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A B S T R A C T

It may be possible to classify patients with Aβ positive (+) mild cognitive impairment (MCI) into fast and slow
decliners according to their biomarker status. In this study, we aimed to develop a risk prediction model to
predict fast decline in the Aβ+MCI population using multimodal biomarkers. We included 186 Aβ+MCI pa-
tients who underwent florbetapir PET, brain MRI, cerebrospinal fluid (CSF) analyses, and FDG PET at baseline.
We defined conversion to dementia within 3 years (= fast decline) as the outcome. The associations of potential
covariates (MCI stage, APOE4 genotype, corrected hippocampal volume (HV), FDG PET SUVR, AV45 PET SUVR,
CSF Aβ, total tau (t-tau), and phosphorylated tau (p-tau)) with the outcome were tested and nomograms were
constructed using logistic regression models in the training dataset (n=124, n of fast decliners=52). The model
was internally validated with the testing dataset (n=62, n of fast decliners=22). The multivariable analysis
(including CSF t-tau) showed that MCI stage (late MCI vs. early MCI; OR 15.88, 95% CI 4.59, 54.88), APOE4 (OR
5.65, 95% CI 1.52, 20.98), corrected HV*1000 (OR 0.22, 95% CI 0.09, 0.57), FDG SUVR*10 (OR 0.43, 95% CI
0.27, 0.71), and loge CSF t-tau (OR 6.20, 95% CI 1.48, 25.96) were associated with being fast decliners. In the
second model including CSF p-tau instead of t-tau, the above associations remained the same, with a significant
association between loge CSF p-tau (OR 4.53, 95% CI 1.26, 16.31) and fast decline. The constructed nomograms
showed excellent predictive performance (90%) on validation with the testing dataset. Among Aβ+MCI pa-
tients, our findings suggested that multimodal AD biomarkers are significantly associated with being classified as
fast decliners. A nomogram incorporating these biomarkers might be useful in early treatment decisions or
stratified enrollment of this population into clinical trials.

https://doi.org/10.1016/j.nicl.2019.101941
Received 30 December 2018; Received in revised form 14 July 2019; Accepted 17 July 2019

⁎ Corresponding author at: Department of Neurology, Sungkyunkwan University School of Medicine, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul
06351, South Korea.

⁎⁎ Corresponding author.
E-mail addresses: jkseong@korea.ac.kr (J.-K. Seong), sw72.seo@samsung.com (S.W. Seo).

1 These corresponding authors contributed equally to this work.
2 Data used in preparation of this article were obtained from the Alzheimer's Disease, Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the

investigators, within the ADNI contributed to the design and implementation of ADNI and/or provided data, but did not participate in analysis or writing of this
report. A complete listing of ADNI, investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

NeuroImage: Clinical 24 (2019) 101941

Available online 19 July 2019
2213-1582/ © 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2019.101941
https://doi.org/10.1016/j.nicl.2019.101941
mailto:jkseong@korea.ac.kr
mailto:sw72.seo@samsung.com
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1016/j.nicl.2019.101941
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2019.101941&domain=pdf


1. Introduction

Mild cognitive impairment (MCI) is considered a transitional state
between normal aging and Alzheimer's disease (AD) (Morris et al.,
2001; Petersen et al., 2001). However, rates of clinical deterioration of
MCI patients are variable, as some patients quickly progress to AD
dementia while others remain stable or even revert to normal cognition
(Busse et al., 2006; Larrieu et al., 2002; Petersen, 2004). This may be
attributable to heterogeneous underlying pathologies of this population
(DeCarli, 2003). Rapid development of molecular imaging has enabled
the detection of amyloid-β (Aβ), a hallmark of AD pathology, using
positron emission tomography (PET) in living patients, both in the MCI
as well as the dementia stages. Previous studies have shown that
40–60% of MCI patients are Aβ positive (Aβ +) on PET; these patients
are classified as MCI due to AD, with evidence of 40% to 80% risk of
conversion to AD dementia within 3 years, a level that is 4 to 9 fold
higher than their Aβ negative counterparts (Doraiswamy et al., 2014;
Okello et al., 2009; Wolk et al., 2009).
Although Aβ is an AD-specific pathology, Aβ burden is not linearly

correlated with symptom severity. AD biomarker modeling shows that
tau neurofibrillary tangles (NFT), hypometabolism and brain atrophy,
as more downstream biomarkers, are more closely associated with
clinical symptoms. In fact, a recent AV-1451 PET study (Maass et al.,
2017), which investigated NFT burden in the brain, reported that
Aβ+MCI patients exhibit in-vivo Braak stages ranging from I/II to V/
VI. Also, previous studies have shown that higher CSF p-tau levels
(Buerger et al., 2002; Ewers et al., 2007), hippocampal atrophy (Jack
Jr. et al., 1999), and hypometabolism measured by [F18] fluorodeox-
yglucose (FDG) PET are able to significantly predict conversion to AD in
MCI patients (Drzezga et al., 2003) as well. Therefore, it would be
reasonable to expect that Aβ+MCI patients could be classified into fast
and slow decliners according to their downstream biomarker status.
However, most previous studies have included all MCI patients re-
gardless of Aβ status. As abnormal neurodegeneration markers such as
hypometabolism and hippocampal atrophy can be observed even in
non-AD conditions, these multimodal biomarkers might not be able to
specifically reflect the prognosis of Aβ+MCI patients. Also, it is not
known whether neocortical Aβ burden and presence of APOE4 geno-
type are associated with disease progression in specifically Aβ+MCI
patients. Therefore, it is necessary to demonstrate the importance of
these multimodal biomarkers as predictors for clinical outcomes spe-
cifically in the Aβ+MCI population.
The predictive power of these multimodal biomarkers is particularly

important, because while drugs targeting Aβ have been developed and
actively applied in clinical trials in AD dementia, most have ended in
failure. In this regard, many recent clinical trials have focused on
Aβ+population, not yet demented, as a target group. However, it is
still not clear how long of a delay exists from the beginning of Aβ de-
position to dementia development, although a previous study showed
that this delay may be decades long (Villemagne et al., 2013). There-
fore, narrowing the range of best candidates even among Aβ+MCI
patients is clinically essential. Specifically, identifying the Aβ+MCI
patients subjects likely to progress most rapidly is critical to early
treatment decisions as well as to stratified enrollment in clinical trials.
In this study, we aimed to develop a model to predict the risk of fast

decliners in the Aβ+MCI population using multimodal biomarkers. To
promote the application of this prediction model to the clinical setting,
we used a nomogram method, which is graph-based, simple, and easy to
quickly interpret. We hypothesized that not only a combination of
neurodegeneration markers such as reduced hippocampal volume on
MRI, hypometabolism measured by FDG PET and increased CSF tau
levels, but also Aβ burden or APOE4 would be associated with disease
progression, because it is possible that Aβ burden and APOE4 might
contribute to disease progression through a pathway independent of tau
or neurodegeneration. We also expected that a nomogram featuring
these markers could intuitively predict the possibility of Aβ+MCI

patients being fast decliners at an individual level.

2. Methods

2.1. Study participants

We used the Alzheimer's Disease Neuroimaging Initiative (ADNI)
dataset (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner
(Weiner et al., 2010). Our study population primarily consisted of
subjects from ADNI Go and ADNI-2. The major goal of ADNI has been to
reveal the progression of MCI and AD using MRI, positron emission
tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment. Full inclusion/exclusion criteria are de-
scribed in detail at http://adni.loni.usc.edu/methods/documents/.
Briefly, all subjects were between the ages of 55 and 90 years, had
completed at least 6 years of education, were fluent in Spanish or
English, and were free of any other significant neurologic diseases. MCI
participants had a subjective memory complaint with a Clinical De-
mentia Rating (CDR) score of 0.5 (Petersen et al., 2010). The stage of
MCI (early and late) patients are determined using the Wechsler
Memory Scale (WMS) Logical Memory II; Early MCI (EMCI) subjects
must have education adjusted scores between approximately 0.5 and
1.5 SD below the mean of Cognitively Normal (on delayed recall of one
paragraph from WMS Logical Memory II). All subjects gave written
informed consent prior to participation.
In this study, we included MCI patients who underwent 3.0T MRI

scanning and 18F-AV45 (florbetapir) PET at baseline. As of 24th
January 2018, a total of 463 patients met this qualification, and their
baseline diagnoses were EMCI (n=305) and late MCI (LMCI, n=158).
Among these, we included in the present study 254 patients with Aβ
positivity on AV45 PET, which we defined as standardized uptake value
ratios (SUVR) above a cutoff value of 1.11 (Landau et al., 2013; Landau
et al., 2012) (145 EMCI and 109 LMCI).
Patients were followed up at 6- to 12-month intervals with clinical

diagnostic assessments. Conversion to AD was established at individual
recruitment sites (Landau et al., 2011b), and we defined fast decliners
as patients who converted to AD within three years of follow-up after
baseline PET and MRI scans. A total of 53 patients who were followed
up for less than three years with no AD conversion were excluded, and
15 additional patients were excluded from analyses because of missing
data at baseline (11 for missing CSF data, three for missing hippo-
campal volume, and one for missing FDG SUVR). Thus, 74 fast and 112
slow decliners (patients who converted after 3 years (n=18) or did not
convert during the 3-year follow-up (n=104)) were included in ana-
lyses (Fig. 1).

2.2. Clinical data collection

Basic demographics and clinical data were extracted from the
ADNIMERGE dataset from the Alzheimer's Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/) in January 2018.
Extracted clinical data included presence of APOE4 genotype, hippo-
campal volume (HV), total intracranial volume (ICV), FDG SUVR
(Average FDG SUVR of bilateral angular, inferior temporal, and pos-
terior cingulate regions — AD signature regions — relative to pons/
vermis reference region)(Landau et al., 2011; Landau et al., 2010),
AV45 SUVR (Average AV45 SUVR of frontal, anterior cingulate, pre-
cuneus, and parietal cortex relative to the cerebellum), and AD bio-
markers (Aβ(1–42), total tau (t-tau) and phosphorylated tau (p-tau))
from CSF drawn at baseline. The detailed protocols for image proces-
sing and CSF analyses have been described in previous studies (Bittner
et al., 2016; Hsu et al., 2002; Landau et al., 2011b) and in the ADNI
methods section at http://adni.loni.usc.edu/.
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2.3. Statistical analysis

For model construction, we randomly divided the dataset into the
training and the testing datasets, with a ratio of 2:1. Demographic data
and biomarker characteristics of fast and slow decliners (in the total,
the training and the testing dataset) were summarized with frequency
and proportion or median and interquartile range.
In the training dataset, biomarkers used as potential predictors were

age, MCI stage (early and late stage), APOE4, CSF Aβ (1–42) (=CSF
Aβ), t-tau and p-tau, FDG SUVR, AV45 SUVR, and corrected HV (HV in
mm3/ICV in mm3). Variables which had p value< 0.1 for differences
between groups from univariable analyses were included in multi-
variable analysis and the model of the significant variables from mul-
tivariable analysis was re-estimated as the final model. AV45 SUVR,
CSF t-tau and p-tau were natural log transformed (loge) due to skewed
distribution, and FDG SUVR, AV45 SUVR and corrected HV variables
were multiplied by 10, 10 and 1000 respectively because of relatively
small scale. We assessed multicollinearity using the variance inflation
factor (VIF) and found that CSF t-tau and p-tau levels showed VIF > 4.
Therefore, they were considered correlated, which led us to make two
separate multivariable logistic regression analyses including each
variable. Association of biomarker with fast decliner in multivariable
logistic model was presented with OR (Odds Ratio) and 95% CI
(Confidence Interval) of OR.
Nomograms were formulated based on the results of multivariable

analysis using R 3.4.3(http://www.r-project.org) with rms packages.
Detailed methods about nomogram construction have been described
previously (Jang et al., 2017). To validate the predictive accuracy of a
prediction model developed using the training dataset, we quantified
nomogram performance by discrimination and calibration. In dis-
crimination step, predictive performance was determined with a con-
cordance index (C-index, the area under the receiver operating char-
acteristic curve), which quantifies the level of concordance between
predicted probabilities and the actual chance of having the event of
interest. Internal validation of performance was estimated with a
bootstrapping method (1000 replications) and a 10-fold cross valida-
tion of the training dataset, and the testing dataset. Calibration was
graphically assessed with the relationship between the actual observed
probabilities and predicted probabilities (calibration curve).
Finally, we tried to show that final prediction models we con-

structed had best model fitness and predictive performance compared
with others. Therefore, we compared the fitness and predictive per-
formance of different models with various combinations of biomarkers
using the likelihood ratio test and 95% CI for AUC, respectively. We

made several models by adding, one by one, independent variables (in
the order of easiness of access in clinic). Model 1 has MCI stage as an
only independent variable, because MCI stage is easily obtainable in-
formation from neuropsychological test. Model 2 has APOE4 geno-
typing as an additional variable, and model 3 and 4 have HV/ICV and
FDG PET SUVR as an additional variable, respectively. Model 5 has MCI
stage, APOE4 genotyping, HV/ICV, and FDG SUVR as independent
variables, while Model 6 and 7 have additionally CSF t-tau and p-tau
levels as an independent variable, respectively. All statistical analyses
were performed with SAS version 9.4 (SAS Institute, Cary, NC) and R
3.4.3 (Vienna, Austria; http://www.R-project.org/). Statistical sig-
nificance was defined as two-tailed p < 0.05.

3. Results

3.1. Differences in clinical characteristics of fast and slow decliners

The demographic characteristics of the study subjects in the total
(N=186, 74 fast and 112 slow decliners), the training dataset
(N=124), and the testing dataset (N=62) are shown in Table 1.
Table 2 shows the result of univariable logistic analysis in the

training dataset. There were no significant differences in age
(p=0.475), sex (p=0.720), and education years (p=0.196) between
fast and slow decliners. There was a higher frequency of LMCI (37
(71.2%) vs. 11 (15.3%), p < 0.001) and APOE4 carriers among fast
decliners (42/52 (80.8%) vs. 42/72 (58.3%) p=0.008) than among
slow decliners.
AD biomarker characteristics were significantly different between

fast and slow decliners in the training dataset. Compared to slow de-
cliners, fast decliners showed a lower level of CSF Aβ (699.8 (569,
808.3) vs. 738.1 (613.7, 959), p=0.018), and higher levels of CSF t-tau
(361.6 (288.2, 497.3) vs. 286.9 (233.7, 374.3), p < 0.001) and p-tau
(35.2 (28.8, 51.1) vs. 28.2 (21.5, 36.4), p=0.001). Corrected HV
(0.0041 (0.0039, 0.0045) vs. 0.0048 (0.0042, 0.0054), p < 0.001) and
FDG PET SUVR (1.2 (1.1, 1.2) vs. 1.3 (1.2, 1.4), p < 0.001) were sig-
nificantly lower and AV45 SUVR (1.4 (1.3, 1.6), 1.3 (1.2, 1.5),
p < 0.001) was higher in fast decliners than in slow decliners.
(Table 2).

3.2. Predictors for classification as fast decliners in multivariable logistic
regression analysis

In the training dataset, the first multivariable analysis (Model 1
including CSF t-tau) showed that MCI stage (LMCI vs. EMCI; OR 15.88,

Fig. 1. Flowchart showing inclusion and exclusion of parti-
cipants included within the study.
Abbreviations: N, number; MCI, mild cognitive impairment;
PET, Positron emission tomography; SUVR, Standardized
uptake value ratio; FDG, Fluorodeoxyglucose; HV, hippo-
campal volume; CSF, cerebrospinal fluid; AD, Alzheimer's
dementia.

H. Jang, et al. NeuroImage: Clinical 24 (2019) 101941

3

http://www.r-project.org
http://www.R-project.org/


95% CI 4.59, 54.88), APOE4 (OR 5.65, 95% CI 1.52, 20.98), corrected
HV*1000 (OR 0.22, 95% CI 0.09, 0.57), FDG SUVR*10 (OR 0.44, 95%
CI 0.27, 0.71), and loge CSF t-tau (OR 6.20, 95% CI 1.48, 25.96) were
associated with being fast decliners. The second multivariable analysis
(Model 2 including CSF p-tau) showed that MCI stage (LMCI vs. EMCI;
OR 15.98, 95% CI 4.69, 54.44), APOE4 (OR 5.71, 95% CI1.56, 20.88),
corrected HV*1000 (OR 0.23, 95% CI 0.09,0.57), FDG SUVR*10 (OR
0.45, 95% CI 0.28,0.72), and loge CSF p-tau (OR 4.53, 95% CI 1.26,
16.31) were associated with being fast decliners (Table 3).

3.3. Nomograms as prediction models

We finally constructed nomograms using the multivariable analyses
results (Fig. 2). A specific point was matched to each variable based on
the beta coefficients from regression analyses described above. The
total points made from the sum of each point indicate the overall risk
score. This can be applied to predict the risk of being classified a fast
decliner as shown in Fig. 3, which shows how to interpret the nomo-
gram using the exemplary cases of the low and high risk biomarker
profiles.

The prediction performance of Model 1 was 0.929 in the training
dataset and 0.912/ 0.910 by bootstrap sampling/10-fold cross valida-
tion and 0.901 in the testing dataset. The prediction performance of
Model 2 was 0.929 in the training dataset and 0.913/0.899 in bootstrap
sampling/10-fold cross validation and 0.907 in the testing dataset. The
nonparametric calibration curves showed that the bias corrected cali-
bration plots (which were generated from internal validation based on
1000 bootstrap resamples) showed virtually no departure from ideal
lines, which means the nomograms are well calibrated (Supplementary
Fig. 1).

3.4. Comparison with prediction models including different combinations of
biomarkers

The prediction models with different combinations of biomarkers
are shown in Table 4. We evaluated the model fitness using Akaike
information criterion (AIC) and R-square. Given that lower AIC and
higher R-square indicate the better model regarding fitness, model 6
and 7 fitted the data the best as shown in the Table 4 and it was con-
firmed with likelihood ratio test (p < 0.003). We evaluated the

Table 1
Demographics and biomarkers between slow and fast decliners of Aβ+MCI.

Total (N=186) Training dataset (N=124) Testing dataset (N=62)

Slow decliners
(N=112)

Fast decliners (N=74) Slow decliners
(N=72)

Fast decliners (N=52) Slow decliners
(N=40)

Fast decliners (N=22)

Demographicsa

Age, years 72.0 (67.8,77.4) 74.3 (69.5,77.8) 70.7 (67.3,77.3) 73.6 (69.5,77.3) 72.7 (69.4,77.45) 74.45 (70,79.3)
Sex, % female 52 (46.4) 31 (41.9) 30 (41.7) 20 (38.5) 22 (55) 11 (50)
Education, years 16 (13.5,18) 16 (15,18) 16 (13.5,18) 16 (15.5,18) 16 (13.5,18) 16 (14,18)
MCI stage, % late MCI 28 (25) 54 (73) 11 (15.3) 37 (71.2) 17 (42.5) 17 (77.27)
MMSE 28.5 (27, 29) 27 (26, 28) 28.5 (27,30) 27.5 (26,29) 28.5 (27.5,29) 27 (26,28)

Biomarkersa

APOE 4+ carriers 64 (57.1) 60 (81.8) 42 (58.3) 42 (80.8) 22 (55) 18 (81.8)
CSF Aβ(1–42), pg/

mLb
740.8 (625.3956.6) 697.7 (563.2806.0) 738.1 (613.7959) 699.8 (569,808.3) 740.7 (635.4953.3) 658.1 (520.3799.3)

CSF t-tau, pg/mLb 284.3 (227.9347.5) 372.2 (283.7514.2) 286.9 (233.7374.3) 361.6 (288.2497.3) 279.9 (211.2327.3) 391.4 (283.7542.7)
CSF p-tau, pg/mLb 27.6 (21.0,35.6) 36.3 (28.2,51.9) 28.2 (21.5,36.4) 35.2 (28.8,51.1) 26.9 (19.5,31.9) 38.7 (28.0,56.9)
HVmm3 7217.3 (6421.5,

7916.5)
6325.6 (5715, 6996) 7271.4 (6498,7948) 6400.4 (5797.5,

7063.5)
7119.9 (6300, 7841.5) 6148.8 (5549, 6702)

HV/ICVb 0.0047
(0.0042,0.0053)

0.0041
(0.0038,0.0045)

0.0048
(0.0042,0.0054)

0.0041
(0.0039,0.0045)

0.0046
(0.0042,0.0051)

0.0043
(0.0038,0.0046)

AV45 PET SUVRb 1.31 (1.20,1.45) 1.45 (1.31,1.55) 1.3 (1.2,1.5) 1.4 (1.3,1.6) 1.3 (1.2,1.4) 1.5 (1.3,1.5)
FDG SUVRb 1.30 (1.23,1.36) 1.14 (1.07,1.22) 1.3 (1.2,1.4) 1.2 (1.1,1.2) 1.3 (1.2,1.4) 1.1 (1.1,1.2)

MCI, mild cognitive impairment; APOE, Apolipoprotein E; CSF, cerebrospinal fluid; Aβ(1–42), Amyloid-β 1–42; t-tau, total tau; p-tau, phosphorylated tau; HV,
hippocampal volume; ICV, total intracranial volume; PET, Positron emission tomography; SUVR, Standardized uptake value ratio; FDG, Fluorodeoxyglucose.
a Values are median (interquartile range) or number (percentage).
b Obtained from ADNI dataset.

Table 2
Univariable analysis for the association of biomarker predictors with fast decliners of Aβ+MCI in the training dataset.

Predictors Slow decliners (N=72) Fast decliners (N=52) OR (95% CI) p-value

Demographics
Age, years 70.7 (67.3,77.3) 73.6 (69.5,77.3) 1.02 (0.97,1.08) 0.475
Sex, % female 30 (41.7) 20 (38.5) 0.88 (0.42,1.81) 0.720
Education, years 16 (13.5,18) 16 (15.5,18) 1.10 (0.95,1.27) 0.196
MCI stage, % late MCI 11 (15.3) 37 (71.2) 13.68 (5.68,32.93) <0.001

Biomarkers
APOE 4+ carriers 42 (58.3) 42 (80.8) 3 (1.30,6.91) 0.010
CSF Aβ (1–42), pg/mL 738.1 (613.7959) 699.8 (569,808.3) 0.998 (0.996,1) 0.018
CSF t-tau, pg/mL 286.9 (233.7374.3) 361.6 (288.2497.3) 6.33 (2.13,18.82) <0.001
CSF p-tau, pg/mL 28.2 (21.5,36.4) 35.2 (28.8,51.1) 5.23 (1.95,14) 0.001
HV/ICV 0.0048 (0.0042,0.0054) 0.0041 (0.0039,0.0045) 0.26 (0.14,0.48) <0.001
AV45 PET SUVR 1.3 (1.2,1.5) 1.4 (1.3,1.6) 1.75 (1.26,2.43) <0.001
FDG SUVR 1.3 (1.2,1.4) 1.2 (1.1,1.2) 0.37 (0.25,0.56) <0.001

OR, Odds ratio; CI, confidence interval; MCI, mild cognitive impairment; FDG, Fluorodeoxyglucose; PET, Positron emission tomography; SUVR, Standardized uptake
value ratio; CSF, cerebrospinal fluid; t-tau, total tau; p-tau, phosphorylated tau; HV, hippocampal volume; ICV, total intracranial volume; APOE, Apolipoprotein E.
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predictive performance using area under curve (AUC), Brier Score (the
mean squared error between predictions and outcome) and error rate.
Given that higher AUC and lower error rate/Brier score indicate better
predictive performance, the model 1, 2 showed relatively low pre-
dictive performance, while the model 4,5,6,7,8,9 showed relatively
high predictive performance. Regarding 95% CI for AUC, the model
4,5,6,7,8, and 9 showed the higher AUC than model 1, 2 (p < 0.05).

4. Discussion

We divided Aβ+MCI patients into two groups—fast and slow de-
cliners—according to whether they progressed to AD within three years
of follow-up. We then compared clinical and biomarker characteristics
between these groups and developed predictive models for fast decli-
ners group status using multivariable analysis with multimodal bio-
markers as potential predictors. Our major findings were as follows: 1)
about 40% of Aβ+MCI patients progressed to dementia within three
years, and were classified as fast decliners; 2) advanced MCI stage
(LMCI), higher CSF t-tau or p-tau, lower HV, hypometabolism in AD
signature regions (=lower FDG SUVR), and the presence of APOE4
were significantly predictive of fast decliners group status among
Aβ+MCI patients; 3) the predictive model for being classified as fast
decliners that we developed using these biomarkers showed an ex-
cellent predictive performance (90%) on validation with the testing
dataset.
Our first major finding was that about 40% of Aβ+MCI patients

progressed to dementia within three years. In the present study, the
conversion rate among Aβ+MCI patients seems to be lower than pre-
viously reported (Okello et al., 2009; van Rossum et al., 2012; Ye et al.,
2018), as prior studies have shown that 50–80% of Aβ+MCI patients
convert to dementia in 3 years. In this study, about half the study
subjects (104 of 186) were diagnosed with EMCI at the time of AV45
imaging, which might have contributed to a low dementia conversion
rate; a previous study demonstrated that EMCI patients take longer to
progress to dementia compared with LMCI (Jessen et al., 2014). This is
also consistent with our study finding that LMCI has a 15-fold higher
risk of being fast decliners. Therefore, this finding suggests that even
Aβ+MCI patients have varied clinical courses. Additionally, we in-
vestigated the dementia conversion rate in Aβ- MCI patients using the
same ADNI dataset, although we did not include it in the present study.
The result was that, among 158 patients who were followed up for
3 years, 152 patients (96.2%) were slow decliners while only six pa-
tients (3.8%) were fast decliners, from which we concluded that Aβ-
MCI patients have a much lower chance of dementia conversion in three
years than Aβ+patients.
Our second major finding was that higher CSF t-tau or p-tau, lower

HV, hypometabolism in AD signature regions, and the presence of
APOE4 were significantly predictive of Aβ+MCI patients being clas-
sified as fast decliners. Considering that higher CSF t-tau or p-tau,
hippocampal atrophy and hypometabolism are characterized as

neurodegeneration markers, our finding is consistent with previous
studies showing that Aβ+MCI patients have worse prognosis when
they have additional abnormal neurodegeneration markers (Bittner
et al., 2016; Knopman et al., 2013). In particular, given that CSF p-tau
correlates with pathologic neurofibrillary tangle burden (Buerger et al.,
2006; Clark et al., 2003), which itself is well correlated with disease
progression in AD, it is reasonable to expect that elevated CSF p-tau
could predict the risk of Aβ+MCI patients being classified as fast de-
cliners. This is because, while all participants have elevated brain Aβ,
they might exhibit variable Braak stages from I/II to V/IV (Maass et al.,
2017), and more detailed information regarding p-tau could more
specifically inform risk of future decline. Furthermore, our results show
that nonspecific AD neurodegeneration markers, such as hippocampal
atrophy or hypometabolism (representing synaptic dysfunction and
neuronal loss), are also strongly associated with clinical deterioration
once patients have elevated Aβ deposition on PET.
As expected, CSF Aβ levels and AV45 PET SUVR were not associated

with fast decliners in the multivariable analyses. The previous study
suggested that a combination of CSF Aβ and CSF tau had better pre-
dictive accuracy for AD conversion in MCI patients than CSF tau alone
(van Rossum et al., 2010). However, in this article, MCI consists of both
Aβ+ and Aβ- subjects. As Aβ positivity increases the risk of dementia
conversion in MCI population, combination of CSF Aβ and tau measures
must be a better predictor in that case. On the contrary, we included
only Aβ+MCI patients at the first place, CSF Aβ were not found to be
associated with being fast decliners in multivariable analysis. Likewise,
considering that the amyloid cascade hypothesis states that Aβ accu-
mulation leads to a cascade of events including tau hyperpho-
sphorylation and neuronal degeneration as downstream processes, Aβ
load on AV45 PET scans would not be related with being classified as
fast decliners after adjusting for CSF tau, neurodegeneration markers,
and cognition (as MCI stage). In this study, we also found that APOE4
carriage was a significant predictor for fast decliners group status
among Aβ+MCI patients, which suggests that the effect of APOE4 on
disease progression in the Aβ+MCI population may be as important as
its effect on Aβ deposition in normal individuals (Risacher et al., 2015).
This might be because APOE4 affects cognition in Aβ independent as
well as Aβ dependent mechanisms, by inducing tau hyperpho-
sphorylation, and undergoing neuron-specific proteolysis subsequently
leading to mitochondrial energy disruptions and cell death (Mahley
et al., 2006).
Our final major finding was that the predictive model using multi-

modal AD biomarkers showed an excellent predictive performance
(90%) on validation with the testing dataset for predicting who would
be fast decliners among the Aβ+MCI population. Although clinical
information such as MCI stage was found to be an important predictive
variable, we demonstrated that the model with MCI stage alone per-
formed worse than the model with MCI stage and additional multi-
modal biomarkers, in terms of predictive performance and model fit-
ness. Therefore, we could insist that implementing these multimodal

Table 3
Final model for the association of biomarker predictors with fast decliners of Aβ+MCI in the training dataset: Multivariable analysis.

Predictors Model 1 (including CSF t-tau) Model 2 (including CSF p-tau)

β OR 95% CI p-value β OR 95% CI p-value

MCI stage (LMCI vs EMCI (ref)) 2.77 15.88 4.59,54.88 < 0.001 2.77 15.98 4.69,54.44 <0.001
Presence of APOE4 1.73 5.65 1.52,20.98 0.010 1.74 5.71 1.56,20.88 0.009
HV/ICV*1000 −1.50 0.22 0.09,0.57 0.002 −1.46 0.23 0.09,0.57 0.002
FDG SUVR *10 −0.83 0.44 0.27,0.71 0.001 −0.80 0.45 0.28,0.72 0.001
Loge CSF t-tau (pg/mL) 1.82 6.20 1.48,25.96 0.013 N/A
Loge CSF p-tau (pg/mL) N/A 1.51 4.53 1.26,16.31 0.021

OR, Odds ratio; MCI, mild cognitive impairment; LMCI, late MCI; EMCI, early MCI; CI, confidence interval; FDG, Fluorodeoxyglucose; PET, Positron emission
tomography; SUVR, Standardized uptake value ratio; CSF, cerebrospinal fluid; t-tau, total tau; p-tau, phosphorylated tau; HV, hippocampal volume; ICV, total
intracranial volume; APOE, Apolipoprotein E.
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biomarkers in clinical practice ensure more accurate prediction for
disease progression in Aβ+MCI population. Importantly, the nomo-
grams we constructed in this study are easy to apply to clinical data. In
the present study, we used the ADNI dataset; ADNI is a large cohort of
well-characterized subjects, and clinical and imaging data are based on
standardized protocols and analyses. Therefore, as shown in Fig. 3, we
could easily apply our nomograms to ADNI datasets to predict the
probability of being fast declines. In terms of classification of patients,

we expect that this prediction model may provide additional risk stra-
tification information, which is helpful to optimize the selection of
patients who may benefit from Aβ+ targeting therapies in clinical
trials.
We were able to conduct this study because of the availability of

various clinical data through ADNI. However, there are several lim-
itations in this study. First, the definition of fast or slow decliners was
based on the diagnosis with respect to conversion to AD, not on the

Fig. 2. Nomograms for predicting fast decliners including (A) CSF t-tau (B) CSF p-tau.
Abbreviations: FDG, Fluorodeoxyglucose; PET, Positron emission tomography; SUVR, Standardized uptake value ratio; CSF, cerebrospinal fluid; t-tau, total tau; p-tau,
phosphorylated tau; HV, hippocampal volume; ICV, intracranial volume; APOE, Apolipoprotein E.
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trajectories of objective neuropsychological test results. However, it is
meaningful to predict which patients are closest to clinical deterioration
in a clinical setting. Second, we used an a priori established SUVR cutoff
for Aβ positivity, despite the clinical utility of visual assessment.
However, a quantitative SUVR cutoff is more sensitive compared to

visual assessment to predict at-risk patients (Schreiber et al., 2015), and
we could easily obtain SUVR values from the ADNIMERGE dataset,
which enables agreement with many other ADNI studies in terms of the
study methods.

Fig. 3. Nomogram interpretation.
The first exemplary case (A) is EMCI (a) and an APOE4 carrier (b) and has loge CSF p-tau of 3.6 (c), FDG PET SUVR of 1.5 (d), and HV/ICV of 0.005 (e). Therefore, the
point was matched to each variable. The total points (f) made from the sum of each point (a,0+ b,24+ c,29+d,33+ e,61) indicate the overall risk score (f= 147).
This subsequently is matched to a probability of< 10%(g), which demonstrates that this case has a low risk profile to predict fast decline. Likewise, the second
exemplary case (B) is an APOE4 carrier (a) and LMCI (b) and loge CSF p-tau of 4.2 (c), FDG PET SUVR of 1.2 (d), and HV/ICV of 0.0035 (e). The total points (f) made
from the sum of each point (a,24.5+b,38+ c,42.5+ d,67+ e,71) indicate the overall risk score (f= 243), which subsequently is matched to a probability of 99%
(g), very high risk for fast decline.
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5. Conclusions

In conclusion, we found advanced MCI stage, neurodegeneration
markers such as high level of CSF tau, hippocampal atrophy, and hy-
pometabolism in AD signature regions, and presence of APOE4 to be
independently associated with early disease progression in Aβ+MCI
patients. The constructed nomograms including these multimodal AD
biomarkers could help clinicians to predict fast decliners among
Aβ+MCI patients with excellent predictive performance.
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