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a b s t r a c t 

The reference standard for amyloid-PET quantification requires structural MRI (sMRI) for preprocessing in both multi-site research studies and clinical trials. Here 

we describe rPOP (robust PET-Only Processing), a MATLAB-based MRI-free pipeline implementing non-linear warping and differential smoothing of amyloid-PET 

scans performed with any of the FDA-approved radiotracers ( 18 F-florbetapir/FBP, 18 F-florbetaben/FBB or 18 F-flutemetamol/FLUTE). Each image undergoes spatial 

normalization based on weighted PET templates and data-driven differential smoothing, then allowing users to perform their quantification of choice. Prior to 

normalization, users can choose whether to automatically reset the origin of the image to the center of mass or proceed with the pipeline with the image as it is. 

We validate rPOP with n = 740 (514 FBP, 182 FBB, 44 FLUTE) amyloid-PET scans from the Imaging Dementia —Evidence for Amyloid Scanning – Brain Health 

Registry sub-study (IDEAS-BHR) and n = 1,518 scans from the Alzheimer’s Disease Neuroimaging Initiative ( n = 1,249 FBP, n = 269 FBB), including heterogeneous 

acquisition and reconstruction protocols. After running rPOP, a standard quantification to extract Standardized Uptake Value ratios and the respective Centiloids 

conversion was performed. rPOP-based amyloid status (using an independent pathology-based threshold of ≥ 24.4 Centiloid units) was compared with either local 

visual reads (IDEAS-BHR, n = 663 with complete valid data and reads available) or with amyloid status derived from an MRI-based PET processing pipeline (ADNI, 

thresholds of > 20/ > 18 Centiloids for FBP/FBB). Finally, within the ADNI dataset, we tested the linear associations between rPOP- and MRI-based Centiloid values. 

rPOP achieved accurate warping for N = 2,233/2,258 (98.9%) in the first pass. Of the N = 25 warping failures, 24 were rescued with manual reorientation and 

origin reset prior to warping. We observed high concordance between rPOP-based amyloid status and both visual reads (IDEAS-BHR, Cohen’s k = 0.72 [0.7–0.74], 

∼86% concordance) or MRI-pipeline based amyloid status (ADNI, k = 0.88 [0.87–0.89], ∼94% concordance). rPOP- and MRI-pipeline based Centiloids were strongly 

linearly related (R 2 :0.95, p < 0.001), with this association being significantly modulated by estimated PET resolution ( 𝛽= -0.016, p < 0.001). rPOP provides reliable 

MRI-free amyloid-PET warping and quantification, leveraging widely available software and only requiring an attenuation-corrected amyloid-PET image as input. 

The rPOP pipeline enables the comparison and merging of heterogeneous datasets and is publicly available at https://github.com/leoiacca/rPOP . 
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. Introduction 

Positron emission tomography (PET) with specific radioligands can
e used to measure brain amyloid plaque accumulation (amyloid-PET)
n both clinical practice and research ( Jagust, 2018 ; Villemagne et al.,
018 ). Three fluorine-18 radioligands are currently approved for clin-
cal use by the U.S. Food and Drug Administration (FDA), i.e. 18 F-
orbetapir (FBP, Amyvid TM ), 18 F-florbetaben (FBB, Neuraceq TM ) and
8 F-flutemetamol (FLUTE, Vyzamil TM ). With recent advances in disease-
odifying treatments for Alzheimer’s Disease (AD), amyloid-PET quan-

ification has become standard in clinical trials, where it is used to screen
ligible participants and evaluate drug or other intervention effects on
myloid plaques ( Avgerinos et al., 2021 ). In future clinical uses, amy-
oid PET quantification may be needed to evaluate eligibility for drug
herapy and gauge treatment response, e.g. to amyloid-beta targeting
onoclonal antibodies ( Mintun et al., 2021 ). 

In most applications, amyloid-PET scans are processed and analyzed
o obtain a global neocortical standardized uptake value ratio (SUVR),
sed to define amyloid status ( A ± ) based on tracer- and method-specific
hresholds. This approach requires the definition of reference and tar-
et regions-of-interest (ROIs), respectively, of areas devoid of specific
inding (e.g., cerebellum for AD ( Thal et al., 2002 )), and of areas in
hich specific binding would indicate the ongoing disease process (e.g.,

rontal, parietal and temporal cortices for AD ( Klunk et al., 2004 )). A
eocortical SUVR is then estimated as a target-to-reference ratio, which
an subsequently be transformed to Centiloid units ( Klunk et al., 2015 ),
onverting SUVRs across different methodologic approaches and radio-
racers to a common scale, enabling comparison of data across differ-
nt studies. The Centiloid scale is anchored at 0, which represents av-
rage binding in young cognitively-normal individuals who are highly
nlikely to have amyloid deposition, and at 100, which represents aver-
ge binding in individuals with mild-to-moderate dementia due to AD
 Klunk et al., 2015 ). 

The standard approach for amyloid-PET quantification relies on the
rocessing of T1-weighted structural magnetic resonance imaging (MRI)
cquired in proximity to amyloid-PET, given its higher resolution and
natomic definition compared to PET. This is the standard approach in
ultisite studies (e.g. the Alzheimer’s Disease Neuroimaging Initiative

ADNI]), accompanied by additional processing to harmonize resolu-
ion of heterogeneous amyloid-PET scans, requiring participating sites
o perform phantom PET scans ( Jagust et al., 2015 ). While improving
ccuracy, MRI-based amyloid-PET processing adds cost, requires pa-
ients to undergo an additional scan and, depending on the quantifica-
ion approach, can be computationally intensive and time-consuming.
oreover, requiring MRI-based processing prevents a patient with MRI

ontra-indications (e.g., certain pacemakers) from participating in mul-
isite studies or clinical trials. 

Several other PET-only processing pipelines, software and ap-
roaches have been described previously ( Akamatsu et al., 2016 ;
ourgeat et al., 2015 ; Edison et al., 2013 ; Kang et al., 2018 ; Lilja et al.,
019 ; Lundqvist et al., 2013 ; Pegueroles et al., 2021 ). These include
rocessing based on multi-atlas or adaptive PET templates, leveraging
rincipal component analyses, deep learning and/or linear combination
pproaches ( Akamatsu et al., 2016 ; Bourgeat et al., 2015 ; Fripp et al.,
008 ; Kang et al., 2018 ; Lilja et al., 2019 ; Lundqvist et al., 2013 ;
egueroles et al., 2021 ). Other studies have also investigated canoni-
al approaches to define tracer-specific PET templates, e.g. average of
arped PET images, which were then used to drive spatial transforma-

ions ( Bourgeat et al., 2015 ; Edison et al., 2013 ; Kang et al., 2018 ).
inally, several PET-only processing commercial and non-commercial
oftware options are available, e.g. HERMES BRASS (Hermes Medical
olutions AB), Siemens Syngo.VIA Amyloid Plaque (Siemens Medical
olutions Inc.), PNEURO PMOD (PMOD Technologies Ltd), MIMNeuro
MIM Software Inc.), CortexID (GE Healthcare), Amyloid IQ (Invicro)
nd CapAIBL ( Dore et al., 2016 ). 
a  

2 
Here we present an open-source MRI-free pipeline (referred to as
POP, robust PET-Only Processing, hereafter) which allows reliable,
ata-driven processing of community acquired heterogeneous amyloid-
ET scans. rPOP was validated with all three FDA-approved tracers,
s based on widely available software, is computationally efficient,
ncludes data-driven differential smoothing and is fully automated.
POP requires only an attenuation-corrected amyloid-PET scan acquired
ollowing manufacturer guidelines (i.e., appropriate acquisition time
nd radiotracer dose) and is publicly available at https://github.com/
eoiacca/rPOP . 

. Materials and methods 

rPOP involves two main processing steps: i) non-linear warping and
i) resolution estimation and differential smoothing. After running rPOP
nd subsequent necessary quality controls, rPOP users can proceed with
heir processing of choice, e.g. obtaining neocortical amyloid-PET SU-
Rs with ROIs in standard space (see Fig. 1 for a graphical summary). 

Here we present and validate a standard approach where, us-
ng rPOP-warped and smoothed images, we quantify neocortical SU-
Rs using the standard Global Alzheimer’s Association Interactive
etwork (GAAIN, http://www.gaain.org/centiloid-project ) regions-of-

nterest (ROIs). Finally, for each of the three FDA-approved amyloid-
ET tracers, we calibrate and obtain Centiloid scale conversion
ormulas. 

.1. Validation datasets 

The first validation dataset included amyloid-PET scans per-
ormed with all 3 FDA-approved radiotracers in the Imaging De-
entia —Evidence for Amyloid Scanning (IDEAS) Study ( https://www.

deas-study.org/Original-Study ). The IDEAS Study recruited more than
8,000 Medicare beneficiaries between February 2016 and January
018, age 65 and older with either unexplained mild cognitive impair-
ent (MCI) or dementia of uncertain cause ( Rabinovici et al., 2019 ). The

DEAS dataset includes scans acquired at over 300 community-based
ET facilities across the U.S., representing a wide variety of PET plat-
orms, scanners and diverse acquisition and reconstruction protocols.

e had access to a subset of IDEAS scans of participants who co-enrolled
n the Brain Health Registry add-on study (IDEAS-BHR) ( Nosheny et al.,
020 ), including N = 740 PET/CT attenuation-corrected amyloid-PET
mages (514, 182 and 44 using FBP, FBB and FLUTE, respectively).

e defined amyloid status ( A ± ) via rPOP-based Centiloid quantifica-
ion (see details below) and an independently derived, pathology-based
hreshold of 24.4 Centiloids ( La Joie et al., 2019 ). This approach was
ompared to amyloid status as defined by clinical visual reads per-
ormed at the respective IDEAS Study sites applying FDA-approved,
adiotracer-specific criteria for clinical interpretations of amyloid PET
 Rabinovici et al., 2019 ). All IDEAS-BHR participants had consented to
e contacted regarding additional studies and provided electronic con-
ent to be part of BHR and have such data cross-linked with the orig-
nal IDEAS Study data ( Nosheny et al., 2020 ). In the original IDEAS
tudy, written informed consent was obtained from all participants or
heir legally authorized representative (see details in ( Rabinovici et al.,
019 )). 

As a secondary validation dataset, we downloaded all available base-
ine FBP- and FBB-PETs from the ADNI (adni.loni.usc.edu) database (as
f December 2020), with a total of N = 1,518 scans (1,249 FBP and
69 FBB). The ADNI was launched in 2003 as a public-private partner-
hip, led by principal investigator Michael W. Weiner, MD. The primary
oal of ADNI has been to test whether serial MRI, PET, other biolog-
cal markers, and clinical and neuropsychological assessment can be
ombined to measure the progression of MCI and early AD. For up-to-
ate information, see www.adni-info.org . All ADNI participants signed
 written informed consent at the respective participating sites, see

https://github.com/leoiacca/rPOP
http://www.gaain.org/centiloid-project
https://www.ideas-study.org/Original-Study
http://www.adni-info.org


L. Iaccarino, R. La Joie, R. Koeppe et al. NeuroImage 246 (2022) 118775 

Fig. 1. Graphical summary of rPOP and quantification example. 

Figure showing (A) a graphical summary of the rPOP pipeline and (B) an example of quantification using the Global Alzheimer’s Association Interactive Network 

(GAAIN) 2mm regions of interest (cortex: purple, whole cerebellum: green) for an ADNI scan. rPOP-based PET Processing quantifications are compared to the ADNI 

MRI-based PET processing results for this specific case. 
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ww.adni-info.org for details. See Supplementary Table 1 for a demo-
raphic and clinical summary for the two validation datasets. 

ADNI images were more homogeneous with regards to the acqui-
ition and reconstruction parameters, although acquired from five dif-
erent scanner manufacturers and tens of scanner models. rPOP-based
myloid status and Centiloid units were cross-validated with ADNI Cen-
iloids and A ± status as derived from the ADNI MRI-based PET process-
ng and quantification pipeline (see ( Jagust et al., 2015 ; Royse et al.,
021 ), ADNI documentation and below for details). 

.1.1. Dataset preparation 

IDEAS-BHR dataset . DICOM datasets were downloaded as provided
y the IDEAS Study Image repository and converted to NifTI with
icm2nii ( https://github.com/xiangruili/dicm2nii ) ( Li et al., 2016 ). For
ases in which the image set was uploaded by the site as a dynamic ac-
uisition with multiple frames acquired during the imaging session, we
igidly realigned and averaged all the frames. No other image handling
as performed before rPOP processing. 

ADNI dataset . PET images in ADNI are pre-processed to various
xtents ( Jagust et al., 2015 ). To be more comparable to the IDEAS-
HR dataset processing, we downloaded ADNI PET scans in their “Co-
egistered, Averaged ” pre-processing stage (Step 2), i.e. without the dif-
erential smoothing performed in ADNI, in NIfTI format. No other image
andling was performed before rPOP processing. 

.2. Software dependencies 

- MATLAB (proprietary commercial software). rPOP has been vali-
dated with MATLAB R2018b (OS: macOS High Sierra) and R2020b
(OS: macOS Mojave) 

- Statistical Parametric Mapping v12 (SPM12) toolbox (publicly
available) for MATLAB, available at https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/ 

- Analysis of Functional NeuroImages (AFNI) software suite (publicly
available), downloadable at https://afni.nimh.nih.gov/ . rPOP has

been developed/validated with AFNI_20.3.03 (Dec 7 2020). n  

3 
.3. Spatial normalization 

.3.1. Templates generation 

Three templates were generated for each FDA-approved radiotracer
o represent a “negative ”, a “positive ” and an “average ” image. For both
BP-PET and FBB-PET we used N = 100 randomly selected ADNI images
50 amyloid-positive and 50 amyloid-negative, defined using ADNI MRI-
ased PET processing) in their fully preprocessed version (Step 4). 50
ositive and 50 negative scans were used to create the “positive ” and
negative ” tracer-specific templates, while the 100 images were com-
ined to generate the “average ” template for each tracer. For FLUTE-
ET, we used the GAAIN dataset, which includes n = 50 participants
ith likely high amyloid burden (i.e., including dementia due to AD,
mnestic MCI and older healthy controls ( > 45 yrs old)) and n = 24
ounger healthy controls. All 74 scans were used to generate the “av-
rage ” template. We then applied the GAAIN Centiloid values to split
he FLUTE-PET dataset and generate the “negative ” and “positive ” tem-
lates based on an a priori threshold of 24.4 Centiloids ( La Joie et al.,
019 ). 

All templates were generated with the same standard approach, in-
luding i) PET-to-MRI rigid-body co-registration, ii) non-linear warping
f the MRI to the standard space, iii) application of transformation pa-
ameters to the registered PET scans, iv) calculation of a soft mean of
he warped PET scans to create the template image. All the templates
re available at: https://neurovault.org/collections/CPHVNXDQ/ (see
lso Fig. 1 A and Supplementary Figure 1) and on https://github.com/
eoiacca/rPOP . 

.3.2. Non-linear warping 

At the beginning, rPOP prompts the user to indicate whether au-
omatic origin resetting to the center of the image should be per-
ormed. Resetting the origin greatly improves the precision of warp-
ng and is recommended unless the field of view during the acquisi-
ion was particularly large (e.g. including whole neck), or in case the
rigin of the input scan has been already manually set. Extra care is
eeded for images with pronounced head tilting or subject misposi-

http://www.adni-info.org
https://github.com/xiangruili/dicm2nii
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://afni.nimh.nih.gov/
https://neurovault.org/collections/CPHVNXDQ/
https://github.com/leoiacca/rPOP
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ioning, although a failed warping would be noticed in the later QC
hases. The code performing the origin reset is from F. Yamashita and
s part of an ac/pc co-registration script (parent function available at:
ttp://www.nemotos.net/scripts/acpc_coreg.m ). 

Next, the user is asked to choose which PET templates to use
or the non-linear warping. rPOP comes with two main options, i.e.,
racer-independent and tracer-dependent. In the tracer-independent ap-
roach, all nine PET templates (3 for each tracer) will be entered at
he same time in the computation for any given scan. In the tracer-
ependent approach, the user is instead asked to choose which set of
emplates to use based on the tracer. rPOP was originally designed
o run with a tracer-independent approach to allow users to begin
patial processing of PET scans even when lacking or doubting ra-
ioligand information, e.g., with initial large data transfers, lacking
lear metadata etc. Using all nine amyloid-PET templates may also
llow a more efficient handling of atypical binding patterns. In both
pproaches, using either nine (tracer-independent approach) or three
tracer-dependent approach) templates, SPM12 will try “to find the best
inear combination of these images [i.e., the templates] in order to
est model the intensities in the source image ” (see SPM12 manual
t https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf ). There-
ore, regardless of the number of templates used, SPM will first derive
 linear combination, and then use the combined image to drive spa-
ial normalization. Non-linear warping in rPOP is performed using the
PM12 Old Normalization toolbox, using default settings except for the
ounding box, which was modified to be larger, i.e. [ − 100 − 130 − 80;
00 100 110]. 

.4. Full-width at half maximum (FWHM) estimation and differential 

moothing 

After warping, rPOP uses the AFNI ( Cox, 1996 ; Cox and
yde, 1997 ) 3dFWHMx function (see details at https://afni.nimh.
ih.gov/pub/dist/doc/program_help/3dFWHMx.html ) to estimate the
ull-Width at Half-Maximum (FWHM) differential smoothing kernel to
e applied to the individual scan. The call includes flags to enable auto-
ated computation of a brain mask ( -automask ) and to model the intrin-

ic spatial structure of the signal in the PET image ( − 2difmad ). Estimated
WHMs are saved in text files for each scan and automatically imported
nto MATLAB. Based on the estimations, the resulting smoothing filter
s calculated based on the standard formula for each plane: 

lt er = 

√ (
FWH 𝑀 targ et 

)2 − 

(
FWH 𝑀 esti mated 

)2 

In rPOP the target resolution is set to an approximate isotropic
0mm 

3 resolution, as this was the 80th percentile of the FWHM esti-
ations in the IDEAS-BHR dataset (see also below). This dataset was

hosen as a reference to define the target resolution given that it is more
epresentative of community acquired scans, with a wider range of im-
ge quality and resolution. For each given image and plane, in case the
stimated FWHM was higher than target resolution, then the assigned
moothing filter would be 0. Smoothing of the image based on the de-
ned filters was then applied with SPM12 with default parameters. 

To validate the accuracy of 3dFWHMx in estimating the FWHM,
e used a dataset of N = 158 warped 11 C-PiB-PET scans (included in
 Iaccarino et al., 2021 )), acquired at the Lawrence Berkeley National Lab
Berkeley, CA, USA) on a Siemens Biograph 6 Truepoint PET/CT scanner
n 3D acquisition mode. The calculated image resolution for these scans
s 6.5 × 6.5 × 7.25 (average 6.75) mm using a Hoffman phantom. Com-
aring the average estimated FWHM for each of these scans to the aver-
ge calculated resolution resulted in high accuracy, with an average ± sd
bsolute FWHM estimation error of 0.39 ± 0.33mm 

3 . The same valida-
ion was performed on a subset of N = 280 (of which, 255 FBP-PET and
5 FBB-PET) scans from the ADNI dataset (as it was the largest group
ith the same scanner, i.e. Siemens ECAT Exact HR + ), with a similar

rror of 0.44 ± 0.4mm 

3 . 
4 
.5. Quality control 

Controlling the accuracy of the non-linear warping is essential to de-
ermine the reliability of the subsequent quantification. It is strongly
ecommended that single-subject QC be performed, including at least
 qualitative evaluation of each non-linearly warped image to assess
he accuracy of the spatial transformation. Orientation and size should
atch template space and there should not be macroscopic artifacts or
eformations in the brain, with special attention to the reference region.
n case the user chooses to proceed with an ROI-based analysis (as pre-
ented below), it is critical at this stage to assess the goodness of fit of the
uantification ROIs on each warped image. Examples of this QC process
erformed with the slover SPM12 function are shown in Fig. 2 A, using
he GAAIN 2 mm reference (whole cerebellum) and target regions. 

In case macroscopic distortions in the warped images ( “hard ” fail-
res) are detected, rPOP should be re-run after manually reorienting
nd resetting the origin to assist the non-linear warping. In case the re-
ulting warping is still not accurate, it is likely that some features in the
mage hamper the spatial normalization, and the user should consider
ore advanced image preprocessing (e.g., cleaning extra-brain tissue,

ropping) or ultimately dropping the scan from analysis. 

.6. Quantification example: estimation of neocortical SUVR and 

entiloids 

As a quantification example, here we quantified neocortical SUVRs
y using the GAAIN 2 mm cortical and whole cerebellar ROIs (respec-
ively, target and reference). We also obtain tracer-specific Centiloid
onversion formulas for each of the FDA-approved radioligands, follow-
ng the process outlined in the Centiloid methods paper ( Klunk et al.,
015 ). Level 1 and 2 Centiloid calibration data are available in the Sup-
lementary material. 

Based on the calibration, the following formulas were estimated to
onvert rPOP-based neocortical SUVRs to rPOP-based Centiloids: 

 𝐵𝑃 𝐶𝐿 = ( 189 . 9 ∗ 𝐹 𝐵𝑃 𝑆𝑈𝑉 𝑅𝑖𝑛𝑑 ) − 211 . 1 
 𝐵 𝐵 𝐶𝐿 = ( 160 . 7 ∗ 𝐹 𝐵 𝐵 𝑆𝑈𝑉 𝑅𝑖𝑛𝑑 ) − 169 . 2 
 𝐿𝑈𝑇 𝐸𝐶𝐿 = ( 127 . 6 ∗ 𝐹 𝐿𝑈 𝑇 𝐸𝑆𝑈 𝑉 𝑅𝑖𝑛𝑑 ) − 136 . 2 

These conversion formulas are specific to the default processing de-
cribed above. Any methodological variation would invalidate the for-
ulas and require the user to cross-validate or recalibrate the processing

ccordingly. 

.7. Data/code availability statement 

Both IDEAS and ADNI data are available conditional to approval
f a data request to be submitted through the respective web-
ites, at https://www.ideas-study.org/Original-Study/Data-Request and
t http://adni.loni.usc.edu/data-samples/access-data/ . Source code for
POP is available at https://github.com/leoiacca/rPOP . 

. Results 

.1. IDEAS-BHR dataset 

At visual inspection of rPOP-processed IDEAS-BHR images, we iden-
ified macroscopic warping failures for 10/740 (1.35%) images. For
/10 of the failures, manually resetting origin and orientation prior to
he non-linear warping was enough to troubleshoot. The only unrecov-
red failed scan had very intense meningeal uptake, which may have
ampered the warping estimations (see Supplementary Figure 2). Ex-
mples of warped scans are available in Fig. 2 a. Supplementary Fig-
re 3 shows examples of successful warping in scans with atypical fea-
ures from the IDEAS-BHR dataset. The 3dFWHMx resolution estima-
ions are summarized in Supplementary Table 2 and were heterogeneous
mean ± sd FWHM across the three planes: 8.63 ± 1.73, range 3.7–15.18).

http://www.nemotos.net/scripts/acpc_coreg.m
https://www.fil.ion.ucl.ac.uk/spm/doc/spm12_manual.pdf
https://afni.nimh.nih.gov/pub/dist/doc/program_help/3dFWHMx.html
https://www.ideas-study.org/Original-Study/Data-Request
http://adni.loni.usc.edu/data-samples/access-data/
https://github.com/leoiacca/rPOP
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Fig. 2. Quality control of rPOP non-linear warping. 

Figure showing examples of quality control of rPOP-based non-linear warping. Panel (A) shows three random scans from the IDEAS-BHR dataset, warped and 

smoothed with rPOP, with the GAAIN 2 mm ROIs overlaid (cortex: purple, whole cerebellum: green). Panel (B) shows five ADNI amyloid-PET scans warped either 

via rPOP or via the standard MRI-based approach, with the respective voxelwise linear correlation and hexed scatterplot. These scans were selected according to the 

magnitude of the correlation, representing the minimum, 2nd quintile, median, 4th quintile and maximum correlations. Additional examples for different degrees of 

positivity are available in Supplementary Figure 8. See text for details. 
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ifferential smoothing examples are provided in Supplementary Figure
. 

Amyloid-PET visual reads and disease stage (MCI or dementia) were
vailable for 663/739 warped and valid scans. Of these 663 scans, 12
ere judged to have suboptimal warping quality at QC, most involving
 “stretching ” artifact in the cerebellum, brainstem and midbrain (see
upplementary Figure 5). rPOP-based amyloid status showed agreement
ith local radiologist’s visual reads in IDEAS, with 86% concordance
nd a Cohen’s k of 0.72 (0.70|0.74, substantial agreement). Most of the
iscordances (61/91, 67%) were rPOP-based A- vs. local visual read
 + cases, suggesting that rPOP quantification (with the 24.4 a priori
entiloid threshold) was more conservative. Results were identical when
emoving the 12 cases with suboptimal warping quality (see Table 1 and
ig. 3 A for a summary). 

When stratifying according to clinical stage (either MCI or demen-
ia), we observed the expected Centiloids distribution, with an aver-
ge of 2 ± 23 and − 5 ± 27 Centiloids in A- MCI and dementia partici-
5 
ants (respectively, based on visual read), and an average of 65 ± 42 and
0 ± 37 Centiloids in A + MCI and dementia participants (respectively).
ee Table 2 and Fig. 3 A for details. 

.2. ADNI dataset 

Visual inspection of rPOP-processed ADNI images identified
5/1,518 (0.99%) warping failures on single-subject QC. All the fail-
res were rescued when reorienting and resetting the origin manually.
he 3dFWHMx estimations are summarized in Supplementary Table 2.
verall, ADNI scans appeared to have a higher estimated resolution

lower FWHM) compared to IDEAS-BHR scans (mean ± sd 5.67 ± 1.77 and
.63 ± 1.73, respectively, effect size Cohen’s d = 1.68, p < 0.001). rPOP-
ased Centiloids and A ± status (Centiloids ≥ 24.4) were compared with
DNI MRI-based neocortical Centiloids, and A ± status, defined accord-

ng to tracer-specific thresholds used in ADNI, i.e. > 20 Centiloids for
BP-PET and > 18 Centiloids for FBB-PET ( Royse et al., 2021 ). Com-
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Table 1 

Agreement of rPOP-based amyloid status definition. 

Cohort IDEAS-BHR ADNI 

Comparison Standard Local visual reads ADNI A ± Centiloids > 18 FBB Centiloids > 20 FBP 

Total (N) 663 1518 

rPOP A + | Comp. Standard A + (N) 328 704 

rPOP A- | Comp. Standard A- (N) 244 725 

rPOP A + | Comp. Standard A- (N) 30 10 

rPOP A- | Comp. Standard A + (N) 61 79 

Overall agreement (%) 86 94 

Cohen’s 𝜅 0.72 (0.70–0.74) 0.88 (0.87–0.89) 

Legend: N = Number, Comp. Standard = Comparison Standard, A- = Amyloid-Negative; A += Amyloid-Positive, FBP = 18F-florbetapir, 

FBB = 18F-florbetaben. 

Fig. 3. rPOP-based Centiloids distribution. 

Figure showing distributions of rPOP-based Centiloids. Panel A shows jittered dotplots demonstrating distribution of rPOP-based Centiloid values in the IDEAS- 

BHR dataset according to two different standards, i.e. local visual reads (top) or rPOP-based Quantification ( > 24.4 Centiloids, bottom). Panel B shows a dispersion 

scatterplot demonstrating the linear association between rPOP-based and MRI-based Neocortical Centiloid values in the ADNI dataset. Black dotted line represents 

identity, the red dashed line indicates linear fit. For both panels, gridlines corresponding to Centiloid values of 0 and 100 are bolded. 

Table 2 

Centiloid values summary. 

Dataset IDEAS-BHR ( N = 663) ADNI ( N = 1518) 

Amyloid Status Method Local visual read rPOP-based quantification MRI-based quantification 

Centiloid Method rPOP-based PET Processing rPOP-based PET Processing MRI-based PET Processing 

CN (A-) – – − 2 (13) 2 (9) 

MCI (A-) 2 (23) − 2 (15) − 3 (14) 0 (10) 

Dementia (A-) − 5 (27) − 6 (19) − 8 (16) − 4 (13) 

CN (A + ) – – 53 (32) 55 (31) 

MCI (A + ) 65 (42) 75 (33) 72 (35) 72 (33) 

Dementia ( A + ) 80 (37) 86 (30) 89 (33) 86 (31) 

All values are expressed as mean(sd). 

Amyloid status was defined differently across datasets given that visual reads are not available in ADNI. For the IDEAS-BHR data, summary 

values per clinical group are provided also according to amyloid status defined with the rPOP-based Centiloids and the a priori 24.4 threshold. 

For the ADNI dataset, Amyloid status was uniquely defined as provided by ADNI, which is based on MRI-based PET quantification and 

tracer-specific thresholds (see text for details). In the ADNI dataset, summary values are provided for both rPOP-based and MRI-based PET 

Processing-derived Centiloids. 

Legend: CN = Cognitively Normal; MCI = Mild Cognitive Impairment; A- = Amyloid-Negative; A + = Amyloid-Positive. 

6 
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(  
ared to the ADNI approach valuing sensitivity, our singular 24.4 Cen-
iloid cut-off approach is slightly more restrictive and thus more con-
ervative in defining A ± status. rPOP-based A ± status was highly con-
ordant with ADNI A ± status, with 94% agreement and a Cohen’s k
f 0.88 (0.87|0.89, almost perfect agreement) (see Table 1 ). Most of
he observed discordances included scans defined as rPOP A- and as
DNI A + . Given that different Centiloids threshold were used (24.4

or rPOP, 18/20 for FBB/FBP in ADNI), analyses were repeated also
omparing rPOP-based A ± with ADNI A ± using instead the same 24.4
entiloids threshold (applied to the ADNI MRI-based PET Processing),
hich resulted in improved agreement (96% concordance, Cohen’s k
.93, 0.92|0.93). When stratifying according to amyloid status and clini-
al diagnosis (either cognitively normal, MCI or dementia), we observed
he expected increase in rPOP-based Centiloids distribution based on
linical stage, consistent with the MRI-processing derived ADNI Cen-
iloids and with the distribution in the IDEAS-BHR dataset (see Table 2 ).
o further investigate the impact of different Centiloid thresholds on
he agreement between rPOP-based and ADNI-based A ± status, we esti-
ated overall concordance and Cohen’s k across a wider range of thresh-

lds, i.e. from 1 to 100 Centiloids with increments of 1 Centiloid (to-
al of 100 thresholds). Overall concordance range was 0.85–0.97, me-
ian 0.96, being highest with thresholds between 25 and 50 Centiloids.
ohen’s k range was 0.62–0.93, median 0.89, being also highest with
hresholds between 25 and 50 Centiloids (see Supplementary Figure 6).

In a univariate linear model, rPOP-based Centiloids were highly cor-
elated with ADNI Centiloids (R 

2 :0.95, p < 0.001, slope: 0.91, intercept
.14, see also Fig. 3 B). There was no interaction with tracer ( 𝛽= − 0.003,
 = 0.86), whereas there was a significant interaction between estimated
WHM and rPOP Centiloids in correlations with ADNI Centiloids ( 𝛽=
 0.016, p < 0.001). Overall, with lower resolution of the input scans,

POP Centiloids tended to slightly under-estimate ADNI Centiloids in
he most negative range and over-estimate in the most positive range
see Supplementary Figure 7). Finally, the deviation between rPOP- and
RI-based PET-processing Centiloids was not strongly associated with

myloid burden ( r = 0.19), suggesting rPOP performs similarly across
he range of amyloid positivity. 

As an additional validation, we estimated spatial correlation between
myloid-PET images warped via either MRI-based or rPOP-based trans-
ormation parameters. Spatial correlation is estimated by calculating
orrelation coefficients, for each given pair of scans and across all voxels,
estricting the analysis to the cortical gray matter ( Bejanin et al., 2019 ).
e selected a random subset of 200 scans (100 FBP and 100 FBB) with

vailable MRI from the ADNI dataset. Excluding one MRI-based warping
ailure, we observed overall strong correlations, with an average corre-
ation coefficient of 0.83 ( ± 0.07, range 0.59–0.95). See Fig. 2 B and Sup-
lementary Figure 8 for representative examples. As further validation
f the rPOP-based warping accuracy, we also estimated regional-level
orrelations between SUVR values extracted from images warped via ei-
her MRI-based or rPOP-based transformation parameters. To do so, we
elected the N = 199 ( N = 99 FBP, N = 100 FBB) scans from the spatial
orrelation analysis, considering both their MRI-based and rPOP-based
arped versions ( N = 398 scans total) and intensity normalized all of

hem using the same reference region, i.e. the GAAIN whole cerebellar
OI. We then proceeded to extract average regional SUVR values (con-
idering only positive voxels to avoid bias due to field of view cut) using
efinitions from the Neuromorphometrics Atlas distributed with SPM.
he Neuromorphometrics tissue labels are based on MRI scans from
he OASIS project ( https://www.oasis-brains.org/ ) and are provided by
euromorphometrics Inc. under academic subscription (see also SPM12
elease Notes at https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
PM12_Release_Notes.pdf ). The Neuromorphometrics atlas includes
 = 136 regional definitions, of which we selected N = 126 of inter-
st, excluding CSF, ventricles, optic chiasm and vessels. The analysis
emonstrated very high average correlation coefficients across the dif-
erent regions, for both tracers (range 0.69–0.99, median 0.95 for FBP;
7 
.6–0.99, median 0.94 for FBB). See also Supplementary Tables 3–4 for
etails. 

. Discussion 

Here we present and validate rPOP, an MRI-free MATLAB-based
ipeline to achieve accurate amyloid-PET quantification requiring only
n attenuation-corrected amyloid-PET image as input. rPOP provides a
ET-only processing alternative to MRI-reliant methods of amyloid PET
uantification (and to expensive clinical quantification software pack-
ges), applying a unified approach to i) non-linearly warp amyloid-PET
mages to template space and ii) bring them to a common resolution.
ere we show that rPOP-based amyloid status was highly concordant
ith amyloid status based on two different comparison standards, local
isual reads at the clinical sites using FDA-approved criteria (IDEAS-
HR dataset) or quantification derived from MRI-based PET processing
ADNI dataset). rPOP-based Centiloids were strongly linearly associated
ith MRI-dependent-pipeline derived Centiloids, with rPOP- and MRI-
ased warped amyloid-PET images being on average highly spatially
imilar. 

Distinct from previous PET-only approaches ( Akamatsu et al., 2016 ;
ourgeat et al., 2015 ; Edison et al., 2013 ; Fripp et al., 2008 ; Kang et al.,
018 ; Lilja et al., 2019 ; Lundqvist et al., 2013 ; Pegueroles et al., 2021 )
nd available commercial/non-commercial software, rPOP combines: i)
 multi-atlas approach with a subject-specific linear combination com-
onent; ii) validation performed on the three different FDA-approved
adiotracers; iii) validation based on highly heterogeneous, community
cquired data; iv) both MRI-based quantification and visual clinical
eads comparison standards; v) a data-driven component of differential
moothing to support harmonization of resolution across different sites
nd scanners; and vi) an open-source distribution. 

To be considered accurate in most clinical scenarios, rPOP was val-
dated on thousands of amyloid-PET scans from two very different co-
orts. The heterogeneous IDEAS-BHR scan collection can be considered
s one of the most representative community-level amyloid PET datasets
urrently available. The ADNI dataset, although heterogeneous from the
canner manufacturer/model standpoint, presents with more homoge-
eous scan quality and acquisition protocols. rPOP performed well in
oth datasets, validating the resulting amyloid-status using two differ-
nt, dataset-specific comparison standards. In the IDEAS-BHR dataset,
POP converged with local visual reads also in the context of remarkably
eterogeneous community acquired scans. The present findings thus
how that amyloid status estimated through rPOP converges with MRI-
erived PET processing or visual reads in the great majority of cases.
e also show that scan resolution significantly impacts the precision

f rPOP-based Centiloid values, and thus users should be particularly
autious when processing amyloid-PET scans with lower resolutions in
POP. The accuracy of rPOP amyloid status estimation is tightly asso-
iated with, and dependent on, a thorough quality control of the non-
inear warping. Considering our quantification approach, the reliability
f the analysis depends on the goodness of fit of the target and refer-
nce region ROIs on the warped images, and users are thus strongly
ncouraged to implement their single-subject quality control approach
f choice. 

Amyloid PET quantification may be increasingly important in clin-
cal practice given recent advances in molecular-specific therapies for
D. Aducanumab, an amyloid-beta targeting monoclonal antibody, was
ecently granted accelerated approval by the FDA for the treatment of
CI or mild dementia due to AD ( Rabinovici, 2021 ). In the setting of

rug treatment, PET quantification could be used to augment the relia-
ility of qualitative methods such as visual reads for determining amy-
oid status. PET quantification may in the future be used to gauge treat-
ent response or manage dose titration and treatment duration, as was
one in a recent Phase 2 study of the anti-amyloid antibody donanemab
 Mintun et al., 2021 ). We suggest rPOP could be used in both clinical

https://www.oasis-brains.org/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/SPM12_Release_Notes.pdf


L. Iaccarino, R. La Joie, R. Koeppe et al. NeuroImage 246 (2022) 118775 

t  

l  

i  

s  

p
 

i  

F  

c  

P  

p  

t  

h  

r  

L  

p  

g  

t
 

/

A

 

a  

s  

K  

c  

S  

o  

m  

A  

d  

H  

e  

(  

A  

b  

G  

f  

J  

f  

o  

u  

f  

I  

a  

0  

I  

o  

A  

I  

s  

F  

F  

a  

R  

M  

g  

i  

p  

t  

a  

(  

s  

A  

e  

I

C

 

y  

W
 

i
 

i

 

m

 

t
 

-
 

P
 

t  

-

S

 

t

R

A  

 

 

A  

 

 

B  

 

B  

 

 

C  

 

C  

 

D  

 

 

 

 

E  

 

 

F  

 

 

 

I  

 

 

 

rial and research settings to obtain reliable, quantification-based amy-
oid status, especially when lacking a structural MRI. Employing rPOP
n place of an MRI-based processing could reduce selection bias in re-
earch studies and improve generalizability by not excluding specific
articipant groups from research studies. 

While improving access to quantification, PET-only processing has
ntrinsic limitations that should be considered when interpreting data.
irst, severe atrophy may impact the expected tracer distribution, which
ould result in a sub-optimal warping. Second, very atypical amyloid-
ET binding patterns may be less efficiently handled by a PET-only
rocessing relying on templates which largely reflect stereotypical pat-
erns. There is however indication that amyloid-PET patterns are rather
omogeneous across clinical phenotypes and ages of onset in spo-
adic Alzheimer’s Disease ( Iaccarino et al., 2021 ; La Joie et al., 2021 ;
aforce et al., 2014 ; Lehmann et al., 2013 ). Finally, the MRI-based ap-
roach should still be preferred when available with a sufficient quality
iven the higher anatomical precision in defining regions and structures
hat can be used to sample processed PET scans. 

The complete source code and files to run rPOP are available at https:
/github.com/leoiacca/rPOP . 
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