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Restoration of amyloid PET images 
obtained with short‑time data 
using a generative adversarial 
networks framework
Young Jin Jeong1,2,6, Hyoung Suk Park4,6, Ji Eun Jeong1, Hyun Jin Yoon1, Kiwan Jeon4, 
Kook Cho5 & Do‑Young Kang1,2,3*

Our purpose in this study is to evaluate the clinical feasibility of deep-learning techniques for F-18 
florbetaben (FBB) positron emission tomography (PET) image reconstruction using data acquired 
in a short time. We reconstructed raw FBB PET data of 294 patients acquired for 20 and 2 min into 
standard-time scanning PET (PET20m) and short-time scanning PET (PET2m) images. We generated a 
standard-time scanning PET-like image (sPET20m) from a PET2m image using a deep-learning network. 
We did qualitative and quantitative analyses to assess whether the sPET20m images were available 
for clinical applications. In our internal validation, sPET20m images showed substantial improvement 
on all quality metrics compared with the PET2m images. There was a small mean difference between 
the standardized uptake value ratios of sPET20m and PET20m images. A Turing test showed that the 
physician could not distinguish well between generated PET images and real PET images. Three 
nuclear medicine physicians could interpret the generated PET image and showed high accuracy and 
agreement. We obtained similar quantitative results by means of temporal and external validations. 
We can generate interpretable PET images from low-quality PET images because of the short scanning 
time using deep-learning techniques. Although more clinical validation is needed, we confirmed 
the possibility that short-scanning protocols with a deep-learning technique can be used for clinical 
applications.

Amyloid positron emission tomography (PET) is a nuclear medicine imaging test that shows amyloid deposits 
in the brain. It is currently being used in the diagnosis of Alzheimer’s disease, which is known to be caused by 
amyloid1. Although there are some differences in the acquisition protocols that depend on the commercially 
available radiopharmaceuticals for amyloid PET, most of these should be taken for 10–20 min, especially for 
F-18 florbetaben (FBB), which needs 20 min for scanning2. Since most of the patients with memory disorder 
are elderly, there are complaints that it is difficult for them to lie down without movement for 20 min. Head 
movements due to postural discomfort during long scan acquisition can cause motion artifacts in PET images, 
which degrade their diagnostic value. Some elderly patients actually needed re-scanning (or additional radiation 
exposure) because of a poor image due to movement. Thus, the demand for shortening scan time is growing with 
the increasing use of PET for patients with dementia. However, PET images obtained from short scanning times 
can suffer from a low signal-to-noise ratio and have reduced diagnostic reliability as well.

Recently, deep-learning techniques for image restoration have been widely applied to medical images, includ-
ing computed tomography (CT), magnetic resonance imaging (MRI), and PET3–11. Some of them have used 
the deep-learning techniques for low-dose PET image restoration and have shown potential for reducing noise 
artifacts3–8. There have been only a few studies on reducing noise and improving the quality of images taken by 
reducing the acquisition time of brain PET7. They have used additional MR information obtained from a PET/
MR scanner to restore brain PET images. However, a PET/MR scanner is costly and is not yet widely installed. 
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Since PET/CT scanners are used in most hospitals, a restoration technique using only PET without MRI infor-
mation is needed.

In this study, we applied the deep-learning technique for short-scanning FBB PET image restoration. The 
proposed method uses PET images only, without additional information, such as MRI or CT. We did qualitative 
and quantitative analyses to evaluate the clinical applicability of the proposed method.

Materials and methods
The Institutional Review Board (IRB) of Dong-A University Hospital reviewed and approved this retrospective 
study protocol (DAUHIRB-17-108). The IRB waived the need for informed consent, since only anonymized 
data would be used for research purposes. We used all methods in accordance with the relevant guidelines and 
regulations.

Patients and F‑18 FBB brain PET acquisition.  For training and internal validation of our deep-learning 
algorithm, we enrolled 294 patients with clinically diagnosed cognitive impairment who had received FBB PET 
between December 2015 and May 2018 retrospectively in this study. We also randomly collected 30 patients who 
had FBB PET from January to May 2020 for temporal validation. Out of 30 patients, we excluded two patients 
because of insufficient clinical information, and finally 28 patients participated. In this study, we excluded 
patients with head movement during PET scanning. All the FBB PET examinations were done using a Biograph 
mCT flow scanner (Siemens Healthcare, Knoxville, TN, USA). The PET/CT imaging was done according to the 
routine examination protocol of our hospital, which is the same method used in the previous study published by 
our group12. We injected 300 MBq F-18 florbetaben intravenously into the patients and started PET/CT acquisi-
tion 90 min after the radiotracer injection. A helical CT scan was carried out with a rotation time of 0.5 s at 120 
kVp and 100 mAs, without an intravenous contrast agent. A PET scan followed immediately, and the image was 
acquired for 20 min with the list mode. All the images were acquired from the skull vertex to the skull base. We 
reconstructed the list mode PET data for 20 min into a 20-min static image (PET20m) and used it as the full-time 
ground-truth image. We also reconstructed a short-scanning static PET image (PET2m) using the first 2-min 
data from the total list mode PET data. We used the same parameters to acquire both PET20m and PET2m images.

In addition, we carried out external validation, and obtained data used in the preparation of the external 
validation from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu). 
Among the subjects who underwent FBB PET, we randomly selected 60 patients, and excluded two patients 
because of inconsistency in the brain amyloid plaque load (BAPL) scoring. Finally, 58 patients were involved.

The characteristics of all subjects included in this study are summarized in Table 1.

Deep‑learning method.  Network architecture.  We adopted a generative adversarial network that con-
sists of two competing neural networks with an additional pixelwise loss13. The schematic diagram of the pro-
posed network is shown in Fig. 1. The generator ( G ) is trained to generate a synthetic PET20m-like (sPET20m) 
image from the noisy PET2m image, and the discriminator ( D ) is trained to distinguish sPET20m images gener-
ated by the generator from real PET20m image. In the training procedure, the discriminator enables the generator 
to provide more realistic sPET20m images14. Pixelwise loss is defined as a mean-squared error between sPET20m 
images and original PET2m images, which prevents the generator from changing small anomalies or structures 
of PET2m images during training15.

Table 1.   Subjects’ characteristics. Values of age and MMSE score are presented as mean ± SD (standard 
deviation). AD Alzheimer’s disease, BAPL brain amyloid plaque load, MMSE mini-mental state examination.

Parameters Training set Internal validation set Temporal validation set External validation set

Number of subjects (n) 236 58 28 58

Woman 143 33 18 31

Man 93 25 10 27

Age (years)

Mean 69.8 ± 7.4 71.6 ± 7.5 69.8 ± 8.3 71.4 ± 7.3

Range 52–86 51–84 54–84 56–89

MMSE score

Mean 22.9 ± 4.8 23.4 ± 4.8 18.5 ± 6.3 27.8 ± 3.0

Range 9–30 10–30 5–29 13–30

Clinical diagnosis (n)

Normal 15 5 5 21

SCD 35 10 1 0

MCI 70 16 6 31

AD 116 27 16 6

BAPL score (n)

1/2/3 112/25/99 16/18/24 13/2/13 25/12/21

http://adni.loni.usc.edu
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The generator is constructed using the deep convolutional framelets, which consist of encoder-decoder struc-
tures with skipped connections16. Both encoder and decoder paths contain two repeated 3× 3 convolutions 
(conv), each followed by a batch normalization (bnorm) and a leaky rectified linear unit (LReLU)17,18. A 2-D Haar 
wavelet de-composition (wave-dec) and re-composition (wave-rec) are used for down-sampling and up-sampling, 
respectively, of the features19. In the encoder path, three high-pass filters after wavelet de-composition skip 
directly to the decoder path (arrow marked by ‘skip’), and one low-pass filter (marked by ‘LF’) is concatenated 
with the features in the encoder path at the same step (arrow marked by ‘skip & concat’). At the end, a convolu-
tion layer with a 1× 1 window is added to match the dimension of input and output images. The numbers below 
the rectangular boxes in Fig. 1 indicate the number of filters. The architecture of deep convolutional framelets 
is similar to that of the U-net20, a standard multi-scale convolutional neural network (CNN) with skipped con-
nections. The difference is in using the wavelet de-composition and re-composition, instead of max-pooling and 
un-pooling, for down-sampling and up-sampling, respectively. Additional skip connections of high-frequency 
filters help to train the detailed relationship between PET2m and PET20m images.

For the discriminator, we adopted the standard CNN without a fully connected layer. The discriminator 
contains three convolution layers with a 4× 4 window and strides of two in each direction of the domain, each 
followed by a batch normalization and a leaky ReLU with a slope of 0.2. At the end of the architecture, a 1× 1 
convolution is added to generate a single-channel image.

Datasets for training and internal validation.  In the dataset of the 294 patients’ PET images (70 image slices/
patient), we randomly divided the training and internal validation datasets into 80% and 20%, and used 236 
patients’ images as the training dataset and used 58 patients’ images as the internal validation dataset. The origi-
nal size of the PET images was 400× 400 . In order to improve training effectiveness, we cropped all 400× 400 
images to 224× 224 pixels around the center of an image in both horizontal and vertical directions. Here, only 
background (i.e., zero-valued) information was removed. We used the cropped images as input and label data-
sets for the proposed deep-learning network. In the testing procedure, we resized the images corrected by means 
of the trained generator to 400× 400 by adding the rows and columns of zeros at the top, bottom, left, and right 
sides of the images (i.e., zero padding). We did not use data augmentations such as rotation or flipping for train-
ing.

Network training.  In our study, we ran training for 200 epochs using Adam solver with a learning rate of 0.0002, 
and a mini-batch size of 1021. It was implemented using TensorFlow on a CPU (Intel Core i9-7900X, 3.30 GHz) 
and a GPU (NVIDIA, Titan Xp. 12 GB) system22. It took about 68 h to train the network. The network weights 
followed a Gaussian distribution, with a mean of 0 and a standard deviation of 0.01.

Assessment of image quality.  We compared the image quality of PET2m and the synthesized sPET20m 
images with the original PET20m images using the peak signal-to-noise ratio (PSNR), structural similar-
ity (SSIM), and normalized root mean-square error (NRMSE). The SSIM index depends on the parameters 

Figure 1.   The schematic diagram of the adversarial network used in this study (top left). In this proposed 
network, the discriminator (top right) and the generator (bottom row) are shown, and the generator is 
constructed using the deep convolutional framelets. The numbers below the rectangular boxes indicate the 
number of filters.
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C1 = (K1L)
2 and C2 = (K2L)

2 , where L is the dynamic range of pixel values and K is some constant8. In our 
study, we chose C1 = (0.0002× 65535)2andC2 = (0.0007× 65535)2 . The proposed method was also compared 
with the standard U-net method.

For further analysis, we calculated the Standardized Uptake Value Ratio (SUVR) using PMOD 3.6 software 
(PMOD Technologies, Zurich, Switzerland)23. We obtained the transformation matrix of each participant by 
fusing the CT template of the PMOD and the CT image of the participant. PET images were then spatially nor-
malized by using the transformation matrix of each participant and were applied to an automated anatomical 
labeling template of PMOD (Hammers atlas). We spatially normalized all pairs of sPET20m and PET20m images 
to the Montreal Neurological Institute (MNI) spatial templates and applied the Hammers atlas. By reconstruct-
ing the volume-of-interests of the atlas, the representative areas were set up as the striatum, frontal, parietal, 
temporal and occipital lobes, and global brain. We calculated the SUVRs of the representative areas and used 
the cerebellar cortex as the reference region. We compared the difference of SUVRs of the identical area between 
sPET20m and PET20m images.

Clinical interpretations.  For visual interpretation, three nuclear medicine physicians with certification 
and experience in amyloid PET readings participated (YJ and DY have over 15 years and JE has 4 years of expe-
rience in nuclear medicine; all of them also have 4 years of experience in amyloid PET assessment). They were 
blinded to the clinical data and independently read all PET images of the internal validation dataset.

Turing test.  We did two Turing tests and evaluated all PET images of the internal validation dataset. First, of 
all the sPET20m and PET20m images, we randomly selected 58 images and presented them to the physicians one 
by one for them to decide whether the PET image was real or synthetic (Test 1). Second, we presented a pair of 
sPET20m and PET20m images of the same patient to the physicians to find the original PET20m image (Test 2). We 
anonymized all PET images and randomized the order of PET images.

BAPL score.  We gave all anonymized sPET20m images of the internal validation dataset to the physicians to 
interpret and score according to the conventional interpretation protocol. All the sPET20m images were classified 
into three groups according to the BAPL scoring system. BAPL score is a specialized, predefined three-grade 
scoring system for F-18 FBB PET wherein measurements are made by the physician based on the visual assess-
ment of the subject’s amyloid deposits in the brain24. BAPL scores of 1 (BAPL 1), 2 (BAPL 2), and 3 (BAPL 3) 
indicate no amyloid load, minor amyloid load, and significant amyloid load, respectively. Therefore, BAPL 1 
indicates a negative amyloid deposit, whereas BAPL 2 and BAPL 3 represent positive amyloid deposits. In this 
study, we treated the BAPL score read from the PET20m images as the ground-truth score set by consensus among 
the three physicians. We measured the accuracy of the BAPL score for each physician. We also analyzed the 
agreements between the BAPL score of sPET20m and PET20m images for each physician.

Temporal and external validations.  We additionally verified our model by measuring PSNR, SSIM, 
NRMSE, and SUVR by means of temporal and external validation. The patient characteristics of our temporal 
and external validation datasets are illustrated in Table 1. We performed all analyses of temporal validation in the 
same manner as used in internal validation. We did external validation using a public FBB dataset from ADNI. 
ADNI datasets contain a series of 4 × 5 min of FBB PET images. The proposed model trained on our institute 
dataset (i.e., pair of 2-min and 20-min images) was tested on the first 5-min PET images. In this study, a Gaussian 
filter with 4-mm FWHM was applied to all FBB PET images of ADNI datasets.

Statistical analysis.  We assessed the intra-observer agreement of the BAPL score between the sPET20m 
and PET20m images using Cohen’s weighted kappa. We calculated the accuracy, sensitivity, and specificity for 
the interpretations of sPET20m images. We assessed the difference of group characteristics using an independ-
ent t-test, one-way ANOVA, and chi-squared test. We evaluated the difference in SUVR between sPET20m and 
PET20m images using an independent t-test or Mann–Whitney U test, and evaluated the relationship of SUVRs 
between them using the Pearson’s correlation coefficient. We assessed agreement of SUVRs of both PET images 
using the Bland–Altman 95% limits of agreement. We did the statistical analyses using the MedCalc software 
version 16.4 (MedCalc Software, Mariakerke, Belgium) and NCSS 12 Statistical Software (NCSS, LLC. Kaysville, 
Utah, USA). Statistical significance was defined as p < 0.05.

Results
Assessment of image quality.  PSNR, SSIM and NRMSE.  The original PET2m, PET20m and sPET20m im-
ages and a synthetic image generated by U-net are shown in Fig. 2.

Both the proposed and the U-net methods significantly reduce noise, but the U-net produces a slightly blur-
rier image than does the proposed method. For quantitative comparison, we calculated averaged PSNR, SSIM, 
and NRMSE for all datasets. The results are summarized in Table 2, which shows that the proposed method 
had the highest PSNR and SSIM, and lowest NRMSE, whereas PET2m images showed the worst performance 
in internal validation. The proposed model shows similar performance for the temporal validation dataset, in 
terms of PSNR, SSIM, and NRMSE. As shown in Table 2, our method also improved the image qualities of the 
5-min images in external validation.

SUVR.  Internal validation dataset.  In internal validation, there was no statistically significant difference of 
SUVR between the PET20m and sPET20m images in the striatum, frontal, parietal, temporal, occipital lobes, and 
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global brain (Fig. 3, Supplementary Table 1 and Fig. 1). In the Bland–Altman analysis, the regional mean dif-
ference of SUVR between sPET20m and PET20m images was 0.005 (95% confidence interval (CI) − 0.008, 0.017) 
in the negative group (Fig. 4a) and 0.024 (95% CI 0.010, 0.037) in the positive group (Fig. 4b). Upper and lower 
limits of agreement were 0.131 (95% CI 0.110, 0.152) and − 0.121 (95% CI − 0.142, − 0.100) in the negative 
group, and 0.180 (95% CI 0.157, 0.203) and − 0.133 (95% CI − 0.156, − 0.110) in the positive group, respectively.

Temporal and external validation datasets.  In temporal and external validations, we also compared SUVRs of 
the entire representative areas between sPET20m and PET20m images and found result similar to those of inter-
nal validation (Supplementary Tables 2, 3 and Figs. 2, 3). There was a very strong positive correlation between 
SUVRs of sPET20m and PET20m images in temporal validation (r = 0.988, p < 0.001, Fig. 5a) and external valida-
tion (r = 0.987, p < 0.001, Fig. 5c). In the Bland–Altman analysis, the mean difference of SUVR between sPET20m 
and PET20m images was 0.015 (95% CI 0.009, 0.021) in temporal validation (Fig. 5b). Upper and lower limits of 
agreement were 0.092 (95% CI 0.081, 0.102) and − 0.062 (95% CI − 0.072, − 0.051). In external validation, the 

Figure 2.   The input and output of PET images (upper row, BAPL 1; middle row, BAPL 2; lower row, BAPL 3). 
PET2m image (input image) is very noisy and the image quality is poor (a,e,i). The ground truth with 20-min 
scanning (b,f,j) and synthetic PET images generated from the proposed deep learning (c,g,k) and the U-net 
(d,h,l) are shown. The synthetic PET image generated from our model is better in reflecting the underlying 
anatomical details than is the PET image generated from the U-net. In the BAPL 2 case, a small positive lesion 
(red arrows, e–h) is equivocal in the PET2m image (e), but clearly shown in sPET20m image (g) as in PET20m 
image (f).

Table 2.   Image-quality metrics of PET image categories for internal, temporal, and external validation. 
NRMSE normalized root mean-square error, PSNR peak signal-to-noise ratio, SSIM structural similarity.

Metrics

Internal validation Temporal validation External validation

PET2m sPET20m U-net PET2m sPET20m PET5m sPET20m

PSNR 33.035 35.826 34.600 32.667 34.604 36.833 37.993

SSIM 0.844 0.882 0.869 0.848 0.873 0.862 0.871

NRMSE 15.421 11.286 12.912 15.992 12.992 12.097 11.004
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mean difference of SUVR was − 0.035 (95% CI − 0.039, − 0.030) (Fig. 5d). Upper and lower limits of agreement 
were 0.045 (95% CI 0.038, 0.053) and − 0.115 (95% CI − 0.123, − 0.107).

Clinical interpretations for internal validation dataset.  Turing test.  Tests 1 and 2 showed similar 
results (Table 3). Test 1, a test to decide whether the presented single PET image was real or synthetic, showed 
that, regardless of the duration of clinical reading experience in nuclear medicine, the overall accuracy was not 
high (44.8% and 63.8%). In Test 2, a test to select a real PET image out of two PET images of the same patient, 
the more experienced the physicians were in clinical reading, the more often the real PET image was selected 
(48.3–60.3%). Overall, however, the clinicians did not seem to distinguish well between generated PET images 
and real PET images.

BAPL score.  The three physicians assessed the sPET20m images according to the BAPL scoring system, and 
there was no poor or inadequate image that was difficult to interpret. In five, six, and eight patients out of 58 
patients, each physician assessed the BAPL score differently from the ground-truth score. Table 4 shows the 

Figure 3.   Comparison of the regional mean SUVR in the PET20m (light blue) and sPET20m (light red) images of 
the internal validation dataset (a, negative group; b, positive group). Similar values are shown between PET20m 
and sPET20m images.

Figure 4.   The Bland–Altman analysis for every regional SUVR shows a small mean difference between the 
PET20m and sPET20m images (a, negative group; b, positive group).
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Figure 5.   Correlation analysis of the whole representative areas shows a trend of a strong positive relationship 
of SUVR in temporal (a) and external validations (c). The Bland–Altman analysis shows a minimal mean 
difference between the two images in temporal (b) and external validations (d).

Table 3.   Accuracy of three physicians in two Turing tests.

Readers Test 1 Test 2

4 years experienced physician 26/58 (44.8%) 28/58 (48.3%)

Over 15 years experienced physician 1 37/58 (63.8%) 35/58 (60.3%)

Over 15 years experienced physician 2 26/58 (44.8%) 32/58 (54.2%)

Table 4.   Accuracy, sensitivity, and specificity in clinical reading using the BAPL score. Data in parentheses are 
95% confidence interval (%).

Metric Reader 1 Reader 2 Reader 3 Mean (%)

Accuracy 91.4% (81.0, 97.1) 89.7% (78.8, 96.1) 86.2% (74.6, 93.9) 89.1

Sensitivity 95.2% (83.8, 99.4) 88.1% (74.4, 96.0) 90.5% (77.4, 97.3) 91.3

Specificity 81.3% (54.4, 96.0) 93.8% (69.8, 99.8) 75.0% (47.6, 92.7) 83.3
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accuracy, sensitivity, and specificity for the three physicians. Overall, the mean values for accuracy, sensitivity, 
and specificity were 89.1%, 91.3%, and 83.3%, respectively. The confusion matrices are provided in Table 5.

We evaluated the intra-observer agreement using Cohen’s weighted kappa by comparing the BAPL scores 
between the sPET20m and PET20m images. Clinicians’ Cohen’s weighted kappa was 0.902 (DY), 0.887 (YJ), and 
0.844 (JE), with a mean value of 0.878.

Discussion
In this study, we investigated the feasibility of a deep-learning-based reconstruction approach using short-time 
acquisition PET scans. We used PET images acquired for 2 and 20 min as input and target images, respectively. 
Quantitative and qualitative analyses showed that the proposed method produces efficient synthetic PET images 
from short-scanning PET images. We calculated image-quality metrics (such as PSNR, SSIM, and NRMSE) for 
model evaluation between the synthetic images and ground-truth images (standard scanning images). Overall, 
the proposed method improved the image quality by suppressing the noise in short-scanning images. Note that 
the SSIM index depends on the parameters ( K1 and K2 ). In our study, the average SSIM index for the synthetic 
images increased from 0.8818 to 0.9939 when K1,K2 increased from 0.0002 to 0.0007 and 0.01 to 0.03 , respec-
tively. However, in this case, the differences in the SSIM index were very small. Our deep-learning method also 
improved the image qualities of the 5-min images of the ADNI dataset, even though the test domain significantly 
differs from our training domain.

We adopted the GAN framework with an additional mean-squared loss between the synthetic sPET20m image 
and the PET2m image. The performance of the proposed network was compared with that of the conventional 
U-net. The U-net minimizes only the pixelwise loss between the synthetic PET image and ground-truth (i.e., 
PET20m) image, resulting in an over-smoothed image, whereas the proposed approach clearly reconstructs the 
detailed structures of the brain (Fig. 2)25. In terms of quality measurements, such as PSNR, NRMSE, and SSIM, 
the proposed method outperformed the U-net. The time taken to generate a synthetic single sPET20m image from 
a PET2m image was within a few milliseconds on the GPU system, which would make the proposed method 
adequate for clinical use.

Some previous studies have also tried to reduce noise and improve image quality using a deep-learning tech-
nique in PET imaging5–9. Most of these studies aimed at maintaining the quality of the PET image while reduc-
ing the injection dose of radiopharmaceuticals in order to minimize radiation exposure. They showed that the 
image quality of low-dose PET could be restored like the original PET images obtained with standard protocols 
while reducing the conventional radiopharmaceutical dose by up to 99%. However, they all used synthesized 
low-dose data (i.e., a small amount of data selected from the entire acquisition period), which may differ from 
the measured data obtained from the true low dose. A feasibility study on real data is needed for clinical use. 
One study restored a low-quality PET image taken in 3 min to match a standard image taken in 12 min7. This 
study differs from ours in that it used MRI information taken together to restore image quality. Considering the 
absence of a PET/MRI scanner in most hospitals, the proposed method using PET images only could be used in 
general clinical practice. Another study reported that using a 5-min PET image, one frame of 20-min data without 
deep-learning methods, did not relevantly affect the accuracy of disease discrimination26. The advantage of our 
method is that it can generate PET images like those of full-time scanning images with only 2-min data in any 
part, regardless of the frame. In our study, no comparison of diagnostic accuracy between PET images obtained 
by our method and 5-min PET images was done. However, if PET image reconstruction with short-time data 
is required, we think that our method, along with the PET imaging method using one frame 5-min data, can 
broaden the range of options that can be selected according to the situation.

Since amyloid PET images are used in hospitals to care for patients with memory impairment, deep-learn-
ing-generated images must have an image quality similar enough to the original image that it can be used for 
interpretation in the clinics. In this study, we used several methods to decide whether generated images could 
be available clinically. We did tests to find an answer to the following questions: Can physicians distinguish 
between PET20m and generated sPET20m images? What is the difference in visual interpretation results? What is 
the difference between quantitative analysis using SUVR in both images?

When PET20m and generated sPET20m images were presented at the same time to three nuclear medicine 
physicians who were in charge of clinical reading, the accuracy of the selection of the PET20m images was within 
40–60%. This suggests that synthetic PET images generated by our method are almost indistinguishable from 

Table 5.   Confusion metrics for interpretation of PET images using BAPL score between the PET20m and 
sPET20m images. BS BAPL score of ground truth, GT ground truth, sBS BAPL score of the synthetic PET image.

PET20m (GT)

Reader 1 Reader 2 Reader 3

BS1 BS2 BS3 Total BS1 BS2 BS3 Total BS1 BS2 BS3 Total

sPET20m

sBS1 13 2 0 15 15 5 0 20 12 4 0 16

sBS2 3 16 0 19 1 13 0 14 4 14 0 18

sBS3 0 0 24 24 0 0 24 24 0 0 24 24

Total 16 18 24 58 16 18 24 58 16 18 24 58



9

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4825  | https://doi.org/10.1038/s41598-021-84358-8

www.nature.com/scientificreports/

the real PET image. Next, we did the BAPL scoring test to assess the intra-observer agreement and diagnostic 
accuracy. In our study, Cohen’s weighted kappa was above 0.84, which indicated an almost perfect intra-observer 
agreement. We also did BAPL scoring on generated PET images, which we compared with the ground-truth 
scores. In the strong positive cases (BAPL 3), all three physicians showed a 100% accuracy, but in the negative 
(BAPL 1) and weak positive (BAPL 2) cases, between 5 and 8 of the 58 patients were false-positive or false-
negative. It is already known that the amyloid PET study itself, even if obtained according to a conventional 
protocol, can cause misclassification when visually read. Some studies have reported that about 10% of the 
results may be inconsistent27,28. In addition, some errors from the deep-learning algorithm could be added, so 
we think that the misclassification has increased a little in our study. We also think that the physician’s opinion 
may have some influence on the interpretation of how much the amyloid uptake is positive in the visual reading 
that distinguishes BAPL 1 and 2. Few studies have evaluated the accuracy of physicians’ interpretations among 
studies related to deep learning on a subject similar to ours. One study showed 89% accuracy when read using 
deep-learning-generated PET images, which is very similar to our result6.

In order to make up for the weak points of the visual reading, SUVR is used as a quantitative indicator in 
routine practice to infer the severity or prognosis of the disease23. In the generated brain PET images of this study, 
regional SUVRs were not significantly different from the values of ground-truth images in negative and positive 
cases (p > 0.05). In the Bland–Altman analysis, the mean of the difference was 0.005 in the negative case and 0.024 
in the positive case, and the limits of agreement of each region were small. That is, our deep-learning model can 
generate images with SUVR values that are comparable to those of the original PET images. We obtained similar 
results by means of temporal and external validations, which allowed us to reconfirm this fact. Taken together, 
these results suggest that the synthetic amyloid PET images generated by our deep-learning method could be 
used for clinical reading purposes.

Our study has some limitations that need to be considered for clinical use. First, our deep-learning model 
trained on FBB PET with 2-min data should be tested under various acquisition conditions. Using multicenter 
datasets for training or incorporating domain adaptation techniques could improve image quality, which is a 
part of our future work29,30. In this study, in order to avoid overfitting, we evaluated our model using the ADNI 
data, a completely different dataset, and our hospital data obtained at a different time from the training dataset. 
Second, in our study, we empirically chose 2-min images as a training dataset for short scanning. However, 2-min 
PET images may not be optimal. More rigorous analysis may be needed to choose the proper short-scanning 
image. Third, we generated only trans-axial PET images in this study. Although interpretation guidelines for 
FBB PET recommend using trans-axial PET images for clinical reading, coronal and sagittal PET images have 
also been used recently for reading. In the next study, we need to apply our deep-learning model to generate 
three orthogonal PET images. In addition, the application of a 3-dimensional model and finding the optimal 
hyperparameters is a problem to be solved in the future.

In conclusion, we presented an image-restoration method using a deep-learning technique to yield a clinically 
acceptable amyloid brain PET image with short-time data. Qualitative and quantitative analysis by means of 
internal, temporal, and external validations showed that the image quality and quantitative value of the gener-
ated PET images were very similar to those of the original images. Although more evaluation and validation are 
needed, we found that applying deep-learning techniques to amyloid brain PET images can reduce acquisition 
time and provide clinically equivalent interpretable images as standard images.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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