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A B S T R A C T

A new and powerful approach, called imaging-wide association study (IWAS), is proposed to integrate imaging
endophenotypes with GWAS to boost statistical power and enhance biological interpretation for GWAS discov-
eries. IWAS extends the promising transcriptome-wide association study (TWAS) from using gene expression
endophenotypes to using imaging and other endophenotypes with a much wider range of possible applications. As
illustration, we use gray-matter volumes of several brain regions of interest (ROIs) drawn from the ADNI-1
structural MRI data as imaging endophenotypes, which are then applied to the individual-level GWAS data of
ADNI-GO/2 and a large meta-analyzed GWAS summary statistics dataset (based on about 74,000 individuals),
uncovering some novel genes significantly associated with Alzheimer's disease (AD). We also compare the per-
formance of IWAS with TWAS, showing much larger numbers of significant AD-associated genes discovered by
IWAS, presumably due to the stronger link between brain atrophy and AD than that between gene expression of
normal individuals and the risk for AD. The proposed IWAS is general and can be applied to other imaging
endophenotypes, and GWAS individual-level or summary association data.
1. Introduction

During the last fifteen years, genome-wide association studies
(GWAS) have been quite successful in identifying thousands of risk loci
associated with complex diseases and traits. Due to linkage disequilib-
rium (LD), most time it is difficult to pinpoint causal genetic variants or
genes, thus mechanistic interpretations of underlying biology remain
largely elusive. Furthermore, the uncovered risk loci only account for a
small proportion of the heritability for each complex trait. For example,
for Alzheimer's disease (AD), multiple common and rare variants have
been identified (Marei et al., 2016; Saykin et al., 2015), among which the
APOEε4 allele has been consistently shown to be associated with AD
(Lambert et al., 2009). However, only 50% of AD patients carry an
APOEε4 allele, suggesting the existence of other genetic variants
contributing to risk for the disease (Karch et al., 2014). A recent study
indicates that 33% of total AD phenotypic variance is explained by
common variants; APOE alone explains 6% and other known markers
2%, meaning more than 25% of phenotypic variance remains unex-
plained by known common variants (Ridge et al., 2013). Hence, as for
from the Alzheimer's Disease Neuroim
NI and/or provided data but did not p
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other common and complex diseases and traits, many more genetic fac-
tors underlying late onset AD remain to be discovered (Bertram and
Tanzi, 2011). One obvious but costly approach is to have a larger sample
size, motivating meta- or mega-analyses by large consortia. At the same
time, a complementary strategy is to use multiple endophenotypes, in-
termediate between genetics and the disease (Gottesman and Gould,
2003; Glahn et al., 2012). The potential of the strategy has been
demonstrated by a recent GWAS: some risk genes, such as FRMD6, were
first identified to be associated with some neuroimaging endophenotypes
(e.g. hippocampal atrophy) (Shen et al., 2014), then were later validated
to be associated with AD (Hong et al., 2012; Sherva et al., 2014).

However, existing methods use imaging endophenotypes as GWAS
traits to directly identify endophenotypes-associated single nucleotide
polymorphisms (SNPs) or genes (e.g., Lin et al., 2014; Shen et al., 2014;
Zhu et al., 2014; Huang et al., 2015; Lu et al., 2017; Tao et al., 2017, and
references therein). Since the identified SNPs or genes may or may not be
associated with the disease, e.g. AD, further studies are still needed to
confirm or refute a suggestive link based on imaging endophenotypes. In
addition, due to the high cost and logistic difficulties, despite recent
aging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the
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efforts in forming large consortia for imaging studies (Thompsona et al.,
2013), the sample size of a typical GWAS with imaging traits is still much
smaller than those of other GWAS with clinical traits, hindering the
discovery of SNPs associated with imaging endophenotypes, as shown by
the ADNI data (Shen et al., 2014; Saykin et al., 2015). Alternatively, we
extend the idea of transcriptome-wide association study (TWAS) (Gamazon
et al., 2015; Gusev et al., 2016) to imaging-wide association study (IWAS):
instead of using gene expression as an endophenotype, we use an imaging
endophenotype to construct weights for a weighted gene-based GWAS
test. TWAS is motivated by possible regulatory roles of eQTL (expression
quantitative trait loci) or expression SNPs which are more likely to be
disease-associated (Nicolae et al., 2010). Accordingly, instead of directly
associating observed gene expression levels with a GWAS trait, TWAS
considers the genetically regulated component of gene expression and its
association with the GWAS trait. Analogously, we consider the genetically
regulated component of an imaging endophenotype and its association
with the GWAS trait; the genetically regulated component of an imaging
endophenotype is not only directly related to the goal of genetic associ-
ation analysis, but also excludes the noise of an observed endophenotype,
which for example is likely to contain a component influenced by various
environmental factors. We take advantage of possible link between AD
(or other neuro-degenerative diseases) and brain atrophy as reflected by
neuroimaging features, which is treated as prior knowledge and incor-
porated into weighted gene-based testing in GWAS. A possibly useful but
under-utilized endophenotype is the brain default mode network (DMN),
consisting of several brain regions of interest (ROIs) remaining active in
the resting state. Brain activity in DMN may explain the etiology of AD
(Metin et al., 2015), and is a plausible indicator for incipient AD (Dam-
oiseaux et al., 2012; Greicius et al., 2004; He et al., 2009; Jones et al.,
2011; Balthazar et al., 2014). Since there is growing evidence that ge-
netic factors play a role in aberrant default mode connectivity (Glahn
et al., 2010), it will be more powerful to detect genetic variants associ-
ated with AD by taking advantage of DMN as imaging endophenotypes.

Since there may be multiple imaging endophenotypes related to both
genetic factors and a complex trait, we may consider each endopheno-
type separately before combining them together. As to be shown in our
example, the gray matter volume in each of 12 ROIs related to DMN will
be considered as an endophenotype in an integrated GWAS analysis to
detect SNPs associated with AD. Hence, we call our approach as imaging-
wide association study (IWAS). Similar to TWAS, in addition to a main
GWAS dataset with a trait of interest (e.g., AD), we require another in-
dependent reference GWAS dataset with imaging endophenotypes; as for
a reference eQTL dataset in TWAS (Gusev et al., 2016), the required
sample size of a reference GWAS dataset in IWAS can be much smaller
than that of the main GWAS dataset. An advantage of IWAS is the
increasing availability of such data. For example, Alzheimer's Disease
Neuroimaging Initiative (ADNI) has published such reference GWAS data
with both GWAS genotypes and a wide-range of imaging endopheno-
types (Shen et al., 2014). Furthermore, in addition to main GWAS
individual-level genotypic and phenotypic data, IWAS is also applicable
to GWAS summary statistics from single GWAS or meta-analyses of
multiple GWAS, which have become much more widely available with
much large sample sizes, as the largest one so far for AD with about 74,
000 subjects that we will use in our analysis (Lambert et al., 2013).

In summary, we propose a novel gene-based approach to integrating a
reference imaging GWAS dataset with clinical GWAS individual-level
data or GWAS association summary statistics, differing from existing
and popular approaches to treating imaging GWAS data and clinical
GWAS data separately. The reference GWAS data can be based on various
imaging modalities, as long as the resulting endophenotypes are hy-
pothesized or known to be related to the trait in the main GWAS data. As
convincingly demonstrated in TWAS, our proposed IWAS is expected not
only to boost statistical power, but also to facilitate biological interpre-
tation of subsequent GWAS discoveries. The proposed tests are developed
under a general and rigorous framework of generalized linear models,
thus can accommodate various types of quantitative, categorical and
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survival phenotypes and can adjust for covariates. They are also appli-
cable to both individual-level genotypic, phenotypic data and GWAS
summary statistics.

2. Methods

2.1. TWAS

There are two steps in TWAS. Since TWAS is a gene-based method,
testing genes one by one, for the purpose of presentation we consider
only one gene. The first step is to build a prediction model for the genetic
component of the gene's expression level, called “genetically regulated
expression (GReX)”, by using the possibly cis-acting genotypes around
the gene based on a reference eQTL dataset. Suppose that in an eQTL
dataset, Y� and X� ¼ ðX�

1 ;…;X�
p Þ0 are the expression level of and the p

SNP genotype scores (with additive coding) around the gene. A linear
model is assumed: Y� ¼ Pp

j¼1wjX�
j þ ε; where wj is the cis-effect of SNP j

on gene expression and ε is the noise. Based on the eQTL dataset, one can
use a method, e.g. elastic net (Zou and Hastie, 2005) as used in Pre-
diXcan, to obtain the estimates bwj 's. Next, for a given and separate GWAS
dataset, for each subject i with the genotype scores Xi ¼ ðXi;1;…;Xi;pÞ0
around the gene, the predicted GReX is dGReXi ¼

Pp
j¼1 bwjXi;j. For a trait Yi

for subject i in the GWAS dataset, one simply applies a suitable GLM

gðEðYiÞÞ ¼ β0 þ dGReXiβc ¼ β0 þ
Xp

j¼1

bwjXi;jβc (1)

to test for association between the trait and predicted/imputed expres-
sion with null hypothesis H0: βc ¼ 0, where gðÞ is the canonical link
function (e.g. the logit and the identity functions for binary and quanti-
tative traits respectively), and EðYiÞ is the mean of the trait. Note that for
simplicity we do not, but is straightforward to, include covariates in
the GLM.

It turns out that TWAS is equivalent to the Sum test (Pan, 2009) in a
more general model to test for association between the GWAS trait Yi and
the weighted genotype scores WXi:

gðEðYiÞÞ ¼ β0 þ β0Xi ¼ β0 þ
Xp

j¼1

bwjXi;jβj (2)

for H0 : β ¼ �
β1;…; βp

�0 ¼ 0, where W ¼ Diagðbw1;…; bwpÞ is a diagonal
matrix with the estimated weights as diagonal elements. Xu et al. (2017)
showed that, more generally, any more powerful tests, such as an
adaptive aSPU test, can be applied. The aSPU test is based on choosing
one of the SPU tests, SPU(γ) with positive integers γ � 1 in a candidate
set, e.g. Γ ¼ f1; 2;…; 8;∞g (Pan et al., 2014). It is known that SPU(1) is
equivalent to the Sum test (i.e. PrediXcan), while SPU(2) is a
variance-component score test equivalent to kernel machine regression
(also known as SKAT in rare variant analysis) with a linear kernel and a
nonparametric MANOVA (also called genomic distance-based regres-
sion) with the Euclidean distance metric (Wessel and Schork, 2006); the
SPU(2) and related tests may yield higher power under many situations
(Pan, 2011; Schaid, 2010a, 2010b), as to be confirmed later. In partic-
ular, since the Sum test can be derived under the over-simplifying
working assumption of β1 ¼ β2 ¼ … ¼ βp ¼ βc in (2) (i.e. all weighted
SNPs have an equal effect size and the same effect direction, which is in
general incorrect), it clearly shows possible limitations of the Sum and
thus PrediXcan (and TWAS): As discussed by others (Pan, 2009; Pan
et al., 2014; Wu et al., 2011), the Sum test may lose power if the
effect directions of the (weighted) SNPs are different, or the effect
sizes are sparse (i.e. with many 0s). More generally, the SPU(γ) tests with
γ 2 Γ ¼ f1;2;…;6;∞g can be applied, and their results are combined by
the aSPU test.



Fig. 1. The workflow of IWAS. It involves two input datasets, a reference GWAS dataset with imaging endophenotypes, and a main GWAS dataset. The reference GWAS dataset contains
individual-level data, used to construct a predictive model for one or more imaging endophenotypes based on SNPs, thus giving one or more sets of the weights on SNPs, which are then
used along with the main GWAS (either individual-level data or summary statistics) for gene-based association testing.
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2.2. IWAS

The main idea of IWAS is similar to TWAS, but instead of using gene
expression as the endophenotype to derive the weights, we use an im-
aging endophenotype; that is, we estimate and then predict/impute the
genetically controlled component of an imaging endophenotype based on a
reference GWAS dataset with imaging endophenotypes. In our examples,
we use the gray matter volume of an ROI that is hypothesized to be
161
related to the GWAS trait. Specifically, for example, we have a reference
GWAS dataset with both individual-level genotypes and individual-level
structural MRI data, from which we construct a prediction model for the
imaging endophenotype (e.g. gray matter volume in left hippocampus)
using the SNPs around the gene, obtaining the weight matrixW. Then we
incorporate the use of W in the main GWAS dataset as for TWAS. The
workflow of IWAS is shown in Fig. 1, similar to TWAS (with imaging
endophenotypes replaced by gene expression endophenotypes) as shown



Fig. 2. Q-Q plots for IWAS testing for gene-AD association with the (a) Sum or SPU(1) test, (b) SPU(2) test and (c) aSPU test with weights constructed from gray matter volumes in each of
14 brain ROIs based on the ADNI-1 data, (d) the daSPU test combining the 12 weights from the 12 DMN-related ROIs, applied to the ADNI-GO/2 GWAS data. The numbers in the second
column in each legend box of each panel indicate the numbers of the genome-wide significant genes identified by each method.
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in Fig. 2 of Gamazon et al. (2015).
2.3. Association testing with multiple sets of weights/endophenotypes

There may be compelling reasons to take advantage of multiple sets of
weights based on multiple correlated endophenotypes. First, the statis-
tical advantages of joint analysis of multiple traits include possibly
increasing statistical power and more precise parameter estimates, alle-
viating the burden of multiple testing. Biologically, joint analysis of
multiple traits addresses the issue of pleiotropy (i.e. one locus influencing
multiple traits), providing biological insight into molecular mechanisms
underlying the disease or trait. The above conclusions are expected to
carry over to the current context of analysis of multiple endophenotypes.
Second, a separate application of TWAS or IWAS to each set of weights
may lead to inflated type I errors without a suitable multiple testing
adjustment, or power loss if the conservative Bonferroni adjustment is
used. The omni-bus method of combining multiple sets of weights in
TWAS (Gusev et al., 2016) may be difficult to apply due to its need to
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estimate a large covariance matrix for a large number of the sets of
weights. Here we propose extending the aSPU test to the current setting
for a large number of the sets of weights, which is expected to be a more
common scenario in IWAS. The idea parallels that in other contexts to
achieve the data-adaptiveness for multiple purposes (Pan et al., 2015).

Suppose we have K candidate endophenotypes; based on each
endophenotype k, we can construct a set of the corresponding weight

wðkÞ ¼ ðwðkÞ
1 ;…;wðkÞ

p Þ0, k ¼ 1;2;…;K. To avoid the results depending on
the varying scales of the sets of weights, we first standardize the weights

to have
Pp

j¼1

���wðkÞ
j

��� ¼ 1 for each k. Since the performance of any test

depends on unknown association patterns of the SNPs with the trait (Pan
et al., 2014) and on possibly varying (and unknown) informativeness of
the endophenotypes/weights, how to use (e.g. by weighting) the SNPs
and endophenotypes will largely determine the statistical power of the
test. The situation is similar to pathway-based association testing, which
critically depends on the unknown association patterns of both the genes
(in a pathway) and SNPs (in each gene) (Pan et al., 2015), and to
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gene-based association testing on multiple traits, for which one has to
account for possibly varying association patterns of the SNPs across the
traits (Kim et al., 2016). Accordingly, to maintain high statistical power
with various unknown association patterns, as in the above previous
works, we use two non-negative integers, γ1 and γ2, to control the degrees
of weighting over the SNPs and over the endophenotypes respectively,
and the two parameters will be chosen data-adaptively as to be shown
later. A larger γ1 puts more weights on the SNPs more likely to be asso-
ciated with the GWAS trait, while a larger γ2 upweights the more infor-
mative endophenotypes (i.e. those more strongly associated with the
GWAS trait). The SPU test statistic is built as follows:

SPUðγ1; γ2Þ ¼
XK
k¼1

8><>:
"Xp

j¼1

�
wðkÞ

j U�
j

�γ1

# 1
γ1

9>=>;
γ2

;U� ¼
�
U�

1 ;…;U�
p

�0

¼
Xn

i¼1

X0
i

�
Yi � bμ0

i

�
; (3)

where U� is the usual score vector without weighting; we use U� to
emphasize the weighting with weights wðkÞ 's in each SPU test. The
parameter γ1 controls the extent to which to weight each SNP. With
γ1 ¼ 1, the SPU test weights each SNP equally, and yields the highest
power if all the SNPs (with the given weights from endophenotype k) are
associated with the trait with similar effect sizes and the same association
direction. When only a subset of SNPs are associated with the trait, or
their association directions are different, SPUðγ1 ¼ 2; γ2Þ is often more
powerful. As γ1 increases, SPUðγ1; γ2Þ puts heavier weights on the SNPs
that are more strongly associated with the trait. At the end, as the
parameter approaches to ∞ (as an even integer), it only considers the
most significant SNP. Similarly, γ2 controls how much to up-weight the
endophenotypes (i.e. the corresponding sets of weights) that are more
informative to the genetic association with the trait of interest.
SPUðγ1; γ2 ¼ 1Þ weights all the endophenotypes equally and performs
best when each endophenotype is equally informative to the trait.
Similarly, as γ2 increases, the SPU test over-weights the endophenotypes
that are more strongly associated with and thus more informative to the

trait; in an extreme case, as γ2→∞, we define SPUðγ1; γ2 ¼ ∞Þ ¼

max
k¼1

K
�
½Pp

j¼1ðwðkÞ
j U�

j Þγ1 �
1
γ1

�
; which takes only the single endophenotype

that is most highly associated with the trait. In an extreme case where
only one SNP is associated with the trait and only one endophenotype is

(dominantly) informative, using SPUðγ1 ¼ ∞; γ2 ¼ ∞Þ ¼ max
j;k

����wðkÞ
j U�

j

����
will be most powerful. Using various combinations of γ1 and γ2, one can
target and fit different association patterns across multiple SNPs and
multiple endophenotypes, yielding higher statistical power.

In practice, because it is unknown which ðγ1; γ2Þ value would yield
the highest power, we use a doubly adaptive SPU (daSPU) test to
combine the SPU tests:

TdaSPU ¼ min
γ12Γ1 ;γ12Γ1

PSPUðγ1 ;γ2Þ (4)

where PSPUðγ1 ;γ2Þ is the p-value of the SPUðγ1; γ2Þ test; empirically we
found using Γ1 ¼ Γ2 ¼ f1; 2;3;∞g performed well, which was used in
the later analyses.

P-value calculations: A single layer/loop of Monte Carlo simulations can
be used to obtain the p-values of all the SPU and daSPU tests simultaneously.
Specifically, we simulate null score vectors UðbÞ � Nð0;VÞ for b ¼ 1;…;B,
from its asymptotic null distribution as multivariate normal with mean
0 and covariance matrix V; there is a closed form solution for V (Pan et al.,

2014). The null statistics SPUðγ1; γ2ÞðbÞ can be calculated from the null
score vectors U�ðbÞ for b ¼ 1;…;B. Then the p-value of SPUðγ1; γ2Þ is
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PSPUðγ1 ;γ2Þ ¼ ½1þPB
b¼1ðIð

���SPUðγ1; γ2ÞðbÞ��� � ���SPUðγ1; γ2Þ���Þ=ðBþ 1Þ�: And

the p-value for the daSPU test can be calculated as PdaSPU ¼ ½1þPB
b¼1IðTðbÞ

daSPU � TdaSPUÞ=ðBþ 1Þ�; with TðbÞ
aSPU ¼ min

γ12Γ1 ;γ12Γ1
pðbÞγ1 ;γ2

and

pðb1Þγ1 ;γ2
¼ ½P

b≠b1
Ið
���TðbÞ

SPUðγ1 ;γ2Þ
��� � ���Tðb1Þ

SPUðγ1 ;γ2Þ
���Þ þ 1=ðBÞ�.

2.4. GWAS summary statistics

Although the above derivations are based the availability of the main
GWAS individual-level genotypic and phenotypic data, all the tests can
be slightly modified and applied to GWAS summary statistics (Kwak and
Pan, 2016; Gusev et al., 2016). The main idea is to replace the score
vector (based on the individual-level GWAS data) by the Z-scores for the
marginal associations of the individual SNPs (from the GWAS summary
statistics). However, we do need an individual-level reference GWAS
dataset with imaging endophenotypes to construct one or multiple sets of
weights unless the weights are already given.

3. Results

3.1. ADNI data

Data used in the preparation of this article were obtained from the
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.
usc.edu). The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a 60 million,
5-year public private partnership. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neuro-
psychological assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer's disease (AD).
Determination of sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the time and
cost of clinical trials. The Principal Investigator of this initiative is
Michael W. Weiner, MD, VA Medical Center and University of California
San Francisco. ADNI is the result of efforts of many co-investigators from
a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has
been followed by ADNI-GO and ADNI-2. To date these three protocols
have recruited over 1500 adults, ages 55 to 90, to participate in the
research, consisting of cognitively normal older individuals, people with
early or late MCI, and people with early AD. The follow up duration of
each group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-
GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the op-
tion to be followed in ADNI-2. For up-to-date information, see www.adni-
info.org.

3.2. Imaging and expression endophenotypes

We imputed the ADNI genotype data to the 1000 Genomes Project
(1000G) data by the Michigan Imputation Server (Fuchsberger et al.,
2015; Howie et al., 2012). Briefly, we imputed the ADNI-1 data (757
subjects, originally based on hg18 and we lifted over to hg19 to facilitate
the imputation) and ADNI-GO/2 (793 subjects, originally based on hg19)
separately with the following set-up: 1000G Phase 3 v5 as the reference
panel, SHAPEIT as the phasing and EUR (European) as the population.
The SNPs with minor allele frequency (MAF) > 0.05 and R2 >0:8 in both
the ADNI-1 and ADNI-GO/2 data were kept. After the imputation and
quality control, there were 6,286,276 SNPs. Then all the ambiguous SNPs
with alleles A/T or C/G were removed (throughout all analyses in this
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paper). Based on the baseline diagnosis, we kept the AD patients and
healthy controls (HC) while excluding the subjects with mild cognitive
impairment (MCI). The numbers of the subjects in ADNI-1 were 161 and
191 for AD and HC respectively, while those for ADNI-GO/2 were 121
and 150 respectively. For each gene, in addition to its coding region, all
variants within the 1Mbp upstream and downstream regions of the
transcription start/ending sites were included.

Using the ADNI-1 data as the reference GWAS, we first built a pre-
diction model using elastic net (Zou and Hastie, 2005) as implemented in

R glmnet package to obtain a set of weights (wðkÞ
j , k ¼ 1;…;14) for each

of the 14 endophenotypes, the gray matter volumes of the 12 regions of
interest (ROIs) related to the default mode networks (DMN) (i.e. left and
right sides of inferior parietal, inferior temporal, medial orbitofrontal,
parahippocampal, precuneus and posterior cingulate) and those of hip-
pocampus, due to the possible relatedness of the above ROIs to AD
(Greicius et al., 2004; Saykin et al., 2015). Five covariates were also
included: baseline age, gender, baseline education (in years), handedness
(left or right), and baseline intracranial volume. In elastic net, as in
PrediXcan, we fixed one tuning parameter at 1/2 to give an equal weight
to the ridge penalty and Lasso penalty, and the other tuning parameter
was selected by five-fold cross-validation with a default setting. To select
only those informative genes for each ROI, after selecting the tuning
parameters, we calculated the squared Pearson correlation, r2, between
the predicted and observed endophenotype values in the dataset, and
selected only those genes with r2 > 0:01; across the 14 sets of the
ROIs/weights, the numbers of the selected genes ranged from 9037 to
9997, which were used in later analyses.

We downloaded the tissue-specific gene expression-based weights
from the PrediXcan database (https://app.box.com/s/
gujt4m6njqjfqqc9tu0oqgtjvtz9860w). Two sets of weights based on
GTEx whole blood and brain hippocampus tissues (GTEx, 2015) were
used for comparison. For the two tissues, there were 10,210 and 8534
genes with r2 greater than 0.01, which were tested, respectively.

The Bonferroni adjustment was used to set the genome-wide signifi-
cance level at 0.05/10000¼ 5� 10�6 and 0.05/10500¼ 4.76� 10�6 for
testing with a single set of weight, as the maximum number of themapped
genes for each set of the weights in the following data analyses was less
than 10,000 and 10,500 when applied to the ADNI-GO/2 and ADNI-1
cohorts as the main GWAS, respectively; for the daSPU test combining
multiple sets of weights, we set the genome-wide significance level at
0.05/23000 ¼ 2.17 � 10�6, as the number of mapped genes being tested
in the analyses was slightly less than 23,000.

We also applied the usual unweighted gene-based tests to the IGAP
Fig. 3. Q-Q plots for TWAS testing for gene-AD association with weights constructed from the GT
to the ADNI-GO/2 GWAS data. The numbers in the second column in each legend box of each
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data. Specifically, we applied the SPU(1), SPU(2) and aSPU tests without
weights (i.e. W ¼ I) to 23,392 genes; for each gene, all variants within
the 20 Kb upstream and downstream regions of the transcription start/
ending sites were included. We set the genome-wide significance level at
0.05/23400 ¼ 2.14 � 10�6.

We used a step-up procedure to increase the number of simulations, B,
when calculating the p-values of the aSPU-type tests in the subsequent
data analyses. We started with a small B ¼ 103, and re-ran the tests with
B ten times of its previous value for the genes with a p-value <5=B; we
repeated this process up to B ¼ 107.

3.3. Application to the ADNI data

We first applied IWAS and TWAS to the ADNI-GO/2 data as the main
GWAS data by incorporating the weights derived from the ADNI-1 data.
Note that, to mimic the realistic situation with separate and independent
reference GWAS and main GWAS data, studies, here we used one of the
two ADNI datasets to construct the weights, then applied the tests to the
other dataset. There were 8917, 8568, 8528, 8874, 9009, 9060, 9134,
8619, 8496, 9397, 9223 and 8712 genes mapped for each set of the
weights derived from the 12 ROIs related to DMN, respectively; there
were 8990 and 9260 genes mapped for the weights derived from the left
and right hippocampus ROIs respectively; there were 8731 and 6944
genes mapped for the weights derived from the whole blood- and
hippocampus-specific gene-expression, respectively. After combining the
12 sets of weights for the 12 ROIs related to DMN, we tested a total of
22,282 genes.

As shown in Fig. 2, across the sets of weights (ROIs), the SPU(2) and
thus aSPU were more powerful than SPU(1), a test similar to that used in
PrediXcan/TWAS. In addition, as expected, using different sets of weights
(based on different imaging endophenotypes in the multiple ROIs) yiel-
ded quite different numbers of significant genes, demonstrating the ne-
cessity and advantage of selecting informative endophenotypes if
possible; otherwise, using the proposed method to combine information
across multiple sets of weights will be useful. Interestingly, the new
daSPU test identified a large number (63) of significant genes.

As a comparison, we applied TWAS with GTEx tissue-specific gene
expression as endophenotypes. Five covariates were adjusted: baseline
age, gender, education (in years), handedness (left or right), and intra-
cranial volume. Some results for ADNI-GO/2 are shown in Fig. 3; no
significant association was detected by any test. It was also confirmed
that the SPU(1) test and PrediXcan/TWAS gave essentially the same p-
values (not shown).

Finally, we also applied IWAS by reversing the roles of the two ADNI
Ex gene expression in whole blood (left panel) or brain hippocampus (right panel), applied
panel indicate the numbers of the genome-wide significant genes identified by each test.

https://app.box.com/s/gujt4m6njqjfqqc9tu0oqgtjvtz9860w
https://app.box.com/s/gujt4m6njqjfqqc9tu0oqgtjvtz9860w
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cohorts: we used the ADNI-GO/2 data as the reference GWAS to construct
weights, then applied to the ADNI-1 GWAS data. Across the 14 ROIs, the
SPU(1), SPU(2) and aSPU tests detected in total 78, 81 and 44 significant
and unique genes respectively, compared to 45, 81 and 63 in the previous
analyses; the numbers of the common/intersected sets of the genes from
the two analyses were 42, 61 and 37 by the three tests respectively.
Furthermore, the daSPU test identified 44 and 63 significant genes with a
common set of 37 genes in the two analyses. Hence, in spite of the
relatively small sample sizes and some differences between the two ADNI
cohorts (Kim et al., 2016), the two analyses yielded largely overlapping
sets of the significant genes.

3.4. Application to the IGAP GWAS summary statistics

We applied both IWAS and TWAS to the GWAS summary statistics
based on the largest meta-analysis of AD GWAS with over 74,000 in-
dividuals (Lambert et al., 2013). The data were downloaded from the
International Genomics of Alzheimer's Project (IGAP) site at http://web.
pasteur-lille.fr/en/recherche/u744/igap/igap_download.php. We used
the IGAP stage 1 summary statistics with a total of 7,055,881 SNPs; the
Z-scores were imputed for any missing SNPs using the IMPG algorithm
(Pasaniuc et al., 2014). There were 9131, 8901, 8767, 9248, 9540, 9488,
9553, 8954, 8911, 9604, 9695 and 9109 genes mapped for each set of
weights derived from the 12 DMN-related ROIs, 8788 and 8818 genes
mapped for the left and right hippocampus ROIs, 9308 and 9772 genes
mapped for whole blood and hippocampus tissue-specific gene-ex-
pression, respectively; after combining the 12 sets of weights for the 12
DMN-related ROIs, we tested on a total of 22,704 genes.

The results are shown in Table 1. First, it is clear that IWAS using the
gray matter volumes of several ROIs as endophenotypes yielded much
larger numbers of significant genes associatedwith AD than that of TWAS
based on two tissue-specific gene expression. In particular, perhaps due
to the relatedness of hippocampus atrophy to AD, IWAS based on the two
sides of hippocampus detected the highest numbers of the significant
genes. Second, in both IWAS and TWAS, for almost every set of the
weights, the adaptive aSPU test identified a larger number of the sig-
nificant genes than that of SPU(1) (i.e. the Sum test), a similar test used in
the original PrediXcan/TWAS. Third, by combining the weights derived
from the 12 DMN-related ROIs, the daSPU test yielded a large number
(44) of significant genes. Note that, for the purpose of illustration we did
not adjust for multiple testing across multiple sets of weights when
deciding the significance level for each set of weights. Strictly speaking,
such an adjustment is necessary in practice, which may be conservative if
a simple Bonferroni adjustment is used. Alternatively, using the daSPU
test across multiple sets of weights avoids such a multiple testing prob-
lem. Given the relevance of hippocampal atrophy to AD, we did not
combine the weights from hippocampus with the 12 DMN-related ROIs.
As shown in the Manhattan plots in Fig. 4, the significant genes or loci
identified by the daSPU test based on the 12 DMN-related ROIs and those
of aSPU on the two hippocampus ROIs are complementary. Finally,
among the significant genes identified by IWAS or TWAS, some are novel
ones as shown in Tables 2 and 3, which of course are only putative and
need to be validated; some of the novel genes are known to be associated
with other traits Supplementary table).

It is noted that the usual unweighted aSPU test also detected 50 sig-
nificant genes, among which only 11 overlaps with the 44 genes identi-
fied by the weighted daSPU test, illustrating possible values and a
complementary role of IWAS compared to the standard (unweighted)
GWAS analysis. It was also confirmed that the unweighted SPU(1) was
likely less powerful in identifying fewer significant genes than the un-
weighted SPU(2) and aSPU tests.

3.5. Application to the lipid GWAS summary data

Since the ROIs were chosen based on their possible relatedness to AD,
the corresponding neuro-imaging endophenotypes were expected to
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Fig. 4. Manhattan plots of IWAS for the IGAP data: from the top to the bottom, the daSPU based on combining the 12 DMN-related ROIs, aSPU based on the left hippocampus and aSPU on
the right hippocampus. The horizontal line in each panel gives the genome-wide significance level.
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Table 2
Novel significant AD-associated genes identified by IWAS, not overlapping with any genome-wide significant SNPs within ±1 Mb region based on the IGAP data. Column “#SNPs” gives the
numbers of SNPs used in the genes, column “sig.test” indicates which of SPU(1) and aSPU tests detected the genes, while the remaining three columns give the p-values of the three tests.

ROI chr genes #SNPs sig.test aSPU SPU(1) SPU(2)

10 1 COLGALT2 10 both 1.0E-07 0.0Eþ00 2.7E-01
10 1 C1orf21 16 both 5.0E-07 1.5E-07 2.8E-01
10 1 PTPRC 3 both 1.0E-07 0.0Eþ00 1.6E-01
6 2 PRKCE 4 both 1.1E-06 4.8E-07 2.5E-01
4 3 EXOSC7 2 both 1.0E-07 4.6E-12 4.3E-03
4 3 TMEM158 11 both 1.0E-07 0.0Eþ00 4.5E-03
4 3 LARS2-AS1 16 both 7.0E-07 2.1E-07 5.5E-03
5 3 EPHA6 3 both 1.0E-07 0.0Eþ00 3.1E-01
5 3 CRYBG3, MINA, GABRR3, OR5AC2, OR5H1 2 SPU(1) 6.0E-06 3.8E-06 3.0E-02

OR5H14, OR5H15, OR5H6, OR5H2, OR5K4,
OR5K1, OR5K2, CLDND1, GPR15, CPOX
ST3GAL6-AS1, ST3GAL6, DCBLD2, OR5K3

2 4 GALNT7 2 both 1.0E-07 9.3E-09 4.9E-01
10 4 ADAM29 2 both 1.0E-07 0.0Eþ00 2.9E-01
7 5 LINC01024, PURA, IGIP, CYSTM1 5 both 4.6E-06 4.0E-06 9.5E-06
7 5 WDR55, DND1, HARS, HARS2, ZMAT2 7 both 9.0E-07 3.3E-07 1.1E-06

VTRNA1-1, VTRNA1-2, VTRNA1-3
8 8 CLVS1 2 both 1.0E-07 8.9E-14 1.5E-02
14 9 IFNA7 41 both 8.0E-07 5.0E-07 1.3E-02
14 9 IFNA10, IFNA16 41 SPU(1) 1.1E-05 3.1E-06 1.4E-02
6 9 ANKRD19P, ZNF484,LOC642943,FGD3, 2–5 both 1.0E-07 0.0Eþ00 1.3E-01

C9orf89, NINJ1, C9orf129, FAM120AOS,
PHF2, MIRLET7A1, MIRLET7F1, WNK2,
MIRLET7D, LOC100132077, HIATL1,
SUSD3, MIRLET7DHG, FAM120A

4 9 PSMD5-AS1 3 both 1.0E-07 4.8E-12 3.1E-01
4 10 DNAJC1 2 SPU(1) 1.7E-05 2.7E-06 3.1E-02
11 10 AGAP7 5 both 1.1E-06 5.4E-07 1.4E-02
5 16 GRIN2A 3 both 1.0E-07 0.0Eþ00 4.2E-02
5 16 ATF7IP2 4 both 1.0E-07 7.3E-10 4.2E-02
8 16 ARHGAP17, LOC554206, LCMT1, 2 both 1.0E-07 0.0Eþ00 7.3E-01

LOC100506655, AQP8, ZKSCAN2
LOC102723510

12 16 DDX19A 5 both 3.5E-06 1.8E-06 2.2E-05
5 17 MAP2K6, LOC101928122 3 both 1.0E-07 0.0Eþ00 3.6E-01
5 17 LOC101928122 3 both 1.0E-07 0.0Eþ00 3.6E-01
5 17 LOC102723487,LINC01028 3 both 1.0E-07 9.3E-13 3.7E-01
3 18 DSEL 3 SPU(1) 5.4E-06 2.5E-06 6.5E-01
8 19 AP1M1, MED26, SMIM7, TMEM38A 2 both 1.0E-07 0.0Eþ00 7.2E-02
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enhance statistical power in detecting larger numbers of significant AD-
associated genes, as shown in the above example. However, for an un-
related GWAS trait, the above neuro-imaging endophenotypes would not
be expected to improve the power. To confirm, we applied IWAS (with
ROI #9) and TWAS (with the GTEx whole blood gene-expression) to a
meta-analyzed large lipid GWAS summary statistics dataset for trait HDL
(Global Lipids Genetics Consortium, 2013); the Z-scores were imputed
for any missing SNPs present in the reference GWAS using the IMPG
algorithm (Pasaniuc et al., 2014). There were 9455 and 8916 genes
mapped for the weights derived from GTEx whole blood gene-expression
and ROI # 9, respectively.
Table 3
Novel significant AD-associated genes identified by TWAS, not overlapping with any genome-w

Tissue chr gene start end

hippo 14 ENTPD5 73433180 75486026
wb 7 SLC26A3 106405911 108443678
wb 17 CHRNE 3801063 5806369
hippo 1 DENND4B 152901976 154919154
wb 5 SLC4A9 138739786 140754722
wb 7 TAS2R4 140478288 142479188
wb 9 CDC37L1 3679565 5706594
hippo 10 SEMA4G 101732285 103745373
hippo 11 IFITM10 753639 2771824
hippo 11 TRAPPC4 117889240 119894385
hippo 15 LDHAL6B 58499014 60500785
wb 16 DDX19A 69380823 71407281
wb 19 GNA11 2094407 4124000
hippo 19 SSBP4 17530145 19545372
wb 20 TRIB3 0 1378203
hippo 20 YWHAB 42514239 44537175
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As expected, the number of the significant genes identified by IWAS
was nomore than (in fact, less than) that by TWAS (Fig. 5). Note that, due
to the large sample size (about 189,000 individuals) for the lipid data,
significant associations are expected with even a non-informative set
of weights.

4. Discussion

We have developed an IWAS approach to integrating imaging endo-
phenotypes with GWAS to identify genes associated with a complex trait
or disease. Using the ADNI-1 data as a reference GWAS dataset with
ide significant SNPs within ±1 Mb region based on the IGAP data.

#SNPs sig.test aSPU SPU(1) SPU(2)

2 aSPU 2.9E-06 8.5E-01 4.4E-07
8 SPU(1) 6.0E-06 2.5E-06 5.9E-02
10 SPU(1) 7.0E-06 2.7E-06 2.2E-06
10 both 4.0E-07 4.6E-08 4.9E-03
1 both 2.0E-07 1.1E-07 1.1E-07
4 both 1.0E-07 0.0Eþ00 5.5E-02
4 both 1.0E-07 1.7E-13 6.7E-02
2 both 1.0E-07 0.0Eþ00 1.8E-01
2 both 1.0E-07 1.4E-08 3.0E-01
10 both 5.0E-07 2.7E-07 3.1E-01
2 both 1.0E-07 0.0Eþ00 6.4E-01
2 both 1.0E-07 0.0Eþ00 5.6E-01
5 both 1.8E-06 5.5E-07 3.6E-01
7 both 3.2E-06 1.7E-06 4.5E-06
15 both 1.0E-06 3.9E-07 1.1E-02
2 both 1.0E-07 0.0Eþ00 6.6E-01



Fig. 5. Q-Q plots for (a) IWAS and (b) TWAS testing for gene-HDL association applied to the 2013 lipid GWAS summary statistics. The numbers in the second column in each legend box of
each panel indicate the numbers of the genome-wide significant genes identified by each method.
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individual-level genotypic data and structural MRI-derived gray matter
volumes of some ROIs possibly related to AD, we applied IWAS to the
ADNI-GO/2 GWAS individual-level data and a GWAS summary statistics
dataset, uncovering multiple genes, including some novel ones, signifi-
cantly associated with AD.We also compared its performance with TWAS
with gene expression as endophenotypes. Perhaps due to more direct
relatedness of brain atrophy, instead of gene expression in various tissues
of normal subjects, to AD, our IWAS consistently identified larger
numbers of AD-associated genes than TWAS.

As in TWAS, the choice of an endophenotype to construct a set of
weights to be used in IWAS is important. Depending on the choice, IWAS
may or may not increase the statistical power compared to the standard
GWAS without using the endophenotype. In both IWAS and TWAS, only
when an endophenotype is intermediate between the genetics and the
trait, or when the genetic component of the trait has a causal effect on the
endophenotype, integrating the endophenotype into the main GWAS
may boost the statistical power to detect the trait-associated genes. In our
example, some ROIs like hippocampus led to much larger numbers of
significant genes than did other ROIs in DMN; even though DMN is
known to be likely associated with AD, some ROIs may be more infor-
mative (e.g. more strongly associated with AD and with a high herita-
bility) than other ROIs in DMN. Hence, in practice one has to be careful in
selecting the endophenotypes to be used, e.g. based on the endopheno-
type ranking value (ERV) proposed by Glahn et al. (2012). In realistic
situations, one can do his/her best to select all relevant endophenotypes,
then check the results of IWAS for each endophenotype with a suitable
control of multiple testing, e.g. by a conservative Bonferroni adjustment.
Alternatively, one can also apply our proposed daSPU test to combine the
results across multiple endophenotypes. Finally, instead of using struc-
tural MRI-derived imaging endophenotypes, one can use other imaging
modalities to derive endophenotypes as long as it is reasonable to assume
that they are possibly related to the trait of interest. For example, it may
be worthwhile to apply IWAS with brain functional or structural con-
nectivities (Thompsona et al., 2013) as endophenotypes.

The proposed statistical tests used in IWAS and TWAS are imple-
mented in R package aSPU2 that will be publicly available on CRAN; the
sets of the weights derived from the ADNI-1 imaging endophenotypes
and example computer code are publicly available at wuchon-
g.org/IWAS.html.
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