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Abstract

Many successful segmentation algorithms are based on Bayesian models in which prior
anatomical knowledge is combined with the available image information. However, these methods
typically have many free parameters that are estimated to obtain point estimates only, whereas a
faithful Bayesian analysis would also consider all possible alternate values these parameters may
take. In this paper, we propose to incorporate the uncertainty of the free parameters in Bayesian
segmentation models more accurately by using Monte Carlo sampling. We demonstrate our
technique by sampling atlas warps in a recent method for hippocampal subfield segmentation, and
show a significant improvement in an Alzheimer’s disease classification task. As an additional
benefit, the method also yields informative “error bars” on the segmentation results for each of the
individual sub-structures.
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1 Introduction

Many segmentation algorithms in medical image analysis are based on Bayesian modeling,
in which generative image models are constructed and subsequently “inverted” to obtain
automated segmentations. Such methods have a priorthat makes predictions about where
anatomical structures typically occur throughout the image, such as Markov random field
models or probabilistic atlases [1, 2]. They also include a /ikelihood term that models the
relationship between segmentation labels and image intensities, often incorporating explicit
models of imaging artifacts [3]. Once the prior and likelihood have been specified,
segmentation of a particular image proceeds by inferring the posterior distribution over all
possible segmentations using Bayes’ rule, and searching for the segmentation that
maximizes this posterior, or estimating the volumes of specific structures.

Although these methods are clearly “Bayesian”, an issue that is usually overlooked is that
they only apply Bayesian analysis in an approximate sense. In particular, these models
typically have many free parameters for which suitable values are unknown a priori. In a
true Bayesian approach, such parameters need to be integrated over when inferring the
segmentation posterior. But, in practice, their gptimalvalues are first estimated and only the
resulting point estimates are used to compute the segmentation posterior instead. In recent
years generative models have started to include deformable registration methods that warp
probabilistic atlases into the domain of the image being analyzed, often adding thousands of
free parameters to the model [4-7]. Since many plausible atlas warps beside the truly
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optimal one may exist, computing segmentations based on a single warp may lead to biased
results. Furthermore, the numerical optimizers computing such high-dimensional atlas warps
may not necessarily find the global optimum, further contributing to segmentation errors.

In this paper, we investigate the effect of using a more accurate approximation of the
segmentation posterior in Bayesian segmentation models than the point estimates of the free
model parameters. In particular, we will approximate the integral over atlas deformations in
a recently proposed method for hippocampal subfield segmentation [7] using Markov chain
Monte Carlo (MCMC) sampling, and compare the results to those obtained using the most
probable warp only. We show that MCMC sampling yields hippocampal subfield volume
estimates that better discriminate controls from subjects with Alzheimer’s disease, while
providing informative “error bars” on those estimates as well.

To the best of our knowledge, the issue of integrating over free parameters in Bayesian
segmentation models has not been addressed before in the literature. The closest work
related to the techniques used in this paper infers the posterior distribution of deformation
fields in the context of computing location-specific smoothing kernels [8], quantifying
registration uncertainties [9], or constructing Bayesian deformable models [10].

2.1 Baseline segmentation method

We start from the Bayesian method for hippocampal subfield segmentation [7] that is
publicly available as part of the FreeSurfer software package?. In this method, a
segmentation prior is defined in the form of a tetrahedral mesh-based probabilistic atlas in
which each mesh vertex has an associated vector of probabilities for the different
hippocampal subfields and surrounding tissues (fimbria, presubiculum, subiculum, CA1,
CA2/3, CA4/DG, hippocampal fissure, white matter, gray matter, and CSF). The resolution
and topology of the mesh are locally adaptive to the level of shape complexity of each
anatomical region, e.g., it is coarse in uniform regions and fine around convoluted
boundaries. The mesh can be deformed according to a probabilistic model on the location of
the mesh nodes p(x) o exp(—¢(x)), where X is a vector containing the coordinates of the
mesh nodes, and ¢(x) is an energy function that penalizes mesh positions in which the
tetrahedra are deformed [11]. This function goes to infinity if the Jacobian determinant of
any tetrahedron’s deformation approaches zero, and therefore ensures that the mesh
topology is preserved. For a given x, the prior probability p{Ajx) of tissue & occurring in
voxel 7is obtained by interpolating the probability vectors in the vertices of the deformed
mesh. Assuming conditional independence of the labels between voxels given X, the prior
probability of a segmentation is then given by p(I[x) = IT; p{/ix), where | = (4, ..., /)T, ;€
{1, ..., K} is a segmentation of an image with /voxels into K'tissue types.

For the likelihood, we model the intensity of voxels in tissue kas a Gaussian distribution
with parameters i, o:p(yll, 0)=]_Il.«/1/(yi;uzi, 0'12,.), where the vectory = (4, ..., ) "

contains the image intensities, and 6=(u;, cr%, ooy My ai)T represents the Gaussian
distribution parameters. A non-informative prior for 8 (i.e., p(6) & 1) completes the model.

Given an image to segment, the posterior over possible segmentations is given by p(lly) =
Tl xAly, x, @)p(x, 8y)dxd8, which takes into account the contribution of all possible
values for the model parameters {x, 6}, each weighted by their posterior probability p(x, 8
y). In [7], this integral is approximated by estimating the parameters with maximal

4http://surfer.nmr.mgh.harvard.edu/
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weight{, 8} = arg maxgx, gy(X, €y), and using the contribution of those parameters only,
yielding

Py > pAly. X 0=[ [Py X0

with  pi(klyi, X, 0) o« A (i, TOPik®). ()

The segmentation maximizing this approximate posterior is obtained by simply assigning
each voxel to the tissue class that maximizes Eq. (2). Furthermore, the volume of class &
also has an (approximate) posterior distribution, with mean

"k=ZPi(k|)7i,/X\,’9\) (3)
i
and variance

Yi= D Pk K O L-piklyn K 01

2.2 Incorporating parameter uncertainty

The approximation of Eq. (1) will be a good one if the posterior of the model parameters,
p(x, 8y), is very peaked around {&, 8}. Although this is a reasonable assumption for the
Gaussian distribution parameters - one cannot alter them much without considerably
decreasing the likelihood of the model — assuming a sharp peak for the mesh position x is
not necessarily accurate, since moving vertices in areas with low image contrast does not
drastically change p(x, 8y).

We therefore propose to use a computationally more demanding but more accurate way of
approximating p(Iy). Specifically, we propose to draw a number of samples x(n), n=1, ...,
Nfrom the posterior distribution p(x]y, 8) using Monte Carlo sampling, and approximate the
segmentation posterior by

— — 1Y —
pllly) = [ p(lly,x.6)p(xly. dx ~ ﬁ;pmy, x(.0). ()

where in the first step we have used the mode approximation in the direction of 8, as before,
but in the second step the remaining integral is approximated by summing the contributions
of many possible atlas warps (with more probable warps occurring more frequently), rather
than by the contribution of a single point estimate X only. Given enough samples, this
approximation can be made arbitrarily close to the true integral.

Once Nsamples x() are available, it follows from Egs. (3-5) that the approximate posterior
for the volume of tissue class A has mean and variance
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N

1
"k:NZ"k(”) (6)
n=1

, (1)

1 N
ey [Z[vkm)—vk]%y,%(n)
n=1

respectively, where vi(n) = Z,; p{Ky; x(n), 6) and
Yem= " pilklys, X(n), O)[ 1-pi(klyi, X(n), 6)],

2.3 MCMC sampling

In order to obtain the required samples x(77), we use a MCMC sampling technique known as
the Hamiltonian Monte Carlo (HMC) method [12], which is more efficient than traditional
Metropolis schemes because it uses gradient information to reduce random walk behavior.
Specifically, it facilitates large steps in x with relatively few evaluations of the target
distribution p(x|y, ) and its gradient, by iteratively assigning a random momentum to each
component of x, and then simulating the Hamiltonian dynamics of a system in which —log
p(xly, 6 acts as an internal “force”. In our implementation, we discretize the Hamiltonian
trajectories using the so-called leapfrog method [12], and simulate the Hamiltonian
dynamics for a number of time steps sampled uniformly from [1, 50] to obtain a proposal for
the Metropolis algorithm. Discretization step sizes that are adequate for some tetrahedra
might be too large or small for others, leading to either slow convergence or too many
rejected moves. We therefore use the following heuristic stepsize for each vertex:

n/ max[ 9 (~logp(x))/0x;Iz], where 7is a global adjustment factor and 8°/x; denotes the
second derivatives with respect to the three spatial coordinates of vertex j. Two samples of
p(X|y, 6) obtained using the proposed scheme are displayed in Fig. 1.

3 Experiments and Results

To investigate the effect of approximating the true posterior over the segmentations using
parameter sampling instead of point estimates, we compared the performance of the
estimated subfield volumes for both methods (Eqg. (3) vs. Eq. (6)) in an Alzheimer’s disease
classification task®. In particular, we collected the volume estimates for all seven subfields
(averaged over the left and right hemispheres) into a feature vector v for each subject, and
trained and tested a simple multivariate classifier to discern between elderly controls (EC)
and Alzheimer’s disease patients (AD) in the corresponding feature space. We also
compared the variance (“error bars™) on the subfield volume estimates for both methods (Eq.
(4) vs. Eq. (7)), and investigated the effect of incorporating this information in the training
of the classifier as well.

3.1 Data and experimental set-up

The 400 baseline 77 scans from controls and AD subjects available in ADNI® where used in
this study. The MRI pulse sequence is described elsewhere®. The volumes were
preprocessed and parsed into 36 brain structures using FreeSurfer. We discarded 17 subjects
for which FreeSurfer crashed. The demographics for the remaining 383 were: 56.2%

5Although this specific classification task is best performed using information from the whole brain [13], the goal of this paper is to
show the effect of MCMC sampling.
Online at http://www.adni-info.org/.
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controls (age 76.1 + 5.6), 43.8% Alzheimer’s (age 75.5 + 7.6); 53.6% males (age 76.1 £
5.6), 46.4% females (age 75.9 + 6.8).

After the segmentation of subcortical structures, the FreeSurfer hippocampal subfield
segmentation routine (Section 2.1) was executed. The output {&, 8} was used to initialize
the HMC sampler, which was then used to generate /= 50 samples per subject. The
parameter 7 was tuned so that the average Metropolis rejection rate was approximately 25%.
To decrease the correlation between successive samples, we recorded x at the end of every
200¢h Hamiltonian trajectory (chosen by visual inspection of the autocorrelation of
subsequent runs). We allowed 300 initial “burn-in” runs before collecting samples. The
running time of the sampling was roughly three hours.

3.2 Classification and ROC analysis

3.3 Results

We used a Quadratic Discriminant Analysis (QDA) classifier, which assumes that the
feature vectors v in each group are normally distributed according to ~ (v|egc, 2£¢) and ~
(Vlean Zap), respectively. The means and covariances were estimated from the available
training samples. In testing, a subject was classified as EC or AD by thresholding the
likelihood ratio ~ (Vuge Zeg)! ¥ (Vimap, Zap) S A. The corresponding ROC curve (i.e.,
true positive rate vs. false positive rate) was obtained by sweeping the threshold A, and the
area under the curve (A, was then used as a measure of performance. The ROCs were
computed using cross-validation with two randomly selected folds.

We also analyzed the accuracy when the volume of the whole hippocampus is thresholded to
separate EC from AD. We compared two estimates of the volume: (1) the sum of the
volumes of the subfields; and (2) the estimate from the FreeSurfer pipeline. Finally, to
assess the effect of sampling on training and testing separately, we conducted an experiment
in which the classifier was trained on point estimate volumes and evaluated on MCMC
volumes, and vice versa.

Fig. 2 shows the ROC curves and the areas under them (A,) for the different methods. Also
shown are the p-values of paired DelLong statistical tests [14] that evaluate if the differences
in Aare significant. At p=0.05, sampling significantly outperformed point estimates in all
cases (subfields and whole hippocampus). At the operating point closest to (0, 1), sampling
provides a ~ 2% increase in classification accuracy. Using all the subfields performed
significantly better than the whole hippocampal volume alone. All methods based on the
subfield analysis outperformed the standard FreeSurfer hippocampal segmentation.

When the QDA was trained on the point estimate subfield volumes and tested on those
obtained with sampling, we obtained A, = 0.875, and when the roles were switched, A, =
0.876. These values are better than when point estimate volumes were used for both training
and testing, but worse than when sampling was used throughout, indicating that MCMC
sampling is beneficial for both obtaining better discriminative directions and classifying
individual subjects.

We also compared the variances of the hippocampal subfield volume posteriors (Table 1).
The point estimates (Eq. (4)) clearly underestimate them, especially for the larger subfields;
e.g., the standard error for CA2-3 is 0.4% of its volume, unrealistic given the poor image
contrast (Fig. 1). In contrast, sampling (Eq. (7)) produces values between 5% and 10%,
better reflecting the uncertainty in the estimated volumes.

In an attempt to take the MCMC volumetry uncertainty estimates into account in the
classifier, we also trained a QDA by simply using all contributing volumes vi(n), n=1, ...,
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N=150 in Eqg. (6) for each subject — effectively using 50 times more training samples than
there are training subjects. The ROC and the corresponding A, are displayed in Fig. 2
(labeled as “error bars™), showing a modest further improvement compared to when the
classifier is trained using the mean values only. Although the improvement was not
statistically significant (o~ 0.1), the ROC seems to be consistently better in the region that
is closest to (0,1), where the operating point of the classifier would be typically defined.

4 Discussion

In this paper we proposed to approximate the segmentation posterior in probabilistic
segmentation models more faithfully by using Monte Carlo samples of their free parameters.
We demonstrated our technique by sampling atlas warps in a Bayesian method for
hippocampal subfield segmentation, and showed a significant improvement in an
Alzheimer’s disease classification task. The method is general and can also be applied to
other Bayesian segmentation models. It yields realistic confidence intervals on the
segmentation results of individual structures, which we believe will convey important
information when these techniques are ultimately applied in clinical settings. Furthermore,
such confidence information may also help select the most suitable scanning protocol for
imaging studies investigating the morphometry of specific anatomical structures.
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Fig. 1.

A coronal slice of an MR scan, zoomed in around the right hippocampus, and two different
samples from p(x]y, 8). Left: deformed mesh; right: corresponding priors p(1|x) (at the
locations in which more than one class prior is greater than zero, the color is a linear
combination of the class colors, weighted by their corresponding probabilities). The
abbreviations in the color code are: FI: fimbria, PS: presubiculum, SU: subiculum, WM:
white matter, GM: gray matter.
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Fig. 2.

Top: ROC curves for the different methods. “FreeSurfer” refers to the whole hippocampus
segmentation produced using the standard FreeSurfer pipeline. Note that only the region [0,
0.5] % [0.5, 0.95] is shown. Bottom: Area under the curve (A, for each method as well as p-
values corresponding to DeLong tests comparing A, for different methods. “SF” stands for
subfields, “WH?” for whole hippocampus, “pe” for point estimate, “sp” for sampling, “eb”
for sampling with error bars (i.e. using all volumes vi(n) in Eg. (6)), and “FS” for

FreeSurfer.
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