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A B S T R A C T

Background: Perivascular spaces (PVS) visible on magnetic resonance imaging (MRI) are significant markers 
associated with various neurological diseases. Although quantitative analysis of PVS may enhance sensitivity and 
improve consistency across studies, the field lacks a universally validated method for analyzing images from 
multi-center studies.
Methods: We annotated PVS on multi-center 3D T1-weighted (T1w) images acquired using scanners from three 
major vendors (Siemens, General Electric, and Philips). A neural network, mcPVS-Net (multi-center PVS seg-
mentation network), was trained using data from 40 subjects and then tested in a separate cohort of 15 subjects. 
We assessed segmentation accuracy against ground truth masks tailored for each scanner vendor. Additionally, 
we evaluated the agreement between segmented PVS volumes and visual scores for each scanner. We also 
explored correlations between PVS volumes and various clinical factors such as age, hypertension, and white 
matter hyperintensities (WMH) in a larger sample of 1020 subjects. Furthermore, mcPVS-Net was applied to a 
new dataset comprising both T1w and T2-weighted (T2w) images from a United Imaging scanner to investigate if 
PVS volumes could discriminate between subjects with differing visual scores. We also compared the mcPVS-Net 
with a previously published method that segments PVS from T1 images.
Results: In the test dataset, mcPVS-Net achieved a mean DICE coefficient of 0.80, with an average Precision of 
0.81 and Recall of 0.79, indicating good specificity and sensitivity. The segmented PVS volumes were signifi-
cantly associated with visual scores in both the basal ganglia (r = 0.541, p < 0.001) and white matter regions (r =
0.706, p < 0.001), and PVS volumes were significantly different among subjects with varying visual scores. 
Segmentation performance was consistent across different scanner vendors. PVS volumes exhibited significant 
associations with age, hypertension, and WMH. In the United Imaging scanner dataset, PVS volumes showed 
good associations with PVS visual scores evaluated on either T1w or T2w images. Compared to a previously 
published method, mcPVS-Net showed a higher accuracy and improved PVS segmentation in the basal ganglia 
region.
Conclusion: The mcPVS-Net demonstrated good accuracy for segmenting PVS from 3D T1w images. It may serve 
as a useful tool for future PVS research.

* Corresponding author at: Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
E-mail address: zhangruiting@zju.edu.cn (R. Zhang). 

1 These two authors contributed equally to this study.

Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/ynimg

https://doi.org/10.1016/j.neuroimage.2024.120803
Received 22 May 2024; Received in revised form 16 August 2024; Accepted 20 August 2024  

NeuroImage 298 (2024) 120803 

Available online 23 August 2024 
1053-8119/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:zhangruiting@zju.edu.cn
www.sciencedirect.com/science/journal/10538119
https://www.elsevier.com/locate/ynimg
https://doi.org/10.1016/j.neuroimage.2024.120803
https://doi.org/10.1016/j.neuroimage.2024.120803
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

Perivascular spaces (PVS) are fluid-filled anatomical structures sur-
rounding the brain’s penetrating arteries, serving as a vital part of the 
brain’s glymphatic system (Wardlaw et al., 2020). This system is 
essential for removing metabolic wastes from the brain and participating 
in inflammatory responses (Hablitz and Nedergaard, 2021). Various 
pathophysiological factors (Duperron et al., 2023; Francis et al., 2019; 
Huang et al., 2021) such as genetic mutations, aging, and cerebrovas-
cular diseases can impact the structure and function of PVS, leading to 
glymphatic dysfunction and accelerated brain degeneration 
(Nedergaard and Goldman, 2020; Rasmussen et al., 2018).

On human brain magnetic resonance imaging (MRI), PVS manifest as 
low signals on T1-weighted (T1w) images and high signals on T2- 
weighted (T2w) images, appearing in linear, elliptical, or circular 
forms depending on their orientation and the imaging angle (Duering 
et al., 2023; Wardlaw et al., 2013). A higher prevalence of PVS has been 
linked to aging (Kim et al., 2022) and cerebral small vessel disease 
(CSVD) (Francis et al., 2019), establishing them as a core imaging 
marker for CSVD (Duering et al., 2023; Wardlaw et al., 2013). Moreover, 
research has identified associations between PVS and various neuro-
logical disorders, including Alzheimer’s disease (AD) (Zeng et al., 2022), 
Parkinsons’ disease (Li et al., 2020), systemic lupus erythematosus 
(Miyata et al., 2017), and multiple sclerosis (Miyata et al., 2017), 
making PVS a significant focus of recent research (Smith, 2022).

Traditionally, clinicians have assessed PVS using visual scores 
(Doubal et al., 2010; Zhu et al., 2010), which involve counting PVS and 
converting these counts into a scoring system, typically ranging from 
0 to 4. This method requires considerable experience from the observer, 
is time-consuming, and is subject to floor and ceiling effects. In response, 
various PVS segmentation methods have been developed to quantify 
PVS volume and analyze morphological changes more precisely 
(Barisano et al., 2022; Boutinaud et al., 2021; Choi et al., 2020; Dubost 
et al., 2019; Jung et al., 2019; Lan et al., 2023; Lian et al., 2018; Ranti 
et al., 2021; Sepehrband et al., 2019; Sudre et al., 2024). These tech-
niques generally fall into three categories: threshold-based methods 
(Ramirez et al., 2015), vesselness filter methods (Ballerini et al., 2018; 
Butler et al., 2023; Donahue et al., 2022, 2021; Lan et al., 2023; Ranti 
et al., 2021; Sepehrband et al., 2019, 2021; Tidwell et al., 2023), and 
machine learning approaches (Choi et al., 2020; Lian et al., 2018; Rashid 
et al., 2023). Studies have shown that quantitative analyses might pro-
vide more robust associations with clinical variables (Wang et al., 2021), 
highlighting the importance of advancing PVS assessment methods in 
neurological research and diagnosis (Smith, 2022).

Despite technical advances, significant challenges remain in PVS 
segmentation. Firstly, manual delineation of PVS is time-consuming 
(especially for 3D high-resolution images), leading many studies to 
forego voxel-wise evaluation against a ground truth, opting instead to 
assess correlations with visual scores or numbers (Cai et al., 2015; 
Schwartz et al., 2019; Sepehrband et al., 2019). Secondly, most machine 
learning approaches train models on high-quality T1w or T2w images 
from a single MRI machine (Cai et al., 2015; Jung et al., 2019; Lian et al., 
2018; Sudre et al., 2019), which may limit their generalizability across 
different centers and diseases. Thirdly, the considerable morphological 
changes in PVS structure in diseased states, along with potential inter-
ference from brain lesions such as white matter hyperintensities (WMH), 
suggest that models developed using healthy adult datasets might not 
perform adequately with diseased cohorts—a primary focus in clinical 
research. Figure S1 illustrates how imaging protocols, aging, and brain 
health status affect the visualization of PVS.

In this study, we aimed to develop a method more suitable for multi- 
center clinical imaging research. To accomplish this, we chose to train 
neural networks on 3D T1w images. While 3D T2w images are more 
sensitive, they are infrequently used in previous studies. Furthermore, 
many PVS can be identified on these images in young and healthy adults 
(Figure S1), suggesting that they do not necessarily indicate pathological 

changes. Moreover, 2D T2w images are prone to segmentation dis-
crepancies due to slice thickness and PVS orientation. On the other hand, 
a substantial collection of isotropic 3D T1 images from past clinical 
imaging studies offers convenience for retrospective multi-center ana-
lyses. To minimize training bias associated with a single MRI model, we 
manually delineated PVS structures using images from various MRI 
machines. We also performed separate validations of the segmentation 
results for different scanner vendors. Finally, to test the generalizability 
of our developed model, we used a dataset of elderly community adults 
collected with a completely different MR machine, which included both 
T1w and T2w images. This allowed us to assess the sensitivity of our PVS 
segmentation against both T1w-and T2w-based PVS scores.

2. Methods

2.1. Description of the training and testing datasets

The training and testing data for our model were sourced from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. ADNI is 
an extensive, multi-center project initiated in 2003, primarily aimed at 
exploring the relationships among genetic factors, biomarkers, imaging 
data, cognitive assessments, and clinical evaluations across the full 
spectrum of Alzheimer’s disease, from its preclinical stages through to 
full dementia. ADNI-3 (ClinicalTrials.gov identifier: NCT02854033) in-
volves 59 sites across North America and includes subjects from three 
distinct cohorts: normal controls (NC), mild cognitive impairment 
(MCI), and Alzheimer’s disease (AD). Further details about the study 
protocols and methods are accessible online through the study manual 
available at www.adni-info.org and http://adni.loni.usc.edu/adni-3/. 
All subjects and their legal representatives provided written informed 
consent prior to data collection.

For the training and testing of our model, subjects were pseudo- 
randomly selected from this extensive database. To enhance the gener-
alizability of our segmentation method, we utilized 3D T1w images 
obtained from various scanner vendors (as detailed in Table 1) and 
included both cognitively normal subjects and those with cognitive 
impairments. Previous research (Griffanti et al., 2016) suggests that 
training algorithms with images from subjects presenting a higher 
number of lesions can improve model accuracy, likely due to an 
increased number of ground truth voxels and a more representative 
distribution of lesions. This observation aligns with our own experi-
ences. Consequently, we specifically chose subjects with a relatively 
high number of PVS, despite the significant increase in time required for 
manual annotation. Ultimately, our training dataset comprised 40 sub-
jects, and our testing dataset included 15 subjects. The data were ac-
quired in 27 centers using 12 different type of scanner models. A 
detailed list of the MR scanner models can be found in the supplemen-
tary file (Table S1).

Table 1 
Subject information of the training and testing datasets.

Age Sex Cognitive 
Impaired

Mean PVS volume, 
mm3

Training dataset, N = 40
Siemens, N =

10
76.8 ±
9.1

2 M/ 
8F

4/10 6335

GE, N = 14 71.8 ±
8.4

7 M/ 
7F

6/14 3102

Philips, N = 16 75.2 ±
5.8

9 M/ 
7F

6/16 5111

Testing dataset, N = 15
Siemens, N = 6 75.3 ±

8.1
4 M/ 
2F

4/6 5436

GE, N = 5 74.2 ±
11.7

3 M/ 
2F

2/5 4047

Philips, N = 4 74.3 ±
5.9

3 M/ 
1F

4/4 6095
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2.2. MRI parameters

MR images in the ADNI3 dataset were acquired across multiple 
research centers using scanners from various vendors. To ensure con-
sistency, a harmonized protocol was developed, with detailed acquisi-
tion parameters available on the ADNI website (https://adni.loni.usc. 
edu/methods/documents/mri-protocols/). For T1-weighted images, 
the main parameters were: Echo Time (TE) = min full echo, Repetition 
Time (TR) = 2300 ms, Inversion Time (TI) = 900 ms, and voxel size = 1 
× 1 × 1 mm3, with a 2X acceleration factor. For FLAIR images, the 
parameters were: TE = 119 (varies by vendor), TR = 4800 ms, TI = 1650 
ms, and voxel size = 1.2 × 1 × 1 mm3.

2.3. Image preprocessing

As image contrast can influence the visibility of PVS and thus affect 
PVS annotation, we implemented several preprocessing steps to reduce 
inter-subject variations. These procedures included bias field correction 
using ANTS (https://stnava.github.io/ANTs/), brain extraction using 
SPM 12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/), and 
intensity normalization using a Fuzzy C-means method (https://github. 
com/jcreinhold/intensity-normalization?tab=readme-ov-file).

2.4. PVS annotation

The quality of ground truth is critical for model development, and it 
is important to consider several details: (1) On T1 images, differentiating 
PVS from other normal linear structures (e.g., the edges of brain gray 
matter on 2D slices or the comb-like structures between the putamen 
and caudate) and lesions (e.g., white matter hyperintensities, WMH, and 
lacunes) can be challenging. These situations were meticulously 
managed by considering the location, size, and morphometry of the 
suspected voxels, and by registering FLAIR images to T1 images to aid in 
distinguishing PVS from other lesions. (2) A key distinction between PVS 
and other disease imaging markers is that PVS is a normal structure in 
the human brain. PVS in the lowest part of the basal ganglia (BG) can be 
observed in almost all healthy young adults and does not indicate 
disease-related pathologies. As such, these were not annotated. (3) 
Annotating PVS is a complex task. Interestingly, the human visual sys-
tem possesses an automatic pattern recognition capability that can help 
identify even vague PVS structures, although it is nearly impossible to 
outline the voxel at zoomed images; however, this may sometimes lead 
to false impressions. From a method development perspective, we 
prioritized robustness and only annotated those voxels that could be 
clearly identified on both large and small scales.

The detailed procedures for PVS annotation included several steps: 
(1) Initially, a group meeting was convened to unify opinions regarding 
the definition of PVS, identification of PVS mimics, and the visual 
threshold required for delineating a specific PVS. (2) Given the sub-
stantial amount of work involved, PVS annotation was divided into three 
stages. Initially, one postgraduate student (LL, with 2 years of experi-
ence) created the preliminary PVS masks. These masks were then refined 
by another postgraduate student (YZ, with 5 years of experience), fol-
lowed by final corrections made by a senior neuroimaging researcher 
(pH, with 15 years of experience). (3) The observers used ITK-SNAP (htt 
p://www.itksnap.org) to draw the PVS on a voxel-by-voxel basis. For 
each image, linear PVS structures that were clearly visible were first 
outlined on three orthogonal planes. Subsequently, the observers 
searched for and annotated any missed PVS that appeared as oval or 
round structures. To aid in differentiating PVS from mimics, co- 
registered FLAIR images were displayed alongside T1w images. How-
ever, given that 3D FLAIR is not readily available in previously acquired 
datasets, we relied solely on T1 images for model training. The anno-
tation process for a single subject took over 20 h.

2.5. Model training

We employed the nnU-Net framework (Isensee et al., 2021) (https 
://github.com/MIC-DKFZ/nnUNet) for training our model. The 
nnU-Net is a deep learning-based segmentation tool that automates the 
configuration of parameters for preprocessing, network architecture, 
training, and post-processing for any new task. It has been extensively 
used and recognized as one of the top segmentation methods across 
more than 23 public biomedical imaging datasets (Isensee et al., 2021), 
with few new models surpassing its performance to date.

Given our objective to develop a practical tool for application in 
multi-center datasets rather than focusing on methodological refine-
ment, we opted for this well-established method. The training was 
executed on an Nvidia 3090 card (24 G memory). We trained the 3D full- 
resolution model across 5 folds, with each fold undergoing 1000 epochs. 
Each epoch took approximately 65 s, culminating in a total training 
duration of about 91 h. The optimization of other hyperparameters was 
managed automatically by nnU-Net.

We have named this trained network "mcPVS-Net," which stands for 
multi-center PVS segmentation network.

2.6. Evaluation against ground truth

We used three metrics (Boutinaud et al., 2021; Lian et al., 2018) to 
evaluate the accuracy of the mcPVS-Net:

(1) DICE. The DICE coefficient is defined as: DICE=2 × |A∩B| / (| 
A|+|B|). A & B represent the segmentation result and the ground 
truth mask, respectively. DICE ranges from 0 to 1, where 0 indicates 
no overlap between the two masks and 1 indicates perfect overlap.
(2) Precision. The Precision is defined as: Precision=TP / (TP+FP). 
TP (True Positives) is the number of correct positive voxels made by 
the model, and FP (False Positives) is the number of incorrect posi-
tive voxels made by the model. A higher precision value, closer to 1, 
indicates that a greater proportion of the positive predictions made 
by the model are correct, while a lower value indicates that the 
model is making more incorrect positive predictions.
(3) Recall. The Recall is defined as: Recall=TP / (TP+FN). FN (False 
Negatives) represents the number of voxels that were incorrectly 
predicted as negative. A higher recall value, closer to 1, indicates that 
the model is effectively identifying the actual PVS, while a lower 
recall value suggests that the model is missing a significant number 
of PVS.

Additionally, the correlations between the PVS volumes from the 
ground truth and the segmented masks were calculated for both the 
training and testing datasets.

2.7. Evaluation in the ADNI3 database

A total of 1090 baseline T1w images were sourced from the ADNI3 
database. Images affected by severe artifacts (N = 36) or high noise 
levels (N = 34) were excluded. The remaining images (N = 1020) un-
derwent the previously described preprocessing procedures, and PVS 
were segmented using mcPVS-Net. These data were collected from all 
the participating sites of the ADNI3 project and the subject information 
could be seen in Table S2. Visual evaluation of the segmentation results 
was conducted for each subject. While various types of errors such as 
missing PVS or mistaking artifacts for PVS were noted, no manual cor-
rections were made due to the mild nature of most errors and the 
impracticality of manual correction in such a large dataset.

BG-PVS and white matter (WM) PVS are distinct in their anatomical 
structures and associated pathologies, hence their links with neurolog-
ical diseases differ. All T1w images were processed using the Samseg 
pipeline (https://surfer.nmr.mgh.harvard.edu/fswiki/Samseg), inte-
grated in Freesurfer (version 7.2), which provided comprehensive brain 
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segmentation including labels for white matter and deep nuclei. Binary 
masks for the BG and cerebral WM were extracted from these results to 
separate PVS into specific regions.

To verify whether mcPVS-Net might erroneously classify white 
matter hyperintensities (WMH) as PVS, WMH were segmented from 
FLAIR images using an in-house trained deep learning model, which was 
previously trained on images from 100 subjects with various conditions 
(healthy, CSVD, AD). Testing on 40 subjects yielded an average DICE 
coefficient of 0.81. Raw FLAIR images and WMH masks were then 
registered to corresponding T1 images to calculate overlap rates be-
tween WMH and PVS. The volume of WMH (WMHnorm) was also 
normalized using the intracranial volume (ICV).

To assess the segmentation against visual scores, 300 subjects were 
selected from the entire dataset using a stratified random method, with 
100 images from each scanner type. An experienced radiologist (PL, 
with 5 years of experience in Radiology) independently evaluated all 
300 images in the BG and WM regions based on established standards. 
The scoring was as follows: in the basal ganglia, PVS were rated 1 if <5 
were present, rated 2 for 5–10 PVS, rated 3 for more than 10 countable 
PVS, and rated 4 when PVS were uncountable. In the white matter, PVS 
were rated 1 if <10 were present in total, rated 2 for >10 total but no 
more than 10 in any single section, rated 3 for 10–20 PVS in the section 
with the most PVS, and rated 4 for >20 PVS in any single section. The 
correlation between visual scores and PVS volumes was examined using 
Spearman’s correlation, and the differences in PVS volumes among 
different rating scores were tested using ANOVA with post-hoc analyses. 
The Dunnett’s T3 method was used to control for multiple comparisons, 
assuming unequal variances. All analyses were conducted both across all 
300 subjects and within each scanner type.

The potential associations of between PVS with recognized factors 
such as age, hypertension, and WMH were explored using multiple 
linear regression analyses. To adjust for the influence of head size, PVS 
volumes were normalized against the intracranial volume (ICV): 
Normalized PVS (PVSnm) = 1000,000 * PVS volume / ICV. PVSnm was 
set as the dependent variable and the related factors were set as inde-
pendent variables. Analyses were performed both with and without 
controlling for scanner vendor.

2.8. Evaluation of segmentation consistency in a longitudinal dataset

To test the consistency of mcPVS-Net for segmentation in longitu-
dinal data, we analyzed 90 subjects (30 for each scanner) with 3 time-
points (baseline, 1 year and 2 years follow up) from the ADNI3 database. 
First, we created a common template for each subject and registered the 
T1w images in all timepoints to the subject-specific common template 
using the antsMultivariateTemplateConstruction2 command embedded 
in the ANTs tool. Default registration parameters were used, and non- 
linear registrations were performed to create the template. Then, all 
images went through the preprocessing and segmentation pipelines as 
we described above. We extracted PVS volumes from every subject at 
each timepoint. Intra-class correlation coefficients were used to assess 
segmentation consistency across timepoints.

2.9. Evaluation in a new dataset with high-resolution T2w images

Finally, we evaluated whether mcPVS-Net could be directly applied 
to another independent dataset (Dataset2, N = 173). In brief, subjects in 
this dataset were community-dwelling middle-to-old age adults enrolled 
through advertisements in communities and online. Subject information 
could be seen in Table S3. All T1w and T2 images were acquired using a 
United Imaging 790 3T scanner. The T1w image had a voxel size of 1 × 1 
× 1mm3, and the T2w image had a voxel size of 0.8 × 0.8 × 0.8mm3.

PVS was segmented from T1w images using the pipeline as described 
above. We annotated PVS in 5 subjects, and calculated the DICE, Recall, 
and Precision values. T1-based PVS scores were evaluated by the same 
observer (PL) using identical criteria. Additionally, as T2w may have 

better sensitivity at detecting PVS, we also evaluated PVS visual scores 
on T2w images. An experienced Radiologist (RZ, 8 years of experience) 
evaluated the PVS score according to another widely used T2w-based 
criteria (Doubal et al., 2010). In brief, 0=no PVS, 1 ≤ 10 PVS, 2 = 11 
to 20 PVS, 3 = 21 to 40 PVS, and 4=more than 40 PVS. The numbers 
refer to PVS on one side of the brain with the highest number of PVS.

Correlation between visual scores and PVS volume were examined 
using Spearman’s correlation, and the PVS volume difference among 
groups with varying PVS scores was tested using ANOVA with post-hoc 
analyses. The Dunnett’s T3 method was used to control for multiple 
comparisons, assuming unequal variances. Groups with less than 5 
subjects were excluded from statistical analyses. We also tested the as-
sociation between PVSnm and age, hypertension, and WMH volume 
using multiple regression analysis.

2.10. Comparison with a previous published method

Currently there is one published and openly available deep-learning 
method that segment PVS from T1 images (Boutinaud et al., 2021). We 
compared the performance of this neural network model with 
mcPVS-Net on the 15 testing images. Following descriptions in the 
paper, we performed brain segmentation, intensity normalization, and 
cropping. The preprocessed images were then segmented using the 
provided neural network model, and the results were transformed back 
into the original space for comparison with results produced by 
mcPVS-Net. This method produces probabilistic maps, and the authors 
recommend a threshold of 0.5. We tested the threshold from 0.1 to 0.9 
with an interval of 0.1, confirming that the threshold of 0.5 could pro-
duce results with the highest DICE. Finally, we compared the results 
using DICE, Precision, and Recall. Visual assessments were also per-
formed to identify the pattern of inconsistent segmentations.

3. Results

3.1. Evaluation against ground truth

Evaluation against ground truth showed a mean DICE of 0.84 in the 
training dataset and a mean DICE of 0.80 in the testing dataset (Table 2). 
The average Precision in the training dataset was 0.91 and 0.81 in the 
testing dataset, indicating that about 80~90 percent of the voxels 
detected by the model were true PVS voxels. The Recall metric suggests 
that the model correctly detected about 80 % of the ground truth voxels. 
When separating all data according to scanner vendors, the segmenta-
tion metrics remained similar across different vendors. The correlation 
coefficients between the ground truth and predicted PVS volumes were 
0.997 in the training dataset and 0.970 in the testing dataset (both p <
0.001, Fig. 1).

3.2. Evaluation in the ADNI3 database

In 300 subjects, the PVS volume was closely associated with visual 
scores in both the BG (r = 0.541, p < 0.001) and WM (r = 0.706, p <

Table 2 
Model evaluation against ground truth.

DICE Precision Recall

Training dataset N = 40
ALL 0.84 ± 0.06 0.91 ± 0.04 0.79 ± 0.08
Siemens 0.84 ± 0.03 0.90 ± 0.04 0.79 ± 0.03
GE 0.82 ± 0.08 0.92 ± 0.03 0.75 ± 0.11
Philips 0.86 ± 0.05 0.90 ± 0.04 0.82 ± 0.06
Testing dataset N = 15
ALL 0.80 ± 0.09 0.81 ± 0.09 0.79 ± 0.12
Siemens 0.76 ± 0.10 0.74 ± 0.08 0.78 ± 0.14
GE 0.85 ± 0.09 0.90 ± 0.06 0.81 ± 0.12
Philips 0.80 ± 0.09 0.81 ± 0.07 0.79 ± 0.11
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0.001) region. In Siemens images, the correlation coefficients were 
0.512 and 0.657; in GE images, the correlation coefficients were 0.576 
and 0.754; in Philips images, the correlation coefficients were 0.630 and 
0.726; all correlations had a p < 0.001.

As shown in Fig. 2, PVS volume robustly increased from subjects with 
low to high PVS scores, and the PVS volumes were significantly different 
between almost all pairs of scores. An exception is the comparison be-
tween score 1 and 2 in the WM region. This might be due to the small 
number of subjects with score 1 in the whole group (N = 14) and 
different scanner groups. A list of PVS volumes corresponding to 
different visual scores can be seen in Supplementary Table S4.

In all 1020 subjects from ADNI3 (Supplementary Table S2), the 
median of the overlapping rate between PVS and WMH in the total 
dataset was 1.33 % (interquartile range: 0.28 %~3.6 %), suggesting a 
very low error rate. Regression analyses showed that age, hypertension, 
and WMH were all associated with BG-PVSnm volume (Table 3), and age 
and WMH were associated with WM-PVSnm. The model R2, 

standardized β, and p values were very close between models with and 
without controlling for the scanner vendor.

Some segmentation results were demonstrated in Fig. 3. There are 
apparent differences in the tissue contrast among images from three 
vendors. Nonetheless, mcPVS-Net generated satisfactory results in all 
three subjects.

3.3. Segmentation consistency in a longitudinal dataset

The ICC across three timepoints in all 90 subjects was 0.966. In 
Siemens, GE, and Philips subsets, the ICCs were 0.954, 0.927, and 0.978, 
respectively. The p values for all the ICC analyses were <0.001.

3.4. Evaluation in Dataset2

The mean DICE, Precision, and Recall values were 0.67, 0.79, and 
0.59, respectively. A demonstration of PVS segmentation in Dataset2 

Fig. 1. Correlation between the ground truth and predicted PVS volumes.

Fig. 2. Differences of PVS volume among subjects with different visual scores. *: p < 0.05; **: p < 0.01; ***: p < 0.001. Multiple comparison correction was 
performed using the Dunnett T3 Method. Groups with less than 5 subjects were excluded from statistical analyses.
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can be seen in Fig. 4. The PVS volumes were significantly correlated with 
visual scores evaluated on T1w image (BG: r = 0.401; WM: r = 0.809; p 
< 0.001 for both). ANOVA analysis among subjects with different T1- 
PVS scores showed significant differences in PVS volumes (Fig. 4, p <

0.001 for both BG and WM region). Post-hoc analysis showed significant 
differences in almost all pairs of scores except for 3–4 in the WM region. 
Please note that there was apparent difference between the two groups, 
the non-significant result might be due to the small number of subjects 

Table 3 
Associations between PVSnm and related risk factors.

Variables BG-PVSnm WM-PVSnm

without scanner variable with scanner variable without scanner variable with scanner variable

β p β p β p β p

Age 0.176 <0.001 0.169 <0.001 0.102 0.003 − 0.101 0.003
Hypertension 0.062 0.037 0.064 0.031 − 0.016 0.611 − 0.019 0.559
WMHf 0.256 <0.001 0.263 <0.001 − 0.081 0.020 − 0.080 0.020
Model R2 0.142(0.001) 0.145(p < 0.001) 0.011(0.058) 0.010(0.015)

Fig. 3. Demonstration of PVS segmentation in images from different scanners.
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(N = 6) in group 4.
The PVS volumes were also correlated with T2-based PVS scores 

(Fig. 5, BG: r = 0.567; WM: r = 0.673; both p < 0.001). ANOVA showed 
significant differences among groups (p < 0.001 for both BG and WM 
region), and post-hoc analysis showed significant differences in all pairs 
of scores.

Age (β=0.188, p = 0.021) and WMHnorm (β=0.319, p < 0.001) were 
associated with higher BG-PVS volume, and hypertension (β=0.188, p =
0.020) was associated with higher WM-PVS volume. A list of PVS vol-
umes corresponding to different visual scores can be seen in Supple-
mentary Table S5.

3.5. Segmentation in subjects with imaging artifacts and lacunes

Artifacts are common in clinical imaging involving older adults and 
patients. We found that mcPVS-Net was relatively robust against mild- 

to-moderate artifacts. As shown in Fig. 6A, many imaging artifacts can 
be seen in the frontal and occipital lobe of the subject. The mcPVS-Net 
only segmented a small number of voxels as PVS.

Furthermore, lacunes are also a common imaging occurrence, which 
can be difficult to be differentiated from PVS even for experienced re-
searchers. Fig. 6B and 6C showed several cases where mcPVS-Net 
correctly avoided lacunes.

3.6. Comparison with a previous deep learning method

Using Boutinaud’ method, mean DICE in the testing data ranged 
from 0.40 to 0.51, with the highest value derived from threshold 0.5. 
Under this threshold, the mean DICE value was 0.51, the mean Precision 
was 0.54, and the mean Recall was 0.52. We examined the results and 
found that the two methods were generally consistent in WM PVS seg-
mentation (Fig. 7A), but there were two major differences. First, 

Fig. 4. Demonstration of PVS segmentation in one subject from Dataset2.

Fig. 5. Differences of PVS volume among subjects with different visual scores evaluated on T1 or T2 weighted images. *: p < 0.05; **: p < 0.01; ***: p < 0.001. 
Multiple comparison correction was performed using the Dunnett T3 Method. Groups with less than 5 subjects were excluded from statistical analyses.
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Boutinaud’ method segmented large PVS in the inferior part of BG 
(Fig. 7B) while mcPVS-Net didn’t. Second, the previous method 
neglected some PVS in the BG region (Fig. 7C). Although lowering the 
threshold to 0.1 might remedy some errors, many PVS were still missing, 
and a low threshold significantly increased false positives in other brain 
regions.

4. Discussion

In this study, we developed mcPVS-Net, a neural network model that 
can segment PVS from multi-center 3D T1 images. Tests against ground 
truth PVS masks showed good segmentation accuracy. There were good 
correlations between PVS volumes and visual scores in both the BG and 

Fig. 6. (A) PVS segmentation in a subject with widespread imaging artifacts (yellow arrowhead) from the ADNI database. The mcPVS-Net had a low error rate, 
ignoring most of the dark artifact lines. (B) mcPVS-Net avoided lacunes in the BG region (blue arrowhead) in subjects from the United imaging dataset. (C) mcPVS- 
Net avoided lacunes in various WM regions (orange arrowhead) in subjects from the United imaging dataset.
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WM region and the performance across different scanner vendors was 
similar. Associations between PVS volume and several well-recognized 
factors of PVS dilation were validated in the whole ADNI3 dataset. 
Furthermore, we tested the generalizability of mcPVS-Net in another 
completely new dataset, which also demonstrated good accuracy and 
the PVS volume can differentiate different visual scores evaluated using 
either T1 or T2-weighted images. In addition, the model can produce 
robust results when imaging artifacts and other brain lesions existed. 
The mcPVS-Net may serve as a useful tool for future multi-center clinical 
imaging studies.

Recently, several reviews systematically analyzed the related liter-
atures and pointed out a few limitations (Pham et al., 2022; Waymont 
et al., 2024), including a lack of validation against ground truth, difficult 
to be generalized, lack of differentiation between PVS and other lesions, 
etc. Many previous studies adopting thresholding or filtering methods 
(Ballerini et al., 2018; Ramirez et al., 2015) evaluated model perfor-
mance against visual assessments, but not ground truth masks. Among 
deep learning based segmentation methods, Lian et al. (2018) and Jung 
et al. (2019) trained models on images acquired on 7T MR scanners, 
which are not readily available in most clinical sites. Sudre et al. (2019)
trained a model based on 1 mm isotropic T1w, T2w, and FLAIR from 14 
subjects and evaluated the model on 2 subjects. Rashid et al. (2023)
trained multi-class models based on high-resolution T1w, T2w, FLAIR, 
and SWI images on 21 subjects, but the main purpose was to compare 
the contribution of different sequences and only leave-one-out cross--
validation was performed. Dubost et al. (2019) trained a neural network 

based on high-resolution T2 weighted images, but the evaluation was 
against visual scores. Considering that many previous projects, such as 
the ADNI and UK biobank, had not acquired high resolution T2 images, 
these models may have limited applicability. Williamson et al. (2022)
trained a neural network based on thick-slice T2w images from multiple 
centers and the goal was to detect none-to-mild versus 
moderate-to-severe EPVS, so no quantitative information could be 
derived.

There is one openly available deep learning method that segments 
PVS solely based on 3D T1w images (Boutinaud et al., 2021). The au-
thors used a class of DL methods based on autoencoders and U-shaped 
networks. They trained the model using T1w images (1 mm isotropic) of 
40 subjects acquired using an identical Siemens Prisma 3T scanner, and 
the model was tested in 10 images with the same acquisition conditions. 
The DICE coefficient for PVS segmentation was 0.51 for WM and 0.66 for 
BG. The authors applied the method to another MRI database (1 mm 
isotropic, Philips 3T scanner) and obtained a similar distribution of PVS 
load. However, no further comparison against ground truth or visual 
scores were performed in the new dataset. Unlike on T2w images, PVS 
on T1w images are relatively sparse, therefore, the authors combined 
the autoencoders and U-shaped networks to overcome this issue. Here 
we tried to mitigate this issue through training on subjects with large 
amount of PVS. Relative advantages of the current mcPVS-Net include 
training and testing on multi-center images from three scanner vendors, 
validation of the associations between PVS volume and well-recognized 
risk factors, additional validation against T1w and T2w scores in a 

Fig. 7. (A) Our method and Boutinaud’s method performed similar in the WM region. (B) mcPVS-Net did not segment PVS in the lower BG region. (C) mcPVS-Net 
segmented more PVS in the BG region.
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completely new dataset, and evaluation of interferences from artifacts 
and other lesions. Because there are significant differences between the 
vesselness approach and the deep learning approach, we did not 
compare our method with studies using the vesselness approach.

With the rise of clinical interests on PVS, many researchers try to 
apply quantitative PVS measures in clinical studies. However, few 
studies performed evaluation against ground truth in multi-center 
datasets. We evaluated the quality of PVS segmentation in images 
from three different vendors and found that PVS volumes were well 
correlated with visual scores across the different vendors. We also 
showed that introducing the scanner variable almost did not improve 
prediction power in the large ADNI3 dataset. Furthermore, direct 
application in another completely new dataset showed good segmen-
tation accuracy, and the segmented PVS volumes were significantly 
different among groups with different visual scores. Possibly due to a 
smaller sample size and a younger mean age, some relationships be-
tween risk factors and PVS volumes were not statistically significant. 
Nonetheless, these results suggest good model generalizability, sup-
porting the use of mcPVS-Net in large scale studies that may contain 3D 
T1w images from various scanners.

A potential concern regarding PVS segmentation based on T1w im-
ages is the reduced sensitivity compared to T2w-based approaches. 
Interestingly, we found that PVS volume derived from T1w images could 
differentiate subjects with different T2w-PVS scores, suggesting that the 
current approach has a sensitivity like traditional T2w based visual 
assessment. It should be noted that although there are good correlations 
between T1w- and T2w-based visual scores (Adams et al., 2015; Evans 
et al., 2023), T2w images are still superior for detecting small PVS. PVS 
segmentation based on T2w images should be able to detect more subtle 
changes. Nonetheless, comparison with T2w-based PVS segmentation 
will introduce other methodological issues beyond the scope of this 
study. Furthermore, a recent study using Boutinaud’s method found that 
BG-PVS volume segmented from T1w images could predict CSVD pro-
gression, confirming the clinical value of T1-based PVS segmentation (Li 
et al., 2024).

Imaging artifacts and contamination from other lesions are common 
in clinical imaging of older adults and patients. In this study, we only 
excluded those patients with severe head motion that caused apparent 
blurring in images. In subjects with mild-to-moderate head motion, we 
found that the mcPVS-Net could avoid most of the artifacts. Errors only 
occurred when the location and orientation of artifacts were like real 
PVS tubes. Furthermore, the segmented PVS masks had a very low 
overlapping rate with WMH and could avoid typical lacune lesions. We 
noticed that a few small lacunes that looked like PVS were wrongly 
segmented as PVS. Nonetheless, differentiation of PVS and small lacunes 
are very difficult based on solely T1 images. Although adding FLAIR to 
training modalities may increase the accuracy regarding lacune differ-
entiation, we had not done this due to (1) many past imaging projects 
had not acquired 3D FLAIR images; (2) lacunes are relatively scarce for 
most datasets and removing them from the PVS masks is not difficult. 
Training on 3D-T1 images alone, on the other hand, improves the 
applicability of our model. In general, the mcPVS-Net was robust to 
these interferences. We demonstrated the association between PVS and 
risk factors without applying any postprocessing corrections, confirming 
the robustness of mcPVS-Net.

This study is subject to several limitations. First, due to the vast 
amount of work for PVS annotation, we only annotated 60 T1w volumes 
and the model was only tested in 20 subjects. While the sample size is 
already larger than all previous PVS segmentation studies, it is still 
relatively small compared to many other imaging segmentation tasks. 
This is mainly due to the difficulty of PVS annotations on high-resolution 
images. While the number of images volumes was small, there were over 
30,000 (over 200 slices, 3 orthogonal planes for each subject) image 
slices and countless small PVS objects. Second, we did not evaluate inter- 
rater or intra-rater reliability for the same reasons mentioned above. It 
should be noted that the identification and annotation of PVS are not 

easy tasks and may be subject to observer bias. Similarly, segmentation 
accuracy in the longitudinal dataset was evaluated using PVS volumes 
rather than ground truth masks. Therefore, variations in longitudinal 
segmentations may exist. Third, we chose to use only T1w images to 
train the neural network and this strategy has inherent shortcomings, 
such as a relatively low sensitivity to PVS, difficult to differentiate other 
lesions, etc. Despite these issues, we showed that the sensitivity of 
mcPVS-Net is similar to traditional T2-weighted scoring method and is 
robust to common interferences. On the other hand, this strategy allows 
the mcPVS-Net to be applied to many existing datasets that only ac-
quired high-resolution T1 images. Fourth, due to our annotation stra-
tegies, the model may overlook some PVS structures with very weak 
contrast to adjacent white matter (Figure S3). According to our tests, this 
strategy does not significantly influence the model’s clinical applica-
bility but can substantially improve annotation consistency. Fifth, we 
assessed segmentation accuracy in scanners from different vendors, but 
there would still be differences related to scanner models. Due to the 
large number of scanner models, assessing segmentation accuracy for 
each model would require a much larger number of annotated cases. 
Image quality also depends on other complex parameters that influence 
spatial resolution, tissue contrast, etc. Considering that acquisition 
protocols have been harmonized in the ADNI project, PVS segmentation 
accuracy in other datasets may decrease. Since we demonstrated 
appropriate segmentation in our local dataset, we expect decent per-
formance for images acquired using similar protocols. However, appli-
cations in significantly different images, such as those acquired using 
1.5T or 7T scanners, would need further validation. Careful checking for 
incorrect segmentation due to imaging artifacts and other unexpected 
lesions is also necessary. Lastly, although we tested the association be-
tween PVS volume and visual score in images from different vendors, we 
had not evaluated the segmentation consistency using travel subject. 
The site effect should be carefully examined in future application 
studies.

5. Conclusion

We successfully developed mcPVS-Net, a neural network model that 
segments PVS from 3D-T1w images. Validations against ground truth 
masks and visual scores demonstrated good accuracy and generaliz-
ability. The mcPVS-Net may serve as a useful tool for future studies.
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Smith, L., Ourselin, S., Jäger, R.H., 2019. 3D multirater RCNN for multimodal 
multiclass detection and characterisation of extremely small objects. In: 
International Conference on Medical Imaging with Deep Learning. PMLR, 
pp. 447–456.

Sudre, C.H., Van Wijnen, K., Dubost, F., Adams, H., Atkinson, D., Barkhof, F., Birhanu, M. 
A., Bron, E.E., Camarasa, R., Chaturvedi, N., 2024. Where is VALDO? VAscular 
lesions detection and segmentation challenge at MICCAI 2021. Med. Image Anal. 91, 
103029.

Tidwell, J., Taylor, J., Collins, H., Chamberlin, J., Barisano, G., Sepehrband, F., 
Turner, M., Gauthier, G., Mulder, E., Gerlach, D., 2023. Longitudinal changes in 
cerebral perfusion, perivascular space volume, and ventricular volume in a healthy 
cohort undergoing a spaceflight analog. Am. J. Neuroradiol. 44, 1026–1031.

Wang, S., Huang, P., Zhang, R., Hong, H., Jiaerken, Y., Lian, C., Yu, X., Luo, X., Li, K., 
Zeng, Q., 2021. Quantity and morphology of perivascular spaces: associations with 
vascular risk factors and cerebral small vessel disease. J. Magn. Reson. Imaging 54, 
1326–1336.

Wardlaw, J.M., Benveniste, H., Nedergaard, M., Zlokovic, B.V., Mestre, H., Lee, H., 
Doubal, F.N., Brown, R., Ramirez, J., MacIntosh, B.J., 2020. Perivascular spaces in 
the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 16, 137–153.

Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., 
Lindley, R.I., O’Brien, J.T., Barkhof, F., Benavente, O.R., Black, S.E., Brayne, C., 
Breteler, M., Chabriat, H., Decarli, C., de Leeuw, F.E., Doubal, F., Duering, M., 
Fox, N.C., Greenberg, S., Hachinski, V., Kilimann, I., Mok, V., Oostenbrugge, R., 
Pantoni, L., Speck, O., Stephan, B.C., Teipel, S., Viswanathan, A., Werring, D., 
Chen, C., Smith, C., van Buchem, M., Norrving, B., Gorelick, P.B., Dichgans, M., 
nEuroimaging, S.T.f.R.V.c.o., 2013. Neuroimaging standards for research into small 
vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 
12, 822–838.

Waymont, J.M., Valdes Hernandez, M.D.C., Bernal, J., Duarte Coello, R., Brown, R., 
Ballerini, L., Chappell, F.M., Wardlaw, J.M., 2024. A systematic review and meta- 
analysis of automated methods for quantifying enlarged perivascular spaces in the 
Brain. medRxiv, 2024.2003. 2004.24303705. 

Williamson, B.J., Khandwala, V., Wang, D., Maloney, T., Sucharew, H., Horn, P., 
Haverbusch, M., Alwell, K., Gangatirkar, S., Mahammedi, A., 2022. Automated 
grading of enlarged perivascular spaces in clinical imaging data of an acute stroke 
cohort using an interpretable, 3D deep learning framework. Sci. Rep. 12, 788.

Zeng, Q., Li, K., Luo, X., Wang, S., Xu, X., Jiaerken, Y., Liu, X., Hong, L., Hong, H., Li, Z., 
2022. The association of enlarged perivascular space with microglia-related 
inflammation and Alzheimer’s pathology in cognitively normal elderly. Neurobiol. 
Dis. 170, 105755.
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