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ABSTRACT
There is not a specific test to diagnose Alzheimer´s disease (AD). Its

diagnosis should be based upon clinical history, neuropsychological
and laboratory tests, neuroimaging and electroencephalography (EEG).
Therefore, new approaches are necessary to enable earlier and more
accurate diagnosis and to follow treatment results. In this study we used
a Machine Learning (ML) technique, named Support Vector Machine
(SVM), to search patterns in EEG epochs to differen tiate AD patients
from controls. As a result, we developed a quantitative EEG (qEEG)
processing method for automatic differentiation of patients with AD from
normal individuals, as a complement to the diagnosis of probable
dementia. We studied EEGs from 19 normal subjects (14 females/5
males, mean age 71.6 years) and 16 probable mild to moderate
symptoms AD patients (14 females/2 males, mean age 73.4 years. The
results obtained from analysis of EEG epochs were accuracy 79.9%
and sensitivity 83.2%. The analysis considering the diagnosis of each
individual patient reached 87.0% accuracy and 91.7% sensitivity.

INTRODUCTION
Alzheimer’s disease (AD) is considered the main cause of

dementia in Western countries.1 It is characterized by memory loss and
impairment of at least one cognitive function (calculation, praxis,
gnosis, executive functions, language, etc.). Notwithstanding, there is
not a specific test to define AD and definitive diagnosis can only be
established on autopsy or biopsy.2

Therefore, AD diagnosis should be based upon clinical history, labor -
atory tests, neuroimaging, neuropsychological batteries and EEG. Ergo,
new approaches are necessary to enable earlier and more accurate
diagnosis and to follow treatment results. Currently, neuropsychological
screenings have AD diagnostic accuracy ranging from 85 to 93% in
university hospitals. Unfortunately, these cognitive batteries re quire ex -
perienced people and lengthy sessions.3 Consequently, it is still neces -
sary to have a biological marker to help in the early diagnosis of AD.

QEEG is a procedure in current clinical use. It is non-invasive, safe
and offers a superior temporal resolution compared to fMRI, SPECT
and PET. Therefore, QEEG may potentially be used as a tool to screen
a large number of people for risk of AD.4-5 The most usual findings in
EEG visual analysis5,6 of AD are the displacement of background
frequency into delta and theta ranges and the decrease of alpha
central frequency.7 Accordingly, Sandmann8 observed a direct
correlation between the degree of cognitive impairment and the power
of low frequency electrical activity in the qEEG. 

Spectral Analysis (SpecA) and AD
SpecA has been considered 71% to 81% sensitive to changes in

AD EEG background.9-12 Saletu et al.13 found a localized temporal
decrease of alpha and beta activities in AD and a more widespread
distribution of slow cerebral rhythms in vascular dementia (VaD). Pucci
et al.14 proposed that the “alpha” rhythm could be a diagnostic AD
marker, since there is a decrease in the alpha frequency to 6.0-8.0 Hz
in mild AD patients.
Coherence (Coh) and qEEG

Coh quantifies the covariance between pairs of signals (EEG
electrodes) as a function of frequency16 and it is a well-established
method to quantify connectivity through the corpus callosum,16 high
Coh is related to the structural and functional integrity of the intra- and
inter-hemispheric cortical connections.17 Consequently, Coh is
becoming widely used in AD studies. For example, Besthorn et al.18

found central and frontal Coh decrease in theta, alpha and beta bands
of AD patients. Studies from Leuchter et al.19, and Locatelli et al.20 had
similar results with decreased Coh in AD EEGs. 

SpecA and Coh generate such a large amount of data that they are
not suitable for visual analysis and comparisons. Therefore, Machine
Learning (ML) techniques are among the new methods used to handle
high dimensional datasets and differentiate normal individuals from AD
patients.3,21-24 Earlier diagnosis of AD is necessary to delay disease
progression. Consequently, the development of new EEG diagnostic
tools would be very helpful.

The objective of this study is to use a ML technique known as
Support Vector Machines (SVM)25 to develop models able to extract
and classify digital EEG signal (dEEG) dataset patterns from probands
previously diagnosed as controls or AD patients. This technique is
known by its good generalization ability and robustness to process
high dimensional data as EEG signals.26-29

MATERIALS AND METHODS
Subjects

The dataset used in this study is composed of EEG signals (EEGs)
recorded from two groups 60-80 years age-matched: (S1) 19 normal
subjects, 14 females and 5 males, with averaged age of 71.6 years (sd
8.85); (S2) 16 probable AD patients (NINCDS-ADRDA criteria),30 14
females and 2 males, with averaged age of 73.4 (sd 6.12) years and
mild to moderate symptoms (DSM-IV-TR).31
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Patients and controls were submitted to the Brazilian version of the
Mini-Mental State Examination (MMSE).32-33 AD patients should score
below 26 points in the test. Subjects had no history of diabetes
mellitus, kidney disease, thyroid disease, alcoholism, liver disease,
lung disease or vitamin B12 deficiency to exclude other causes of
cognitive impairment.
Data acquisition and processing

The EEGs were recorded with a resolution of 12 bits, band pass of
1-30 Hz and sampling rate of 200 Hz. The acquisition equipment was
the Braintech 3.0 (EMSA “Equipamentos Médicos”) with impedance
below 10 K. Electrodes were placed according to the International 10-
20 System.5,34 The inter-connected ear lobe electrodes reference used
in this study is standard in our laboratory, despite the fact that there are
controversies regarding which reference is the best.35-36 Bipolar
references were obtained virtually, through subtraction of the
corresponding ear-lobe referenced (and digitized) signals. EEGs were
recorded during 20 minutes with probands awake, relaxed with closed
eyes. Two skilled neurophysiologists selected 8 seconds EEG
fragments without artifacts (blinking, drowsiness, muscle movements
or equipment-related artifacts) by visual inspection. This duration is
appropriate because it provides good averaging of the parameters
obtained with SpecA, as will be explained further.

A 512-point Fast Fourier Transform (FFT) was used for frequency
analysis, applied after sub-segmenting the 8 sec epochs with Hamming
windows of 2.5 s and 90% of overlap between successive windows,37

thus generating six overlapped windows for each 8 sec EEG fragment.
This window size was chosen to improve frequency resolution and it
allows temporal resolution as well, since a sliding window (with 90%
overlap) was also used in the signals. In order to eliminate the inter -
ference of the power grid (60Hz), EEG signals were filtered using an
infinite impulse response low-pass elliptic filter with a cutoff frequency at
50Hz and a zero in the frequency of 60Hz. 

The frequency bands were divided into sub-bands δ1(0,1-2,0Hz),
δ2(2,5-4,0Hz), Θ1(4,5-6,0Hz), Θ2(6,5-7,5Hz),α1(8,0-10,0Hz), α2(10,5-

12,0Hz), β1(12,5-15Hz), β2(15,5-21,0Hz), β3(>21,0Hz).38 The coher -
ence between a pair of EEG channels for each epoch was obtained
dividing the estimated cross spectrum of two channels by the auto-
spectra of each channel39 according to equation (1), where Cij(ω) is the
cross spectral density and Cii(ω) and Cjj(ω) are the power spectral
densities of signals i and j (EEG channels). The average spectral
windows of each epoch (using six overlapped windows) were calculated
using the periodogram method of Welch.40

E || Cij (ω) |2|
Coh2

ij = ——————————— (1)
E | Cii (ω) | E | Cjj(ω) |

The pairs of electrodes used to estimate the cross spectrum coher -
ence (Figure 1) were as follows: Inter-hemispheric38Fp1-Fp2, F7-F8, F3-
F4, C3-C4, P3-P4, T5-T6 eO1-O2; Intra-hemispheric frontal electrodes20:
Fp1-F7, Fp2-F8, Fp1-F3, Fp2-F4, Fp1-C3, Fp2-C4, F7-C3, F8-C4, F3-
C3 eF4-C4; Intra-hemispheric rear electrodes20: O1-P3, O2-P4, O1-T5,
O2-T6, O1-C3, O2-C4, P3-C3, P4-C4, T5-C3 eT6-C4; Equidistant elec -
trodes20: O1-Fp1, O2-Fp2, O1-F7, O2-F8, O1-F3, O2-F4, P3-Fp1, P4-
Fp2, P3-F7, P4-F8, P3-F3, P4-F4, T5-Fp1, T6-Fp2, T5-F7, T6-F8, T5-F3
eT6-F4; Rear electrodes in bipolar montage41: T3.C3-T4.C4, C3.P3-
C4.P4, T5.P3-T6.P4, T3.T5-T4.T6, P3.O1-P4.02, T5.O1-T6.02. 

In all combinations of electrode pairs the coherence operation is
represented by a dash character (-) and the bipolar montage is
represented by a dot character (.). 

Another attribute used was the spectral peak, obtained from fast
Fourier transform (FFT) spectral analysis.42. The spectral peak (SPk) of
each signal window can be defined as the point in EEG power spectral
density (PSD) where spectral energy reaches its maximum value. Again,
we used the six overlapped Hamming windows (2.5 seconds) to obtain
the average spectral peaks of each epoch (one peak per frequency
band). SPk was calculated with the following electrodes (Figure 2):
Biauricular reference: Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, T5, T6,
O1 and O2; Bipolar reference: F3.F4, F7.F8, C3.C4, T3.T4, P3.P4,
T5.T6 and O1.O2.
Support Vector Machines (SVMs)

SVMs constitute a Machine Learning (ML) technique based on the
Statistical Learning Theory.43 SVMs separates data by a hyperplane,
considering bounds in the generalization ability of a linear classifier.44

Accordingly, given a training data set T containing n pairs (xi; yi), where
xi ∈ℜm, is a data point with m dimensions (for instance, the features
extracted from the EEG exam of a given patient) and yi ∈ {-1;+1} is the
class of xi (the diagnosis: -1 for normal and +1 for AD), SVMs seek the
linear classifier g(x) = sgn(ω · x + b) separating data from classes +1 and
-1 with minimum error while also maximizing the margin of separation
between these classes (Figure 3).25 In this paper the characteristics
extracted from each EEG represent data points in two separated classes
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Figure 1.
From left to right and from top to bottom: anterior coherences, posterior
coherences, homolog coherences, long distance coherences, bipolar
posterior coherences.

Figure 2.
From left to right: biauricular and bipolar electrode combinations to spectral
peaks calculation.



according to the presence or absence of AD. The maximization of the
margin is accomplished through the minimization of the norm ||ω||. The
following optimization problem is solved in this process:

n
Minimize: ||ω||2 + C ∑ ξ i (2)

i=1

Under the restrictions: yi(ω·xi+b)≥1- ξ i and ξ i ≥0, for i=1,…,n (3)

where C is a constant that imposes a different weight for training error
over the generalization of the classifier and ξ i are slack variables. The
restrictions are originally imposed to ensure that no training data
should be within the margins of separation between the classes. The
slack variables relax these restrictions on the margins, in order to avoid
an overfitting to training data and also for dealing with noisy data. The
number of training errors and data between the margins is controlled
by the minimization of the summation term in (2).25

n
∑ ξ i
i=1

Nevertheless, the classifier obtained is still limited, since there are
many data sets where data cannot be satisfactorily divided by a hyper -
plane, making a non-linear frontier more adequate to the problem.25. The
Cover theorem states that, if it is possible to increase the dimensions of
data through a non-linear mapping function Φ with a high probability they
will become linearly separable in the new space, which is usually called
feature space.45

The mathematical tool employed for the computation of Φ is named
Kernel. The Kernel K is a function which takes two variables xi and xj,
representing two data points, and calculates the dot product between
them in the feature space. Since all computations involving data points
in SVMs are in the form of dot products, the non-linearization of SVMs
can be easily accomplished through the use of a proper Kernel function.
In this paper the non-linear RBF (Radial-Basis Function) Kernel function
was used:

K(xi,xj) = exp (-γ || xi-xj ||
2), γ >0 (4)

SVMs, how does it work? 
We can illustrate the use of SVMs with a red-and-blue candies

model. Suppose that you want to classify candies in two different classes
(blue or red) using other characteristics than colors (attributes). It is
assumed that each different class (color) has somewhat specific
attributes (different colors have: 1. different concentrations of chocolate
and peanut butter; 2. different shapes, round or square).These attributes
represent the vector xi. 

First, a candy bag is used as a SVM training set. The candies are
placed on a table accordingly with their attributes (as in a Cartesian coor -
dinate system). They are horizontally-distributed (x axis, Figure 4).
Those with more peanut butter are selected to stay on the right and
those with more concentration of chocolate are put on the left. Square
candies are put on the top, round candies stay below (y axis, Figure 4). 

After this classification colors are revealed. Suppose that blue and
red candies are clearly separated. Some of these candies are classified
as Support Vectors (SVs) when they skirt the border between the two
colors. Consequently, it is possible to trace a line equidistantly to blue
and red SVs in order to minimize separation error. These line coor -
dinates define the training set separation model. As a result, you have
separated blue and red candies in distinct classes based upon attributes
other than the colors (Figure 4). Finally, the candies training set is re -
moved from the table and the predefined coordinates are used to classify
candies from other bags. A boundary line between different data classes
is present in all machine learning techniques. The main characteristic of
the linear SVM is to trace a maximum boundary linear hyperplane.25

SVMs induction
All SVMs in this paper were induced with the Weka tool45 using

default parameters values to allow fair comparisons among different
features combinations. The parameters employed were C = 1,0 and y
= 0,01 in the RBF Kernel.

The 3305 EEG epochs dataset were divided in two parts, one to
classification model training (68.06%) and other to test the induced
model (31.94%). The experiments were repeated three times, with
different data separations, in order to verify the variability of the SVM
results to distinct data partitions. Patient data used for training (learning
phase) was not used for testing and vice-versa. 

RESULTS
Several different combinations of features (characteristics) ex -

tracted from the EEG exams were considered as input for the SVMs:
frontal coherences, rear coherences, long distances coherences,
homologous coherences, rear-bipolar coherences, biauricular peaks
and all coherences combined to the biauricular peaks, bipolar peaks
and all coherences combined to the bipolar peaks (Table 1). We
measured the mean accuracy rates (percentage of epochs correctly
classified) of the models obtained for each feature combination in the
test sets, as well as their AUC (Area Under the ROC Curve performance
measure), sensitivity and specificity in the classifications. Standard
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Figure 3.
Example of a linear frontier induced by a SVM.  Each data point represents an
EEG  of a patient, while d1 and d2 represent the margins of separations
between the classes according to the presence or absence of AD.

Figure 4.
Induced SVM in the red-and-blue candies example. The red candies closest to
blue candies and the blue candies closest to the red ones are designed as
support vectors used to establish the margin between the two distinct groups. 



deviation values of the results are also shown. Specificity corresponds
to the ability to correctly classify AD epochs, while sensitivity regards the
ability to correctly classify normal epochs. Higher sensitivity values can
be considered better, since it prevents an AD patient from stopping
treatment because of a wrong diagnosis.

The classifiers with better accuracies for the epochs (Table 1) were
subsequently used to obtain the diagnosis of each individual subject.
This analysis verifies the patient diagnosis accuracy rate, rather than
the classification made considering each epoch. The results for
coherence show that frontal and posterior configurations have better
accuracy as observed by Locatelli.20 On the other hand, posterior
bipolar coherences have a good specificity, despite their low accuracy
rate, as discussed by Trambaiolli.41 The set of bipolar peaks presents
better results than those obtained for the coherences.

For subjects’ diagnoses, we considered the ratio between their
number of correctly classified epochs by their total number of epochs.
The accuracy, sensitivity and specificity were calculated considering
the threshold of 50%+1 to diagnosis (Table 2). 

DISCUSSION
In Table 1 the results for coherence show that frontal and posterior

configurations have better accuracy as observed by Locatelli.20 On the
other hand, posterior bipolar coherences have a good specificity,
despite their low accuracy rate, as discussed by Trambaiolli.40 The set
of bipolar peaks presents better AD diagnostic results than those
obtained for the coherences. Therefore, it is possible that the choice of
the reference can influence the results. If we use all coherences and
bipolar peaks together as input for a SVM classifier, an improvement is

noted in accuracy, AUC and sensitivity. Nevertheless, all these results
refer to EEG epochs classification alone, which is not helpful for patient
diagnosis. Spectrum peaks and combinations of these peaks with
coherences achieved the best performance in the classification of the
epochs, consequently, probands analyses were carried out for these
particular datasets. 

Both sets of features had accuracy improvement in the per proband
evaluation scenario. For both datasets the accuracy, sensitivity and
specificity rates were all above the level of 80%, and the sensitivity for
the bipolar peaks data exceeds 90% (Table 2). The alpha and beta
bands slowing of AD patients’ EEG,47-48 become evident when the dif -
ference between more localized electrical potentials is considered, i. e.,
between electrodes next to each other, as in bipolar montages.  Despite
the fact that sensitivity and specificity have high standard deviation
values (sdv), a sensitivity of 91.7% is important, since it can reduce the
risk of AD patients stopping treatment by an incorrect diagnosis.

Table 1 shows, for posterior-bipolar coherence tests, differences
between values of specificity and sensitivity in favor of normal patients
in detriment of AD patients. In the case of all coherences + bipolar
peaks, there is a balance between sensitivity and specificity, sug -
gesting that no class is strongly favored in detriment of the other.

It is also noteworthy that the sdv values obtained in the per patient
analysis are quite high. Nevertheless, this can be attributed to the fact
that we have relatively few patients for testing (13±2), and consequently,
an elevation in sensitivity and specificity sdv. Therefore, the misclas -
sification of only one patient results in a difference of total performance
of approximately 15%.
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Table 1
The mean and standard deviation performance measures for different partitions of data in the 

epochs classification of the EEG exams: accuracy, AUC (Area Under the ROC Curve), sensitivity (correct classifications 
for epochs from patients with AD) and specificity (correct classifications for epochs from normal patients)

Data Accuracy (%) AUC Sensitivity (%) Specificity (%)

Frontal coherences 65,2 ± 3,5 0,66 ± 0,01 69,1 ±   9,4 63,2 ± 12,0
Posterior coherences 67,4 ± 3,4 0,68 ± 0,03 64,6 ±   3,5 70,4 ± 12,0
Long distances coherences 54,8 ± 2,4 0,55 ± 0,03 47,8 ±   8,5 62,3 ± 12,5
Homologous coherences 58,4 ± 9,2 0,58 ± 0,09 46,9 ± 21,5 69,1 ±   6,1
Posterior-bipolar 53,4 ± 8,0 0,52 ± 0,05 21,9 ± 16,8 81,7 ± 12,7
All coherences 72,4 ± 9,3 0,73 ± 0,09 77,1 ±   6,3 69,0 ± 12,1
Biauricular peaks 65,5 ± 8,6 0,65 ± 0,07 64,2 ± 12,1 66,5 ± 17,1
All coherences + biauricular peaks 72,4 ± 5,9 0,73 ± 0,04 77,0 ±   2,7 68,9 ± 11,1
Bipolar peaks 76,4 ± 3,6 0,76 ± 0,04 71,0 ±   0,1 80,5 ±   3,6
All coherences + bipolar peaks 79,9 ± 3,9 0,80 ± 0,04 83,2 ±   3,6 76,4 ±   8,5

Each line of the table represents a different data set configuration (different features extracted from the EEG signals). 
The best results are boldfaced, while the worst results are in italics.

Table 2
For proband test diagnosis we used the ratio between the number of correctly classified epochs by the total number of epochs, by patient

Data Accuracy (%) Sensitivity (%) Specificity (%)

All coherences 70,10 ±   8.71 69,17 ± 15,88 75,38 ± 6,88
Biauricular peaks 68,13 ±   8,49 60,83 ± 20,05 74,60 ± 9,91
All coherences + biauricular peaks 72,58 ± 14,17 75,83 ± 14,22 69,84 ± 14,55
Bipolar peaks 86,97 ±   3,80 91,67 ± 14,43 84,92 ± 14,36
All coherences + bipolar peaks 81,16 ±   5,86 82,50 ± 4,83 80,15 ± 7,65

Accuracy is the percentage of correct classification rate in the whole dataset. Sensitivity is probands correctly identified as AD. Specificity is
probands correctly identified as normals.



CONCLUSION
Although more tests are needed, involving a larger number of sub -

jects, this study demonstrated that multiple combination of coherences
and spectral peaks are good input features for SVM classifiers for
automate AD diagnosis. We propose the use of SVM in the EEG study
of demented patients because of their strong ability of generalization
and robustness to work with high dimensional data, as these repre -
sented. The results indicate that the best feature inputs are: the com -
bination of frontal coherences, rear coherences and long distances
coherences20; homologous inter-hemispheric coher ences38; posterior
bipolar coherences, Trambaiolli41; and the peaks of spectrum.

Nevertheless, the main result in this paper is that the classification
per patient had best results when we used as inputs for SVMs only the

frequencies of the peaks of spectrum obtained by bipolar recording.
Therefore, we suggest that the use of bipolar peaks is a good tool
provid ing a set of characteristics from EEG signals for SVMs in the
classifica tion of patients with AD. Given the simplicity of this pre-
processing, allied to the high sensitivity obtained in the classification
experiments, this can be considered a promising result. 

Future work shall consider tuning the parameter values of the SVM
classifiers, since this procedure can lead to a further increase in the
classification performances achieved.
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