).

1. discretize the surface M using a triangulated mesh;
2. compute A based on Eq. (12) for the surface mesh M;
3. compute the maximum eigenvalue Amax of A. For the stan-
dardization across surface meshes, we normalize A as A =
24 _ | where [ is an identity matrix;

4, ?;:Xthe signal f; of the ith subject, compute Tk(Z)f,-(x) recur-
sively by
Tera(A)i(x) = (2 = 810)A TW(A)i(x) — Tiea(A)fi(x)
with initial conditions
(A =0
and
To(A)f(x) = fi(x)-

. compute each augmented signal ﬁ recursively as

X+ Z(eszk(A)ﬁ( "

,-f‘(x)
dx

€k+1
‘L V1=’
where [e; €y1] is the frequency band of g;. Steps 4 and 5 are
repeated from k 0 till k K — 1. In step 5, there is
no need to explicitly compute each filtered signal, which saves
computational time and memory, especially when a large number
of filters are used.
The code of both methods are available at (https://github.com/
bieqa/Surface-Data-Augmentation).

Ti(X)
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Fig. 3. (a) Chebyshev polynomials of order 1 to 6. (b) An ideal rectangular bandpass filter with range A € [0.05Amax, 0.1Amax] and its approximation of Chebyshev

polynomials of order up to K = 500, 2000, and 5000.
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R
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Fig. 4. Simulated and augmented data in Group 1. (a) Averaged signal over 500 samples that were simulated via the distribution A(1, o2) in the small patch
(red region) of the hippocampus and the distribution of A(0, o) at each vertex on the rest of the hippocampus. (b) five augmented samples for Group 1 via the
LB-eigDA method; and (c) five augmented samples for Group 1 via the C-pDA method. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
3. Simulation experiments

A majority of medical applications often face two challenges,
limited sample sizes and potential uncertainty of diagnosis (Rang-
inwala, Hynan, Weiner, & White III, 2008; Tong et al., 2014). We
designed simulation experiments with the ground truth of group
labels to illustrate the use of LB-eigDA and C-pDA in the sample
size estimation and diagnosis classification.

We performed simulation experiments using a hippocampus
surface mesh with 1184 vertices and 2364 triangles. We gen-
erated two groups of simulated data on this surface mesh: n
samples in Group 0 and m samples in Group 1. We first generated
n + m measurements by a normal distribution with mean 0 and
variance o2, i.e., M(0,0?), at each vertex of the hippocampus
surface. The first n measurements were considered as samples in
Group 0, while the rest of m measurements were added signal
1 in a small patch on the hippocampus (see the red region in
Fig. 4(a)) and were considered as Group 1. Thus, Group 0 had
the distribution A(0, o2) at each vertex, while Group 1 had the
distribution A(1,02) in the small patch of the hippocampus
and the distribution of A/(0, ¢?) at each vertex on the rest of
the hippocampus. Fig. 4(a) shows the signal averaged over 500
samples in Group 1.

To generate augmented data, we computed all the 1184 eigen-
functions for LB-eigDA. The hippocampal surface mesh had the
spectrum over [0, 10.9]. For C-pDA, we used 109 bandpass filters
whose bandwidth was 0.1 and a mean filter that computed the
average value of a signal over the hippocampal surface. Each
filter was approximated by Chebyshev polynomials of order 5000.
Fig. 4(b) and (c) show 5 augmented samples generated by LB-
eigDA and C-pDA for Group 1, respectively.

202

We employed a convolutional neural network (CNN) that was
a modified version of the graph-CNN in Defferrard et al. (2016)
and Wee et al. (2019). We employed the LB-operator instead
of the graph Laplacian in the CNN in this study. We called it
an LB-based spectral CNN. Fig. 5 shows the LB-based spectral
CNN architecture with two convolutional layers due to the rel-
atively small surface mesh of the hippocampus and one fully
connected layer. The two convolutional layers had 8 and 16 fil-
ters, respectively. Each filter was characterized by the Chebyshev
polynomials of order 7. Moreover, each layer also included a
rectified linear unit (ReLU) and average pooling. We trained the
network with an initial learning rate of 1073, and a learning
rate decay of 0.05 for every 20 epochs. We applied the ten-
fold cross-validation, where one fold was used for testing and
the other 9 folds were for training (75%) and validation (25%).
Fig. 7 (a) shows the classification accuracy versus total sample
size n + m with ratio n/m = 2, which was similar to real ADNI
data used below in this study. o = 0.6 was used. A higher value
of o resulted in a similar curve except that more samples were
required to reach the same classification accuracy. The accuracy
reached 98.1% when the total sample size was 3000 and then
increased slowly as the sample size increased.

To demonstrate the use of the two augmentation methods
in classification, we fixed the total sample size as 3000 (n =
2000, m = 1000). Among the 3000 samples, 2025, 675, and
300 samples were respectively used as the training, validation,
and testing samples. As illustrated in Fig. 6, when only a smaller
fraction of the simulated data in the training, denoted as X%,
was available, we applied the augmentation methods to add 1 —
X% augmented data to the training set. For instance, if X
10, we only used 203 of the training samples and employed
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Fig. 5. The LB-based spectral CNN with 2 convolutional layers and one fully connected layer. Each convolutional layer is comprised of filters approximated by the
Chebyshev polynomials of order 7, a rectified linear unit (ReLU), and average pooling.
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. |l_“_\
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spectral CNN
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spectral CNN

——
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Fig. 6. Real and augmented data used in the LB-based spectral CNN. X% indicates that the percentage of the training set is real data and 1—X% are augmented data.

LB-eigDA or C-pDA to generate 1822 augmented samples as 4. Results

additional training samples. The augmentation was employed

separately for the two groups. The validation (675 samples) and We used MRI data from ADNI. We first illustrate the similarity
testing (300 samples) sets remained the same. The classifica- of augmented data by LB-eigDA and C-pDA to real MRI data. We
tion accuracy was respectively 95.5% for LB-eigDA and 92.5% then compare the computational cost of the LB-eigDA and C-pDA
for C-pDA. Without the augmented data, the classification accu- approaches. Finally, we show the use of C-pDA in the LB-based
racy was 80.3%, more than 10% lower than that obtained using spectral CNN to improve the classification accuracy of Alzheimer’s
the data augmented by LB-eigDA and C-pDA. Fig. 7 (b) shows patients.

that LB-eigDA and C-pDA improved the classification accuracy

when compared to that without augmented data. Moreover, the 4.1. MRI data acquisition and preprocessing

LB-eigDA method performed in general better than the C-pDA

method. This is mainly because the C-pDA method employs the We used ADNI-2 cohort (adni.loni.ucla.edu) acquired from par-
polynomial approximation of the LB spectral filters. ticipants aging from 55 to 90 using either 1.5 or 3T scanners.
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100 (b) Improvement by augmentation
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Fig. 7. Classification accuracy on simulated and augmented data. (a) The classification accuracy using simulated data when the sample size increased from 300 to
9000. (b) The green dotted line shows the classification accuracy when only X% of simulated data was used as the training set. The red dashed and blue solid lines
show the classification accuracy when only X% of the training set were simulated data and 1 — X% of the training set were augmented data by the LB-eigDA and
C-pDA methods, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

For the typical 1.5T acquisition, repetition time (TR) = 2400 ms,
minimum full echo time (TE) and inversion time (TI)= 1000 ms,
flip angle= 8, field-of-view (FOV)= 240 x 240 mm?, acquisition
matrix= 256 x 256 x 170 in the x-, y-, and z-dimensions, yielding
a voxel size of 1.25 x 1.25 x 1.2 mm?>. For the 3T scans, TR=
2300 ms, minimum full TE and TI = 900 ms, flip angle= 8°,
FOV= 260 x 260 mm?, acquisition matrix = 256 x 256 x 170,
yielding a voxel size of 1.0 x 1.0 x 1.2 mm?>.

We utilized the structural T1-weighted MRI from the ADNI-
2 dataset. The number of visits of each subject varied from 1
to 7 (i.e., baseline, 3-, 6-, 12-, 24-, 36-, and 48-month), and at
each visit, the subjects were diagnosed with one of the four
clinical statuses based on the criteria in the ADNI protocol (adni.
loni.ucla.edu): healthy control (HC), early mild cognitive impair-
ment (MCI), late MCI, and Alzheimer’s disease (AD). In this study,
we illustrated the use of the augmentation methods via the
HC/AD classification since it has been well studied using T1-
weighted image data (e.g. Basaia et al., 2019; Cuingnet et al.,
2011; Hosseini-Asl, Keynton, & El-Baz, 2016; Islam & Zhang,
2018; Korolev, Safiullin, Belyaev, & Dodonova, 2017; Liu et al,,
2013; Liu, Zhang, Adeli, & Shen, 2018; Wee et al., 2019). Hence,
this study involved 643 subjects with HC or AD scans (392 sub-
jects had HC scans; 253 subjects had AD scans). There were 8
subjects who fell into both groups due to the conversion from HC
to AD. Table 1 lists the demographic information of the ADNI-2
cohort.

The T1-weighted images were segmented using FreeSurfer
(version 5.3.0) (Fischl et al.,, 2002). The white and pial cortical
surfaces were generated at the boundary between white and gray
matter and the boundary of gray matter and CSF, respectively.
Cortical thickness was computed as the distance between the
white and pial cortical surfaces. It represents the depth of the
cortical ribbon. We represented cortical thickness on the mean
surface, the average between the white and pial cortical surfaces.
We employed large deformation diffeomorphic metric mapping
(LDDMM) (Du, Younes, & Qiu, 2011; Zhong, Phua, & Qiu, 2010) to
align individual cortical surfaces to the atlas and transferred the
cortical thickness of each subject to the atlas. The cortical atlas
surface was represented as a triangulated mesh with 655,360
triangles and 327,684 vertices. At each surface vertex, a spline
regression implemented by piecewise step functions (James, Wit-
ten, Hastie, & Tibshirani, 2013) was performed to regress out the
effects of age and gender. The residuals from the regression were
used in the below LB-based spectral CNN.
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Fig. 8. A filter bank with 109 bandpass filters used in the C-pDA method.

Table 1
Demographic information of the ADNI-2 cohort with MRI scans.
HC AD
The number of subjects® 400 261
The number of scans 1122 587
Gender (female/male) 607/515 254/333
Age (years; mean=£SD) 753 £ 6.8 753 £ 7.7

4There are 8 subjects who fall into both the HC and AD groups due to the
conversion from HC to AD. Abbreviations: HC, healthy controls; AD: Alzheimer’s
disease; SD, standard deviation.

4.2. LB-eigDA and C-pDA augmentation

We extracted cortical thickness data from 500 ADNI brain
MRI scans and then used them to generate augmented cortical
thickness via LB-eigDA and C-pDA.

C-pDA requires determining the number of filters and the
bandwidth of each filter. These parameters are dependent on
the spectrum of real data and application-specific. First, we an-
alyzed the spectrum of cortical thickness data, which was pre-
dominantly in the low-frequency band. More filters with narrow
bandwidth were needed in the low frequency, while fewer filters
with wide bandwidth were needed in the high frequency. Second,
the discrimination of cortical thickness between controls and AD
patients lies in the low-frequency band. Hence, we empirically
designed more filters in the low-frequency band based on the
following procedure.

Let Amax be the maximum eigenvalue of the LB-operator of the
cortical surface mesh. We divided the spectral range of [0, :,Ti’g]
into 2™+ equal-width frequency bands, where m is an integer
between 1 and 5, and assigned a bandpass filter to each frequency
band. This procedure resulted in a total of 109 filters. Fig. 8
illustrates the filters used in this study. Moreover, the order of
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Fig. 9. Augmented cortical thickness. (a) Cortical thickness averaged over 500 real samples; (b) five augmented thickness samples via the LB-eigDA method; and

(c) five augmented thickness samples via the C-pDA method.

the Chebyshev polynomials needs to be determined so that the
transition of the filters is sharp. As illustrated in Fig. 3, when
K = 5000, the approximation of the Chebyshev polynomials
converges fast and has a small transition bandwidth. For the rest
of this study, we employed K = 5000 for C-pDA.

On the other hand, only one parameter, the number of LB
eigenfunctions, is needed for LB-eigDA. This study used 5000
eigenfunctions for LB-eigDA, which covered the spectral range
critical to the discrimination of controls and AD patients.

We employed LB-eigDA and C-pDA and generated 500 aug-
mented cortical thickness samples based on 500 randomly se-
lected samples from ADNI dataset. Fig. 9(a) illustrates cortical
thickness averaged over the 500 real samples. Fig. 9(b) and (c)
show 5 augmented thickness samples that were respectively
generated by LB-eigDA and C-pDA. This figure suggests that the
pattern of the augmented data from the two methods is similar
to the averaged pattern observed in real data.

Moreover, Fig. 10 shows the thickness averaged over the 500
real samples (green solid line), the 500 LB-eigDA augmented
samples (blue dashed line), and the 500 C-pDA samples (red
dotted line), respectively. Both LB-eigDA and C-pDA preserved
the mean of the real thickness data at each vertex of the cortical
surface mesh. Empirically, the largest difference between the real
and augmented data was smaller than 10~® mm. Moreover, we
computed Pearson’s correlation of the average of real samples
with the 500 augmented samples. Fig. 11 shows the distribution
of these correlation values for the LB-eigDA and C-pDA methods.
The correlation value of the LB-eigDA augmented thickness was
in the range of [0.58, 0.68] with mean and standard deviation
of 0.64 + 0.02, while the C-pDA augmented data showed the
correlation in the range of [0.53, 0.72] with mean and standard
deviation of 0.65 £ 0.03. Overall, both the LB-eigDA and C-pDA
methods can generate new data whose pattern is similar to that
of real data.

The LB-eigDA computational time was dependent on the num-
ber of the LB eigenfunctions, while the C-pDA computational
time was related to the order of Chebyshev polynomials. Fig. 12
shows the LB-eigDA computational time as a function of the
number of the LB eigenfunctions and the C-pDA computational
time as the order of Chebyshev polynomials, K. The two augmen-
tation methods were implemented in MATLAB (R2017b) using
Intel Xeon Gold 5220S CPU (2.70 GHz). This figure suggests that
more LB eigenfunctions used in LB-eigDA allow the augmentation
over a wider spectrum but require a high computational cost
when the cortical surface mesh is large (the cortical surface mesh
with 327,684 vertices). The LB-eigDA computational cost was
exponentially increased as the number of the LB eigenfunctions
increased. In contrast, the C-pDA computational time was approx-
imately a linear function of the order of Chebyshev polynomials.
Compared to C-pDA, LB-eigDA was 70 times slower when K =
5000.
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Fig. 10. Sorted thickness values at each vertex on the cortical surface mesh. The
green solid, blue dashed, and red dotted lines represent the thickness value at a
particular vertex averaged over the 500 real samples, 500 augmented samples
via LB-eigDA, and 500 augmented samples via C-pDA, respectively. For the
purpose of visualization, the thickness averaged over 500 real samples is sorted
in a descending manner across all the vertices on the cortical surface mesh. The
average of augmented samples follows the sorted vertex index.

4.3. Does classification improve by data augmentation?

We illustrate the use of the C-pDA method to classify healthy
controls (HC) and AD patients based on the cortical thickness of
the ADNI dataset. Again, we employed the LB-based spectral CNN
with the architecture similar to that in Fig. 5, but used five convo-
lutional layers. Each layer involved 8, 16, 32, 64, and 128 filters,
respectively. The initial learning rate was 1073, and the learning
rate decay was 0.05 for every 20 epochs. In this experiment, the
total number of samples from the ADNI dataset was 1709 (HC:
n = 1122; AD: n = 587). Ten-fold cross-validation was adopted.
One fold of real data was left out for testing. The remaining
nine folds of data were further separated into training (75%) and
validation (25%) sets. When the MRI dataset was separated into
the training, validation, and testing sets, we considered subjects
instead of MRI scans so that the scans from the same subjects
were in the same set to avoid potential data over leakage.

The HC/AD classification accuracy based on the real ADNI data
and the LB-based spectral CNN was 90.9 + 0.6%. However, when
only a smaller set of the real data was available (X% of the
training set), that is, the training sample size was reduced, the
classification accuracy dropped as illustrated by the red dashed
line in Fig. 13. When only 10% of the real data was available, the
classification accuracy was 75.8% and decreased 15% compared to
that using the full ADNI data.

We previously showed that both C-pDA and LB-eigDA have
the similar results but C-pDA was more computationally efficient
than LB-eigDA. Thus, the following experiments only used C-
pDA with 109 filters and the Chebyshev polynomials of order
K 5000. As illustrated in Fig. 6, the training samples con-
tained X% of real ADNI data and 1 — X% augmented data, where
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Fig. 11. The distribution of the correlation between the 500 augmented thickness samples and the thickness averaged over 500 real samples (blue bar for the
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Fig. 12. Computational time of the LB-eigDA (blue) and C-pDA (red-orange) methods for generating 500 augmented thickness samples from 500 randomly selected
samples in the ADNI dataset. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Classification accuracy. The red dashed line shows the classification
accuracy when only X% of the real training samples were used in the training of
the LB-based spectral CNN. The blue solid line shows the classification accuracy
when only X% of the real raining set and 1 — X% of the augmented data were
used in the training of the LB-based spectral CNN, where the augmented data
were generated by the C-pDA method.

X 10, 20, ..., 80. We added 1 — X% augmented data using
C-pDA in the LB-based spectral CNN and computed the network
performance using the testing real data. The augmentation was
done separately for the HC and AD groups. For instance, when
90% of the training samples were augmented data and 10% of
the training samples were real data, the classification accuracy
was 83.3% and improved by 7.5%. Fig. 13 shows that C-pDA can
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increase the sample size and improve the HC/AD classification
accuracy.

5. Discussion

This study introduces the LB-eigDA and C-pDA methods to
generate augmented data on surfaces. Using the simulation with
the ground truth label, we demonstrate that both methods im-
prove the performance of graph-CNN. In particular, LB-eigDA
has the potential to outperform C-pDA method since C-pDA ap-
proximates the LB spectral filters using Chebyshev polynomials.
Nevertheless, when the mesh becomes large, LB-eigDA is com-
putationally intensive while C-pDA is computationally efficient.
C-pDA generates augmented thickness data and improves the AD
classification accuracy in a real clinical application.

To our best knowledge, this study provides the first unbi-
ased oversampling approaches for data augmentation on surfaces.
These methods have a great potential to open new research areas
in graph CNN in conjunction with generative adversarial net-
works (GANSs). In particular, the formulation of the C-pDA method
is consistent with that of the LB-based spectral CNN (Defferrard
etal,, 2016; Wee et al., 2019), which is feasible to adapt the C-pDA
and graph network to the GAN framework. Further investigation
will be needed.
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