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Abstract Traumatic brain injury (TBI) and Alzheimer’s
disease (AD) are prominent neurological conditions whose
neural and cognitive commonalities are poorly understood.
The extent of TBI-related neurophysiological abnormali-
ties has been hypothesized to reflect AD-like neurodegen-
eration because TBI can increase vulnerability to AD.
However, it remains challenging to prognosticate AD risk
partly because the functional relationship between acute
posttraumatic sequelae and chronic AD-like degradation
remains elusive. Here, functional magnetic resonance im-
aging (fMRI), network theory, andmachine learning (ML)

are leveraged to study the extent to which geriatric mild
TBI (mTBI) can lead to AD-like alteration of resting-state
activity in the default mode network (DMN). This network
is found to contain modules whose extent of AD-like,
posttraumatic degradation can be accurately prognosticat-
ed based on the acute cognitive deficits of geriatric mTBI
patients with cerebral microbleeds. Aside from establish-
ing a predictive physiological association between geriatric
mTBI, cognitive impairment, and AD-like functional deg-
radation, these findings advance the goal of acutely fore-
casting mTBI patients’ chronic deviations from normality
along AD-like functional trajectories. The association of
geriatric mTBI with AD-like changes in functional brain
connectivity as early as ~6 months post-injury carries
substantial implications for public health because TBI
has relatively high prevalence in the elderly.

Keywords Alzheimer’s disease . Traumatic brain
injury .Defaultmodenetwork .Resting state .Geriatrics .

Functional connectome

Introduction

Traumatic brain injury (TBI) can result in functional
brain alterations causing neural and cognitive deficits
[1, 2]. Even after mild TBI (mTBI), any cognitive
domain can be affected by such deficits [3], whose
manifestation may accelerate the onset of mild cognitive
impairment (MCI) [4, 5], particularly in geriatric pa-
tients [6]. Although neurotrauma increases the risk for
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Alzheimer’s disease (AD) [7], there is little knowledge
on how TBI affects functional trajectories and gives rise
to neuropathophysiology. Furthermore, the relationship
between TBI severity and AD-like brain dysfunction is
poorly understood, and the mechanisms whereby TBI
can elicit functional abnormalities which increase AD
risk remains unclear. One hypothesis is that posttrau-
matic functional changes exhibit patterns which pro-
gressively resemble those of AD [5, 8, 9]; if this is the
case, characterizing AD-like brain alterations after TBI
could assist in improving AD risk assessment and the
early identification of TBI patients at higher risk for this
disease.

The default mode network (DMN) is a large-scale
brain network which is most commonly active when a
person is at wakeful rest [10]. In this resting state (RS),
individuals lie quietly awake without performing tasks or
being exposed to stimuli, and their DMN activity can be
recorded using techniques like functional magnetic reso-
nance imaging (fMRI). RS fMRI recordings only require
passive participation from study participants, such that
the prospect of isolating AD prognosticators from such
data is logistically and clinically appealing. Although
DMN alterations have been quantified in both AD and
TBI [11–13], whether and how posttraumatic DMN ab-
normalities reflect AD-like functional degradation re-
mains unknown. Because the DMN includes some of
the longest white matter tracts in the brain (including
tracts which integrate brain activity across the corpus
callosum) [14], this network is particularly vulnerable to
diffuse axonal injury after trauma [15]. Thus, studying
TBI-related alterations in the DMN of subjects with
cerebral microbleeds (CMBs, which are biomarkers of
non-focal axonal injury [16])—as opposed to changes in
other, less broadly distributed networks—is attractive. To
identify posttraumatic biomarkers of AD risk, focusing
on mTBI is appealing because the mTBI population is
considerably larger, more homogeneous, and logistically
easier to study than that of patients with moderate-to-
severe TBI. Additionally, geriatric TBI is a promising
setting for studying how this condition can lead to AD-
like neural degradation because the comparison of AD
patients to young or middle-aged TBI patients is con-
founded by aging effects.

This study leverages fMRI recordings acquired from
healthy controls (HCs), geriatric mTBI participants with
CMBs, and AD patients to provide evidence that, within
~ 6 months post-mTBI, functional connectivity (FC)
within the DMN exhibits deviations from normality

whose spatiotemporal properties are statistically indis-
tinguishable from those of similar deviations observed
in AD. A linear combination of acute posttraumatic
cognitive scores is found to be significantly and sensi-
tively associated with chronic AD-like RS DMN alter-
ations. Additionally, a supervised machine learning
(ML) classifier is found to accurately identify mTBI
patients with relatively broad chronic abnormalities in
the DMN based on acute cognitive performance. These
findings establish a detailed functional and connectomic
relationship between mTBI-related acute cognition and
AD-like DMN features, whose further characterization
may facilitate the early identification of geriatric mTBI
patients with CMBs at relatively high risk for AD.

Methods

Participants

This study was conducted with the Institutional Review
Board approval. Included were one HC group (N1 = 48,
22 females; age: μ = 69 y, σ = 5 y, range: 58–79 y) and
two study groups: geriatric mTBI (N2 = 29, 13 females;
age:μ = 68 y,σ = 6 y; range: 57–79 y) and AD (N3 = 37,
19 females; age: μ = 70 y, σ = 8 y; range: 55–84 y). HC
and AD subjects were selected from the AD Neuroim-
aging Initiative (ADNI) cohort, whose eligibility criteria
are described elsewhere [17]. A total of 15 HC volun-
teers (31%), 9 TBI participants (38%), and 17 AD
patients (46%) were hypertensive. Some ADNI partici-
pants were receiving hormonal treatment (HC:N = 14 or
29%; AD:N = 9 or 24%); somewere taking medications
for neurological and/or psychiatric disease (HC: N = 20
or 42%; TBI: N = 18 or 62%; AD: N = 36 or 97%),
vascular disease (HC: N = 29 or 60%; TBI: N = 19 or
65%; AD: N = 22 or 59%), or metabolic disease (HC:
N = 6 or 13%; TBI: N = 3 or 10%; AD: N = 5 or 14%).
To be included, all participants had to have Montreal
Cognitive Assessment (MoCA) scores and a complete
session of RS fMRI data. HC participants had been
clinically evaluated as having normal cognition; their
MoCA scores ranged from 22 to 29 (μ = 26, σ = 2). AD
patients’ scores ranged from 6 to 25 (μ = 17, σ = 5), and
all had a clinical AD diagnosis; TBI participants’ scores
were acquired within 48 h post-injury and were between
20 and 29 (μ = 23, σ = 2). The Mini-Mental State Ex-
amination (MMSE) scores were available for both HC
(μ = 29, σ = 1; range: 26 to 30), TBI volunteers (μ = 22,
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σ = 7; range: 13 to 29), and AD participants (μ = 20,
σ = 5; range: 9 to 28). AD patients had Clinical Demen-
tia Rating (CDR) sub-scores between 2 and 17 (μ = 6,
σ = 4), while HCs had CDR sub-scores between 0 and 2
(μ = 1, σ = 0.7); CDR scores were not available for TBI
participants. For HCs, the number of apolipoprotein E
(ApoE) ε4 alleles was zero for 54% of the sample, one
for 31%, and two for 15%. For AD patients, 24% had no
ε4 alleles, 46% had one, and 30% had two. No ApoE
allele information was available for TBI participants.
TBIvolunteershad fMRI recordingsacquired~6months
post-injury (μ = 5.6 months, σ = 0.5 months) at 3 T, i.e.,
the same scanner field strength as the HC and AD
participants. They had to have (a) a TBI due to a fall,
(b) no clinical findings on acute T1/T2-weighted MRI,
(c) no clinical findings other than CMBs on
susceptibility-weighted imaging (SWI), (d) an acute
Glasgow Coma Scale score greater than 12 (μ = 13.7,
σ = 0.5) upon initial medical examination, (e) loss of
consciousness of fewer than 30 min (μ ≃ 4 min, σ ≃
8 min), (f) posttraumatic amnesia of fewer than 24 h (μ
≃ 3.5 h, σ ≃ 3.2 h), and (g) a lack of clinical history
involving pre-traumatic neurological disease, psychiat-
ric disorder, or drug/alcohol abuse. CMBs were identi-
fied in each subject using an automatic algorithm for
CMB segmentation [18] and the validity of the findings
were confirmed by two human experts with training in
CMB identification from SWI, who had been blinded to
automatic segmentation results. Disagreements between
these experts were resolved by a third one (AI). Null
hypotheses of group differences in age and cognition
were tested using Welch’s two-tailed t test for samples
with unequal variances. The null hypothesis of indepen-
dence between sex and group membership was tested
using Pearson’s χ2 test. Effect sizes were quantified
using Cohen’s d for Welch’s t test and the ϕ coefficient
for Pearson’s χ2 test.

Neuroimaging

HC and AD participant data used in the preparation of
this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.
loni.usc.edu). ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Mi-
chael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, positron emission to-
mography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to

measure the progression of MCI and early AD. For up-
to-date information, see www.adni-info.org. fMRI
volumes were acquired at 3 T using the ADNI
acquisition protocol [19]. An average of 140 fMRI
volumes was obtained using the following parameters:
TR = 3 s; TE = 30 ms; flip angle = 80°; slice
thickness ≃ 3.3 mm; 48 slices). TBI subjects’ fMRI
data were acquired in a Siemens Trio TIM 3 T scanner
using an acquisition protocol very similar to the ADNI
protocol.

Preprocessing

fMRI analysis was implemented using the FreeSurfer
(FS) Functional Analysis Stream (FS-FAST,
https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast) with
default parameters for (a) motion correction, (b) frame
censoring, (c) frequency filtering, (d) brain masking, (e)
intensity normalization, (f) co-registration of fMRI vol-
umes to T1-weighted volumes, (g) surface sampling to
the FS atlas, (h) smoothing (kernel with full width of
5 mm at half maximum), (i) surface and volume sam-
pling to the Montreal Neurological Institute (MNI) atlas
containing 305 subjects, and (j) smoothing for subcorti-
cal structure analysis. The first four volumes in each
fMRI time series were discarded to preserve signal
equilibrium and to account for each participant’s adap-
tation to the sequence; the rest were used for analysis
[20]. Nuisance variables (cerebrospinal fluid, white mat-
ter, and motion correction parameters) were accounted
for using FS-FAST.

fMRI seeds

Seeds were derived in a two-step process. In the first
step, the cortical delineation of the DMN defined by
Yeo et al. [14] was used to parcel the cortex. This
delineation includes the following cortical regions: (a)
frontal (prefrontal cortex, precentral ventral cortex, an-
terior cingulate cortex, etc.), (b) medial temporal/
retrosplenial (the parahippocampal complex), (c) later-
al temporal (the inferior temporal gyrus and superior
temporal sulcus), (d) lateral parietal (inferior parietal,
intraparietal regions, etc.), and (e) medial parietal/
posterior cingulate (posterior cingulate cortex and part
of the precuneus). In the second step, Yeo regions were
divided into gyral/sulcal parcels based on the intersec-
tion of the Yeo regions with the cortical parcellation
scheme of Destrieux et al. [21]. In other words, the final
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set of fMRI seeds consisted of all the regions which
resulted from the intersection of the Yeo and Destrieux
schemes. This was deemed to provide greater spatial
detail to the analysis, particularly for DMN regions with
substantial cortical coverage (e.g., the frontal DMN,
which includes a large contiguous portion of cerebral
cortex). The intersection of the Destrieux and Yeo
schemes led to the delineation of 46 DMN regions (22
cortical regions and the hippocampus for each hemi-
sphere; see caption to Fig. 1).

FC analysis

Both within each subject’s space and withinMNI space,
individual fMRI time series s were consolidated using
isxconcat-sess. A weighted least-squares (WLS)
general linear model (GLM) was implemented using
mri_glmfit to identify pairs of anatomic regions (i, j)
whose fMRI signals si and sj had a statistically signifi-
cant partial correlation ρij. For each DMN seed parcel i,
a subject-level, voxel-wise analysis was implemented to
identify spatially contiguous clusters in target region j
(i ≠ j) within which ρij is significant. How ρij differed in
each study group (TBI or AD) relative to HC was
investigated using the same GLM. Effect sizes were
quantified using Cohen’s f2.

Equivalence testing

One key premise of this study is that brain features which
are both (a) significantly different from HCs in both TBI
and AD and (b) significantly similar across TBI and AD
can be said to be AD-like. Thus, a brain feature observed in
TBI patients can be said to be AD-like if the feature in
question differs from HCs in both TBI and AD and is also
significantly similar across both TBI and AD. If ρij differs
significantly fromHCs in both TBI andAD, a null hypoth-
esis of statistical equivalence can be tested to determine
whether ρij is AD-like. Formally, for two samples A and B,
a null hypothesis of equivalence can be stated as μA(ρij) ≠
μB(ρij) rather than as the conventional null hypothesis
μA(ρij) =μB(ρij). The null hypothesis of equivalence fails
to be accepted if the two means fall within the interval
(−δ, δ), where δ is the equivalencemargin of the test [22]. In
statistical parlance, equivalence implies that the correlations
ρij(A) and ρij(B) are sufficiently close that neither can be
considered greater or smaller than the other [23]. Equiva-
lence hypotheses can be tested using the two one-sided t
tests (TOSTs) [24]; in this study, δ is assigned a

conservative value equal to 0.2 times the width of the
95% confidence interval for the difference μA(ρij)−μB(ρij).
To identify TBI and AD participants’ correlations which
deviate appreciably from normality (i.e., from the HC
group) in both former groups, the null hypothesis of equiv-
alence is only tested if both μTBI(ρij) and μAD(ρij) differ
significantly from μHC(ρij). Effect sizes were quantified
using Cohen’s f2. Multiple comparison corrections using
300 permutations and a cluster-wise p-value threshold of
0.05 were implemented for all statistical tests. Equivalence
testing was implemented using the freely available
MATLAB software (https://www.mathworks.
com/matlabcentral/fileexchange/63204).

(Dis)similarity matrices

Two dissimilarity matrices D(TBI,HC) and D(AD,HC)
were assembled to describe mean differences in ρij
between HCs and each of the study groups (TBI and
AD), respectively. Each matrix element Dij(TBI,HC) is
set to the value of the t statistic for the test of the null

Fig. 1 (A) The dissimilarity matrix D(HC, TBI) displays
significant differences in the FC ρ between the HC and mTBI
groups. Each cell Dij(HC, TBI) encodes the result of testing the
null hypothesis of no mean difference in ρij between groups. Cells
corresponding to region pairs for which the null hypothesis fails to
be rejected are drawn in white. Elsewhere, the color-coded quan-
tity is a t statistic with 75 df. If ρij(TBI) > ρij(HC), t is positive and
Dij is drawn in red; otherwise, t is negative andDij is drawn in blue.
Boundaries between Mα and Mβ are delineated by thick black
lines; boundaries between the submodules of Mβ are delineated
by thinner lines. Regions are labeled using the connectogram
abbreviations of Irimia et al. [64]. Frontal regions are the
FMarG/S, InfFGOrp, InfFGTrip, MFG, OrG, SbOrS, SupFG,
SupFS, and TrFPoG/S; limbic regions are the ACgG/S, PerCaS,
PosDCgG, and PosVCgG; temporal regions are the InfTS,
PaHipG, SupTGLp, and SupTS; parietal regions are the AngG,
POcS, PrCun, and SbPS. (B) Graph representation ofD(HC, TBI).
Nodes are color-coded and grouped by module. Edge colors
encode t score values, according to the color bar in (A). Abbrevi-
ations: R, right; L, left; Hip, hippocampus. Cortical region abbre-
viations: ACgG/S, anterior cingulate gyrus and sulcus; AngG,
angular gyrus; FMarG/S, frontomarginal gyrus and sulcus;
InfFGOrp, inferior frontal gyrus, orbital part; InfFGTrip, inferior
frontal gyrus, triangular part; InfTS, inferior temporal sulcus;
MFG, middle frontal gyrus; OrG, orbital gyrus; PaHipG,
parahippocampal gyrus; PerCaS, pericallosal sulcus; POcS,
parieto-occipital sulcus; PosDCgG, posterior dorsal cingulate gy-
rus; PosVCgG, posterior ventral cingulate gyrus; PrCun,
precuneus; SbOrS, suborbital sulcus; SbPS, subparietal sulcus;
SupFG, superior frontal gyrus; SupFS, superior frontal sulcus;
SupTGLp, superior temporal gyrus, lateral part; SupTS, superior
temporal sulcus; TrFPoG/S, transverse frontopolar gyrus and
sulcus

b
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hypothesis ρij(TBI) − ρij(HC) = 0, and a similar proce-
dure is used forDij(AD,HC). A similarity matrix S(TBI,
AD) was also calculated to describe significant statistical
equivalences of ρij across study groups. Each matrix
element Sij is set to the TOST t statistic which had the
smallest magnitude.

Network analysis

To investigate DMN-related commonalities and differ-
ences between TBI and AD, three analyses were carried
out. The first two involved studying D(HC, TBI) and
D(HC, AD) to group DMN nodes based on how TBI
modulated their correlation differences relative to HCs
and ADs, respectively. The third one examined S(TBI,
AD) to identify DMN nodes affected equivalently in
both TBI and AD. To identify network modules, the
Louvain algorithm for community detection [25] was
applied 100 times for each matrix to identify module
partitions. The symmetric reverse Cuthill-McKee
(RCM) ordering [26] of each module was then calculat-
ed to rearrange nodes within each module. This method
permutes the rows and columns of a symmetric sparse
matrix to form a band matrix with minimal bandwidth,
i.e., whose nonzero elements are optimally close to the
diagonal. The algorithm identifies a pseudo-peripheral
vertex of the network, and then utilizes a breadth-first
search to order vertices by decreasing distance from the
pseudo-peripheral vertex. When applied to each module
of S, such blocks are arranged along the main diagonal
and produce a visual representation which facilitates
module inspection and analysis. Network analysis was
implemented using the freely available Brain Connec-
tivity Toolbox (sites.google.com/site/bctnet).

Network randomization

To determine whether modules’ node memberships
were dependent upon the DMN parcellation scheme
used in the study, the DMN was reparcelled randomly
100 times to generate alternative parcellations which
had the same number of nodes as the original DMN
but different cortical patches corresponding to each
node. An approach similar to those of Gordon et al.
[27] and Irimia and Van Horn [28] was used to obtain
randomized parcellations of the DMN. Briefly, random
points within the cortical coverage of the DMN were
selected. From these seeds, parcels were simultaneously
expanded outward on the cortical mesh until they met

either other parcels or the boundary of the DMN. The
procedure for identifying network modules was imple-
mented for each randomized parcellation, and the mod-
ularity structure of the network was found each time by
applying the Louvain algorithm 100 times to each ma-
trix. The spatial overlap between each original module
and the randomized modules was quantified using the
Sorensen-Dice coefficient [29].

Acute cognitive impairment vs. chronic brain function

A multivariate regression analysis was implemented to
study the relationship between TBI patients’ acute Mo-
CA scores and the number of their chronic FCs which
were statistically equivalent to those of AD patients. The
latter involved region pairs with the largest absolute
values of Sij (highest similarity across TBI and AD):
(a) the right superior temporal sulcus and the right
anterior cingulate gyrus/sulcus, (b) the left and right
superior frontal gyri, (c) the left hippocampus and supe-
rior temporal sulcus, and (d) the left middle frontal gyrus
and the ventral part of the posterior cingulate gyrus. The
predictor variables were the entries in S associated with
these region pairs, and the response variable was the
MoCA score. Sex, age at MRI acquisition, and educa-
tional attainment were included as covariates. Cohen’s
f2 was used as a measure of effect size and the null
hypothesis of overall regression was tested using Fish-
er’s F test [30]. To confirm and to broaden regression
findings, a support vector machine (SVM) was imple-
mented in MATLAB (http://mathworks.com) with
default parameters and using the iterative single data
algorithm (ISDA), a linear kernel function, and a
heuristically assigned kernel scale parameter. The
SVM was trained and cross-validated tenfold to distin-
guish (a) TBIs with relatively moderate AD-like DMN
deviations from normality (i.e., with 7 or fewer statisti-
cal equivalences across TBI and AD) from other TBIs
and also (b) TBIs with relatively extensive abnormalities
(i.e., with at least 15 equivalences) from other TBIs. Let
NE be the number of significant equivalences identified
(NE = 22 here, see Fig. 3). Then the threshold values of 7
and 15 correspond to ⌊NE/3⌋ and ⌈2NE/3⌉, respectively
(Fig. 3). For the SVM, the number of true negatives
(TNs), true positives (TPs), false negatives (FNs), and
false positives (FPs) was computed, as were the true
positive rate (TPR, or sensitivity), true negative rate
(TNR, or specificity), positive prediction value (PPV,
or precision) and Matthews’ correlation coefficient
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(MCC) [31]. Regression and SVM analyses were im-
plemented in MATLAB using the glmfit, fitcsvm,
and predict functions.

Visualization

Matrices were visualized to identify and examine DMN
modules (Fig. 1, Fig. 2, and Fig. 3). Matrix entries were
thresholded by statistical significance; for example, if ρij
does not differ significantly between the groups com-
pared, the cell for Dij is drawn in white. Similarly, if ρij
does not differ significantly between TBI and AD, and
the cell for Sij is also drawn in white. For statistically
significant results, dissimilarity matrix cells are drawn in
either red or blue, depending on their sign (see the
caption to Fig. 3). To facilitate inspection, the cortical
regions within each module were drawn on an average
atlas representation of the brain. Graph representations
of each functional correlation matrix were also generat-
ed using Gephi software (http://gephi.org). In these,
each region’s node was depicted as a circle whose
diameter was proportional to the number of cortical
regions to which the region represented by the node
was functionally connected. Similarly, edges were
colored using shades of blue or red to reflect the t
score of lowest magnitude associated with the TOSTs
for statistical equivalence testing.

Results

Demographics

Three cohorts were studied: HC participants (48 sub-
jects, 22 females; age μ ± σ = 69 ± 5 years (y)), geriatric
mTBI subjects with CMBs (29 subjects, 13 females; 68
± 6 y), and AD patients (37 subjects, 18 females; 74 ± 8
y). Further demographic descriptors are provided in the
“Methods” section. CMB counts were found to range
from 0 to 43 (μ ± σ = 13 ± 9) in HCs, from 0 to 89 (μ
± σ = 17 ± 14) in mTBI volunteers, and from 0 to 6 (μ
± σ = 1.0� 1:7

1:0) in AD patients. No significant differ-
ences in mean age were found between HC and TBI
participants (t = 0.52, df = 47, p = 0.60, Cohen’s d =
0.36), between HC and AD volunteers (t = − 0.95, df =
55, p = 0.17, Cohen’s d = 0.16), or between TBI and AD
patients (t = − 1.24, df = 64, p = 0.11, Cohen’s d = 0.46).
No significant differences in sex ratios were found

across groups (χ2 = 0.22, df = 1, p = 0.90, ϕ = 0.09).
Significant differences in MoCA scores were found
between HC and acute TBI participants (t = 5.7, df =
50, p < 0.001, Cohen’s d = 1.50), between HC and AD
participants (t = 9.0, df = 44, p < 0.001, Cohen’s d =
2.36), but not between acute TBI participants and AD
patients (t = 0.4, df = 61, p = 0.65, Cohen’s d = 1.58).
Similarly, significant differences in MMSE scores were
found between HC and acute TBI participants (Welch’s
t = 5.4, df ≃ 28.7, p < 0.001, Cohen’s d = 1.2), between
HC and AD participants (Welch’s t = 10.8, df ≃ 37.2,
p < 0.001, Cohen’s d = 2.7), but not between acute TBI
participants and AD patients (Welch’s t = 1.3, df ≃ 48.7,
p = 0.1, Cohen’s d = 0.3).

(Dis)similarity matrices and modularity

Participants’ DMNs were delineated and then parcelled
into gyri and sulci based on the morphometric bound-
aries between cortical structures, as previously de-
scribed. For each pair of regions i and j, clusters of
significant functional correlations ρij were then identi-
fied. Two dissimilarity matrices D(TBI,HC) andD(AD,
HC) were computed to quantify significant mean differ-
ences in ρij between HC and each of the study groups
(TBI and AD, respectively). A similarity matrix S(TBI,
AD) was also calculated to describe significant statistical
equivalences of ρij across TBI and AD. Both similarity
and dissimilarity were quantified using Student’s t
scores (see Methods).

To determine which brain regions are similarly vulner-
able to TBI- and to AD-related deviations from normality
(i.e., from HCs), network modules were identified within
each (dis)similarity matrix. For reproducibility, the depen-
dence of module composition upon the anatomy-based
parcellation scheme was also explored. This was done by
repartitioning the DMN randomly and repeatedly to create
alternative parcellations which had the same number of
nodes—but different spatial configurations—as the origi-
nal, anatomy-based parcellation. The process of identify-
ing network modules was then repeated for each of these
randomized parcellations. At every iteration, DMN mod-
ules were identified in each dissimilarity matrix; the num-
ber NR of randomized modules (μ ±σ = 2.01 ± 0.3) was
not found to differ significantly from the number of mod-
ules NA obtained using the anatomic parcellation (NA= 2;
Student’s t > 0.37, df = 99, Cohen’s d = 0.03). Further-
more, the original and randomized modules overlapped
spatially with high consistency across the 100
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Fig. 2 Like Fig. 1, for D(HC, AD). The color-coded quantity is a t statistic with 82 df. See the caption of Fig. 1 for abbreviations
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randomizations (Sørensen-Dice coefficient μ ±σ = 0.94 ±
0.06; 95% CI = [92.89, 95.10]). Thus, the randomized
modules’ nodal memberships and spatial coverages agreed
with those of the original modules.

DMN modules in mTBI versus HC

RCM orderings [26] were used to display modules along
the main diagonal of each (dis)similarity matrix. The
RCM-ordered modules of D(HC, TBI) and D(HC,AD)
are displayed in Fig. 1 and Fig. 2, respectively, as are the
graph representations of the corresponding dissimilarity
matrices. Mα, the first module common to both D(HC,
TBI) and D(HC,AD), includes (a) the hippocampus, (b)
ventral and dorsal prefrontal cortex, and (c) the ventral
aspect of the posterior cingulate gyrus. Significant func-
tional correlations between nodes withinMα do not differ
significantly across TBI and HC (Fig. 1); this may indicate
that, on average, the geriatric mTBI patients did not expe-
rience substantial FC alterations within brain areas covered
by Mα within the first ~ 6 months post-injury. Mβ, the
secondmodule along the diagonal ofD(HC,TBI), contains
all the DMN regions outside Mα. Within Mβ, correlations
are consistently weaker in mTBI participants relative to
HCs. Furthermore, the superior frontal gyrus and
precuneus are found to be the two structures whose TBI-
related FC deviations from normality are the broadest
across the DMN. FC differences between TBI and HC
involve relatively few pathways connecting Mα and Mβ.
Thus, although Mα connections are considerably less af-
fected by TBI comparedwithMβ, some pathways between
these modules are not.

DMN modules in AD versus HC

Whereas FC is typicallyweaker in TBI than inHC (Fig. 1),
AD patients’ FC deviations from normality vary consider-
ably (Fig. 2). These deviations can be grouped into five
modules which occur bilaterally; the first is identical toMα

and the rest are subdivisions of Mβ (Mβ1
through Mβ4

).
Across AD and TBI,Mα,Mβ3

, andMβ4
are similar in that

their intramodular FCs do not differ significantly from
those of HC participants.Mβ1

is a frontotemporal module
with relatively few intramodular FC differences between
AD and HC but with considerably more differences of this
kind involving intermodular connections. Mβ2

contains
broadly distributed frontal, limbic, and parietal regions;
comparing the HC and AD groups from the standpoint

of correlationswithinMβ2
reveals sparse group differences

involving both intra- and intermodular connections. Like
in the case ofMα, AD patients’Mβ3

andMβ4
modules do

not have intramodular correlationswhich differ significant-
ly fromHC, although both subunits exhibit numerous such
differences involving intermodular connections.

DMN modules in TBI versus AD

Figure 3 displays the similarity matrix S(TBI,AD) and its
graph representation to identify regions with statistical
equivalences across study groups. Regions exhibiting such
similarities involve the dorsolateral prefrontal cortex, the
lateral temporal lobe, and the ventral aspect of the posterior
cingulate gyrus. The hippocampus is topologically proxi-
mal to the latter two areas; furthermore, hippocampo-
cortical correlations are substantially affected in both TBI
and AD. Nevertheless, only few hippocampo-cortical cor-
relations are statistically equivalent across these conditions.
The strongest similarities between TBI and AD involve
connectivity between the lateral temporal lobe and anterior
cingulate cortex, as well as between dorsolateral prefrontal
cortex and each of the following three structures: the
hippocampus, the lateral temporal lobe, and the posterior
cingulate cortex.

Acute cognition versus chronic DMN in TBI

Upon testing the association between MoCA scores and
the number of FC similarities (i.e., pairwise statistical
equivalences) between TBI and AD, the null hypothesis
of the test for overall multivariate regression was rejected
(F = 1.6, df1 = 5, df2 = 111, p< 0.0034, Cohen’s f

2 = 0.39).
In other words, this test rejected the null hypothesis ac-
cording to which there was no multivariate correlation
between (a) MoCA scores and (b) the number of FC
similarities involving TBI and AD. To study further the
relationship between acute cognition and chronic DMN
dysfunction, two support vector machines (SVM) were
used. The first one was trained on 50% of each cohort to
distinguish TBI participants with relatively moderate AD-
like DMN deviations from normality (i.e., with 7 or fewer
statistical equivalences across TBI and AD) from other
TBI participants. Another SVM was trained on 50% of
each sample to distinguish TBI participants with relatively
extensive abnormalities (i.e., with 15 ormore equivalences)
from the rest of the TBI participants. The means and
standard deviations for the number of TNs, TPs, FNs,
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and FPs were computed, as were their TPRs (i.e., sensitiv-
ities), TNRs (i.e., specificities), PPVs (i.e., precisions), and
MCCs. Across 100 scenarios, the SVM trained to identify
TBI patients whose similarities to AD were relatively
modest (7 or fewer equivalences) achieved the following
means and standard deviations: TN= 18.0 ± 0.8; TP = 9.0
± 0.6; FN = 1.0 ± 0.6; FP = 1.0 ± 1.0; TPR= 0.90 ± 0.06;
TNR= 0.95 ± 0.06; PPV= 0.91 ± 0.1; and MCC= 0.85
± 0.1. The SVM trained to predict which TBI patients’
similarities to ADwere relatively broad (15 or more equiv-
alences) yielded the following results: TN = 17.1 ± 0.7;
TP = 10.0 ± 0.7; FN = 0.9 ± 0.7; FP = 1.1 ± 1.0; TPR =
0.9 ± 0.1; TNR= 0.95 ± 0.1; PPV= 0.9 ± 0.1; and MCC=
0.86 ± 0.1. Figure 4A displays cortical maps of Mα and
Mβ on the surface of an average brain atlas, contrasting the
fact thatMα includes primarily frontal regions whereasMβ

includes the rest of the DMN. Figure 4B displays DMN
parcels whose chronic DMN similarities across TBI and
AD were accurately predicted from acute MoCA scores
using the two SVMs. These regions include areas of the
dorsolateral prefrontal, lateral temporal, posterior cingu-
late, and parahippocampal cortices.

Discussion

Significance

mTBI patients with relatively high rates of neural deg-
radation may be at commensurately high risk for AD,

and the estimation of such risk can be assisted by
knowledge of how TBI modifies brain function along
AD-like trajectories. Thus, an important indication of
this study is that the DMNs of geriatric mTBI patients
can exhibit distinct patterns of AD-like RS FC as early
as ~ 6 months post-injury. If this is the case, our finding
highlights older adults’ substantial vulnerability to TBI
[32] and may be unsurprising given that the highest
incidence of TBI is in older adults [5], where even
injuries of mild severity can increase AD risk [8]. An
alternative, more general interpretation is that geriatric
mTBI patients exhibit RS FC patterns which may occur
in several neurodegenerative diseases among which AD
can be counted.

The outcome of the test of overall regression indi-
cates a significant, inverse association between TBI
patients’ acute MoCA scores and the extent of their
chronic DMN similarities to AD. This outcome is con-
firmed by the SVM classifications, which achieved sen-
sitivities and specificities which compare favorably with
those for blood and imaging biomarkers of AD [33].
Our results may be useful for predicting the risk of AD-
like functional degradation after TBI because mTBI
patients’ acute cognitive scores are predictive of their
AD-like DMN features. Thus, our study is significant in
three distinct ways. Firstly, it identifies a set of function-
al DMN features which are common to both geriatric
mTBI and AD. Secondly, it demonstrates that the anal-
ysis of RS FC in the DMN using the present approach
can reveal the extent to which mTBI-affected function
may transition onto AD-like trajectories. Thirdly, it
suggests that, if AD-like abnormalities are indeed com-
mensurate to mTBI patients’AD risk, the DMN features
described here can be used to improve AD risk estima-
tion. An alternative and potentially broader implication
is that our results can be used to improve risk estimation
not only in AD but also in other neurodegenerative
conditions whose brain degradation patterns resemble
those of AD in their early stages.

Connectomic pathophysiology

Although DMN subdivisions have been mapped with
high stability across health and disease [14], such sub-
units’ relative vulnerability to TBI is not well under-
stood. An intriguing finding of this study is that the node
memberships of Mα, Mβ2

, and Mβ4
are consistently

similar across the TBI and AD groups (Fig. 1 and

Fig. 3 The similarity matrix S(TBI, AD) displays statistically
significant equivalences of functional correlation ρ between the
TBI and AD groups. Each cell Sij encodes the result of testing the
null hypothesis of equivalence in ρij across these two groups. This
null hypothesis is only tested if both TBI and AD differ
significantly from HC. In other words, if there is no significant
mean difference in ρ between/either (a) HC and TBI and/or (b) HC
and AD, Sij is drawn in white. If both study groups differ from the
HC group but no significant statistical equivalence is found across
TBI andAD, Sij is also drawn in white. Elsewhere, the color-coded
quantity is the value of the TOST procedure’s t statistic with the
smallest magnitude. The color-coded quantity is a t statistic with
63 df. If a statistical equivalence is associated with a relatively
stronger correlation in both TBI and AD relative to HC, t is
positive and Sij is drawn in red; if the correlation is weaker relative
to HC, t is negative and Sij is drawn in blue. Boundaries between
Mα andMβ are delineated by thick black lines; boundaries between
the submodules of Mβ are delineated by thinner lines. See the
caption of Fig. 1 for abbreviations. (B) Graph representation of
S(TBI, AD). Nodes are color-coded and grouped by module. Edge
colors encode t score values, according to the color bar in (A)

R
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Fig. 2). The probability of such an occurrence being due
to chance is low given the results of our randomization
analysis and the fact that the modules of each dissimi-
larity matrix were identified independently of one an-
other. Instead, it is more likely that this likeness of
modularity could be due to intrinsic properties of the
DMN which modulate their susceptibility to TBI and
AD, and perhaps even to neurodegenerative processes
in general.

Mα contains primarily fronto-hippocampo-limbic
connections. For this reason, the existence of modular
structure resemblances between TBI and ADmay imply
that both conditions impact intermodular connections
within Mα, Mβ2

, and Mβ4
in ways which are substan-

tially different from how they affect the rest of the
DMN. Since the three modules are distinct, however,

their existence may also indicate that, although FC
within DMN subunits can be robust to geriatric mTBI,
such robustness can manifest itself in distinct ways via
mechanisms which are yet to be determined. Although
appealing, the task of exploring such network-theoretic
differences between DMN subunits could not be under-
taken adequately here due to the small effect sizes
implied by such differences. More specifically, such
minute effect sizes require commensurately large sam-
ples to avoid high probabilities for errors of type I and/or
II when contrasting module properties across groups.
Thus, future research should aim further to study DMN
similarities between TBI and AD.

The properties of the Mα module summarized in
Fig. 1 and Fig. 2 suggest that geriatric mTBI
affects certain FCs between frontal, limbic, and

Fig. 4 Cortical maps of DMNmodules. (A)Mα (magenta) andMβ (cyan) mapped on the surface of an average brain atlas. (B) TBI-affected
brain regions in S(TBI, AD) (see Fig. 3) whose chronic similarity to AD was predicted based on acute cognitive scores using SVMs
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hippocampal areas in ways which differ from those
pertaining to other DMN regions. This is perhaps
unsurprising given that many frontal areas experi-
ence atrophy as early as middle age [34] and that
the frontal lobe appears to exhibit distinct trajecto-
ries in TBI compared with AD [35–37]. On the
other hand, although FC involving the hippocam-
pus and cingulate areas is sensitive to both TBI
and AD from the early stages of both conditions
[38–40], their interactions within the RS DMN
remain poorly understood and require further re-
search. Interestingly, only very few hippocampo-
cortical connectivity alterations were found to be
statistically similar across AD and mTBI (Fig. 3),
despite such connections being significantly affect-
ed by both conditions. This may suggest that geri-
atric mTBI and AD affect this connectivity ensem-
ble in different ways and that the functional abnor-
malities observed in this study might be associated
with dissimilar functional trajectories within DMN
modules during posttraumatic neurodegeneration.
Here it is important to remind the reader of the
aphorism according to which “absence of evidence
is not evidence of absence.” In our context, this
means that the absence of a statistical similarity
finding between TBI and AD—as represented by
blank connectivity matrix cells in Fig. 3—does not
imply evidence for the absence of such similarities.
Instead, there are at least two possible scenarios.
The first of these involves the situation where a
similarity exists but its effect size is not large
enough for its adequately powered detection to be
possible in this sample. In the second scenario,
although the FCs of both TBI participants and
AD patients differ significantly from the FCs of
HCs, the former two are not significantly equiva-
lent. To provide an example of this, consider the
scenario where the mean FC between two regions
is 0 in HC, 0.8 in TBI, and− 0.8 in AD, and the
standard deviation of each measure is 0.01. Clear-
ly, the FCs of the TBI group (0.8) and that of the
AD group (− 0.8) are both significantly different
from that of HCs (0); nevertheless, the FCs of the
TBI and AD groups differ substantially from each
other (0.8 vs. − 0.8), such that these FCs are not
statistically equivalent. This simple example high-
lights the need to interpret statistical equivalent
findings carefully.

In this study, the most prominent common feature of
Mα, Mβ3

, and Mβ4
is the extent to which the

intermodular connections of these three modules deviate
from normality in both mTBI and AD. Furthermore,
none of these modules exhibits intramodular connectiv-
ity which differs significantly fromHCs in either clinical
condition. These findings suggest, at the very least, that
posttraumatic functional connections can be grouped
according to their relative vulnerability to injury-
related neurodegeneration. This is analogous to the sim-
ilar task of grouping structural connections based on
their vulnerability to injury, which entails mapping the
structural scaffold of the human connectome [41]. Nev-
ertheless, findings like ours may be difficult to interpret
further in the absence of connectome-wide characteriza-
tions of connectivity between the DMN and the rest of
the brain. Thus, future studies should aim to clarify how
DMN subdivisions differ from the standpoint of their
response to TBI or AD.

There are relatively few statistical similarities be-
tween TBI and AD (Fig. 3), despite the much greater
number of significant differences between HC and TBI,
as well as between HC and AD (Fig. 1 and Fig. 2). To
contextualize this, it is important to note that the statis-
tical similarities observed in this study between TBI and
ADwere detected only ~ 6 months after geriatric TBI of
mild severity. Presumably, injuries of greater severity
can be associated with additional significant similarities,
and future research should test this hypothesis. For
example, the severity of TBI- and AD-related digestive
disturbances may be associated with connectomic dis-
ruptions which affect similar cortical areas and which
may be associated with injury/disease severity [42–45].

It is not unlikely that the pathophysiological process-
es giving rise to the relatively few observed similarities
between TBI and AD continue to affect the aging brain
long after injury. Thus, the number of DMN-related
similarities between TBI and AD may be proportional
to how late after injury such similarities are measured
and quantified. Specifically, if the neuropathological
processes initiated by TBI continue to affect the DMN
long after injury, it is possible that TBI and AD patients’
DMNs start to resemble each another more and more as
the time since injury increases. If this is the case, the
number of statistical similarities observed here may
provide a lower bound on the number of similarities
between geriatric mTBI and AD. In such a scenario,
the later fMRI recordings are acquired post-injury, the
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greater DMN degradation there should be along AD
trajectories. Whether this conjecture is valid should be
investigated by future studies.

Neurovascular pathophysiology

The occurrence of CMBs in geriatric mTBI patients is
relevant to the spatial profile and severity of posttrau-
matic WM alterations [16, 32, 46]. Previously, we
showed that the trajectories and integrities of WM fas-
ciculi passing through the vicinity (penumbrae) of post-
traumatic CMBs can be altered in ways which persist for
at least 6 months post-injury [47, 48]. Furthermore,
other studies have found that CMB count is associated
with network alterations in patients with early AD as
well [49]. Since CMBs are associated with structural
connectivity changes in both TBI and AD, these mani-
festations of blood-brain barrier breakdown may also
modulate functional connectivity patterns shared by TBI
and AD. In the present study, however, AD patients’
CMB counts were quite low, which suggests that CMB-
related network changes previously observed in AD are
relatively unlikely to drive the RS FC similarities be-
tween mTBI participants and AD patients described
here. One could argue that, in ideal circumstances,
(dis)similarities between HCs, mTBI patients, and AD
participants should be studied in the absence of CMBs;
this, however, is particularly challenging in older adults.
For example, in geriatric TBI patients, posttraumatic
CMBs are frequently co-morbid with CMBs of hyper-
tensive etiology, as well as with CMBS due to cerebral
amyloid angiopathy (CAA), which is also a risk factor
for AD. Because of the relatively high combined prev-
alence of neurovascular disease, CAA, and hypertension
in older adults [46], studying TBI-related brain network
alterations in the absence of CMBs may be either logis-
tically impractical or of limited relevance to the patho-
physiological processes of the average person’s aging
brain. In other words, studying functional network al-
terations in CMB-free older individuals may limit the
utility of the insights gained from such studies to a
relatively minor subset of the aging adult population.
Although elucidating how CMBsmodulate the extent of
AD-like FC patterns in the mTBI-affected brain is be-
yond our scope, this study’s inclusion of individuals
with a wide range of CMB counts assists in resolving
AD-like FC trajectories in a sample whose
neurovascular profile reflects, at least to some extent,
the radiological findings of aging adults with TBI and/or

AD. Future research should aim to clarify the extent to
which CMBs modulate the extent and severity of AD-
like FC deviations from normality in geriatric mTBI
patients.

Comparison to prior studies

Arguably, the statistical similarities between study
groups (TBI and AD) are of greatest interest in this
study. Nevertheless, differences between HC and TBI
and between HC and AD are also relevant because they
underlie key comparisons between TBI and AD [50].
Fortunately, the comparison of our results to those of
previous studies strengthen the case for our own analy-
sis and broadens the scientific consensus on DMN dif-
ferences between (a) HC vs. TBI and (B) HC vs. AD.

Our findings are in broad agreement with those of
important previous studies on DMN abnormalities after
TBI. For instance, Mayer et al. [13] reported that, com-
pared with mTBI, HC subjects have stronger FC be-
tween the (a) anterior and posterior cingulate cortices,
(b) anterior cingulate cortex and the superior frontal
gyrus, (c) anterior cingulate cortex and the
supramarginal gyrus, (d) the inferior parietal lobule
and posterior parietal cortex, (e) the inferior parietal
lobule and the middle frontal gyrus, (f) prefrontal cortex
and the superior parietal lobule, and between (g) pre-
frontal cortex and the superior frontal gyrus. Our find-
ings are in remarkable agreement with those of Mayer
et al. (Figure 1). Furthermore, like in the present study,
Johnson et al. [11] identified stronger FC in HC partic-
ipants compared with TBI volunteers between posterior
cingulate cortex and the hippocampal formation. These
authors also found that (a) the lateral parietal lobes have
significantly more bilateral RS FCs to the dorsolateral
prefrontal cortex in HCs, that (b) mTBIs show only
ipsilateral connections between these regions, and that
(c) RS FCs between medial prefrontal and lateral parie-
tal cortices are primarily observed in mTBI. These three
sets of findings are replicated by our own study
(Figure 1).

Influential prior results on DMN differences between
HC and AD are confirmed by ours. For example, as we
did, Greicius et al. [51] found that AD patients exhibit
deficient activity involving the hippocampus and poste-
rior cingulate cortex. In AD patients, Damoiseaux et al.
found stronger FCs between (a) the frontal poles and
other anterior frontal regions, (b) the left superior frontal
gyrus and other frontal regions, and between (c) the
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precunei and the frontal poles, but weaker FCs involv-
ing regions like the superior andmiddle frontal gyri. Our
results confirm the findings of Greicius et al. (Fig. 2) as
well as those of Zhang et al. [52], who found reduced
RS FCs between (a) posterior cingulate cortex and the
hippocampus, (b) posterior cingulate cortex and the
precuneus, and between (c) dorsolateral prefrontal cor-
tex and middle temporal areas. Additionally, as we did,
Zhang et al. found stronger RS FCs between the
precuneus and many dorsolateral prefrontal regions.

Equivalence testing

This study uses equivalence testing, which originates in
pharmacokinetics [53]. There, marketing new drugs
requires testing whether their effectiveness is
undistinguishable from that of older andmore expensive
competitors. Here, testing whether TBI-related DMN
alterations are equivalent to AD-related alterations as-
sists in illustrating how TBI and AD can result in statis-
tically indistinguishable patterns of DMN deviations
from normality (i.e., from HCs). Using equivalence
testing in studies like ours is key because attempting to
establish equivalence using statistical tests of conven-
tional null hypotheses (e.g., μ1 = μ2) frequently leads to
incorrect conclusions. Specifically, a significant result
after such a test establishes a difference, whereas a non-
significant one simply implies that equivalence cannot
be ruled out. Thus, the risk of wrongly inferring equiv-
alence can be very high, such that proper equivalence
testing is needed instead [23]. In the current context, it is
important to emphasize that equivalence testing was
implemented here only for pairs of regions whose partial
correlations ρij differed significantly from HCs in both
AD and mTBI. If this constraint had not been imposed,
distinguishing normal from abnormal statistical equiva-
lence patterns would not have been possible within this
statistical inference framework.

Modularity structure

Here, DMN modules were identified from dissimilarity
matrices rather than from FC matrices, as typical of
functional connectomics studies [54]. Thus, the modules
found in this study should be interpreted as groups of
nodes whose FCs deviate from normality in similar
ways, rather than as sets of nodes which are similarly
connected to one another. The concept of deriving mod-
ularity properties from dissimilarity matrices is not new

and is, in fact, the basis of multidimensional scaling
(MDS)—an ordination technique for information visu-
alization and dimensionality reduction which has been
used widely for decades [55]. In MDS, like here, dis-
similarity matrices can be conceptualized as distance
matrices whose entries are calculated using a distance
function whose definition can be conveniently assigned
depending on the nature of the data. In this study, the
distance in question is a t score, which is a proper
statistical metric defined as the standardized difference
between two group means. This framework is univariate
and therefore accommodates only onemeasure at a time,
i.e., functional correlation in our case. However, should
additional connectivity measures (e.g., Granger causal-
ity, phase locking value) or functional modalities (e.g.,
electro- or magnetoencephalography) be available
[56–58], this formalism could be extended to an arbi-
trary number of dimensions using the (multivariate)
Mahalanobis distance and/or non-Euclidian metrics,
like in generalized MDS [59].

Replicability

Our findings should be replicated in larger cohorts for
confirmation and improvement of statistical estimates.
Although the samples used in this study were of mod-
erate size, the effects reported here reflect relatively
large mean differences between cohorts. This is perhaps
unsurprising because, across a variety of studies and
methodologies, even TBI of mild severity has been
associated consistently with large statistical effects re-
lated to anatomical and physiological measures [60].
Furthermore, the mTBI participants studied here did
not have clinical findings on MRI except for sporadic,
SWI-detectable CMBs; this is rare in TBI studies. Thus,
the present study facilitates the comparison of TBI to
AD partly due to the uniquely suitable profile of the
geriatric TBI sample involved, whose MRI profile is
relatively rare; this lends strength and uniqueness to the
present study. Specifically, the effect sizes characterized
here are more likely to be due to functional—rather than
to structural—pathology because the structural MRI
findings of these geriatric mTBI patients are minimal.
For this reason, the large statistical effects of TBI upon
the DMN are quite likely responsible for the large effect
sizes reported. This contrasts with many other neurolog-
ical conditions, where FC metrics often exhibit relative-
ly smaller effect sizes, such that considerably larger
samples are often required to detect effects of interest

GeroScience (2020) 42:1411–1429 1425



with adequate statistical power. It also contrasts with
most other TBI studies, where gross TBI pathology on
MRI findings is the norm. Nevertheless, despite the
unique characteristics of our sample, further research
in a larger cohort remains necessary for replication. This
observation also pertains to our SVM findings, which
may not be applicable to TBI cohorts of greater severity,
even if only due to the greater heterogeneity of
moderate-to-severe TBI relative to mTBI. Thus, our
findings should not be interpreted as being broadly
applicable to TBIs of any severity. Furthermore, the
predictive value of our SVM relies heavily on acute
MoCAs, whose values do not convey well the rich
subtleties of posttraumatic cognitive impairment [61].
Thus, future studies should aim to utilize more detailed
descriptors, preferably across all cognitive domains
[62], to take better advantage of SVMs’ potential for
functional outcome prediction. Finally, it should be
mentioned that replication of our findings using electro-
physiological techniques like electro- and magnetoen-
cephalography (EEG and MEG, respectively) [56, 63]
would be very helpful in establishing the spatiotemporal
parameters of the (dis)similarities observed here.

Limitations

It is important to acknowledge the possibility that the
similarities between mTBI and AD described here may
also be shared by mTBI with other neurodegenerative
conditions. Although exploring whether this is the case
is outside the scope of this study, future research should
attempt to clarify whether the similarity patterns identi-
fied are representative not only of mTBI similarities to
AD but also of the relationship between mTBI and other
neurodegenerative conditions like Parkinson’s disease,
for which TBI is also a risk factor. Furthermore, because
many participants were onmedications for neurological,
psychiatric, vascular, and/or metabolic disease when
scans were acquired, the extent to which comorbidities
affect the results of this study is unclear. Fortunately, the
proportion of volunteers on medications for vascular
and metabolic disease was approximately equal for the
mTBI and AD groups, such that confounds due to these
treatments are likely to be less severe than in the sce-
nario where large discrepancies between groups existed.
By contrast, the proportion of subjects undergoing treat-
ment involving medications for neurological/psychiatric
disease was much higher for the AD group (97%) than
in the mTBI group (62%), mostly because almost all AD

patients were taking cognition-enhancing medications.
The effects of comorbidities upon AD-like FC trajecto-
ries in mTBI patients are worthy of further study.

One potential limitation of FC studies like ours is that
results can be affected by how the DMN is defined and
by the cortical parcellation used for fMRI seed analysis.
Here, the DMN was defined based on the Yeo delinea-
tion and parcelled based on the intersection of this
delineation with the Destrieux parcellation scheme.
Nevertheless, the use of other parcellation schemes of
similar spatial resolution may not alter conclusions sub-
stantially because the randomization analysis undertak-
en yielded network modules whose anatomic coverage
was consistent. Last but not least, the equivalence mar-
gin used in this study was 0.2, which is considered to be
relatively conservative [23]; as the margin becomes
narrower and narrower, however, more and more hy-
potheses of equivalence are rejected. Unfortunately,
there is currently no consensus-based standard for the
“ideal” equivalence margin which life scientists should
utilize.

Conclusion

This study provides evidence that geriatric mTBI is
associated with DMN deviations from normality
which are statistically indistinguishable from those
observed in AD. The DMN regions affected can be
grouped into modules based on their vulnerability,
with striking similarities in the composition and
properties of these modules across the two neurolog-
ical conditions. Multivariate regression analysis iden-
tified a clear relationship between acute cognitive
deficits and chronic DMN alterations. Furthermore,
SVM classifications suggested that DMN features
may be useful for early prognostication of the extent
and sever i ty associa ted wi th post t raumat ic
neuropathophysiology. Nevertheless, the neurode-
generative processes of TBI and AD differ substan-
tially despite their potential commonalities. Thus, the
similarities in DMN alteration trajectories shared by
these conditions and reported here may not be driven
by similar trends toward functional reorganization.
Because the methodological limitations of functional
neuroimaging prevent us from a mechanistic explo-
ration of this hypothesis, future research should study
the pathophysiological mechanisms shared by TBI
and AD in further detail.
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