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Mild cognitive impairment (MCI) is an early sign of Alzheimer's disease (AD) which is the fourth leading disease
mostly found in the aged population. Early intervention of MCI will possibly delay the progress towards AD, and
this makes it very important to diagnose early MCI (EMCI). However, it is very difficult since the subtle dif-
ference between EMCI and cognitively normal control (NC). For improving classification performance, this paper
presents a deep learning based diagnosis approach using structure MRI images for exploiting deeply embedded

diagnosis features; then a feature selection strategy is performed to eliminate redundant features. A Support
Vector Machine (SVM) is further employed to distinguish EMCI from NC. Experiments were performed on the
publicly available ADNI dataset with a total of 120 subjects. The classification results demonstrate the superior
performance of the proposed method with accuracy of 89.4% for EMCI versus NC.

1. Introduction

Alzheimer's disease, the most common form of dementia, is an ir-
reversible progressive neurodegenerative disease happening to people
over the age of 65. AD patients will suffer from memory loss, which
disrupts daily life. In 2018, the estimated number of AD patients were
5.7 million in American, 0.5 million more than in 2014 [1,2]. However,
if no precautions were taken, with the incidence rate increasing, there
will be 13.8 million AD patients in 2050 [2]. At present, no effective
prevention or treatment has been found. More importantly, it costs a lot
of money and manpower to cure AD patients [2]. Mild cognitive im-
pairment (MCI) is the transition state between age-related cognitive
decline and AD or another dementia [3]. People with MCI have mild
but measurable changes in thinking abilities and have high risk of
conversion to AD [2]. Therefore early diagnosis of MCI is of vital im-
portance for the early intervention in preclinical state of AD [4,5].

In Alzheimers Disease Neuroimaging Initiative (ADNI) project, the
MCI stage is divided into early MCI (EMCI) and late MCI (LMCI).
Compared with LMCI, EMCI patients have milder cognitive deficits;
thus the diagnosis of EMCI is more challenging and has drawn much
attention of researchers in the last decades [6]. In this study, we will
review the advanced methods of previous literature about EMCI diag-
nosis and propose the novel classification approach to distinguish EMCI
group from normal control (NC) group.

Nowadays, neuroimaging techniques have been widely applied to
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medical image analysis, such as structure magnetic resonance imaging
(sMRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and po-
sitron emission tomography (PET). Using these neuroimaging techni-
ques, most researches utilized traditional machine learning methods to
classify EMCI and NC.

Based on 68 cortical areas of diffusion weighted MR images, Prasad
et al. [7] computed a 68 X 68 connectivity matric and a set of network
measures as the input of SVM classifier and acquired a classification
accuracy of 59.2% for EMCI versus NC. Rory Raeper et al.[8] con-
structed a cooperative correlational and discriminative ensemble
learning framework using sMRI images where each individual brain
was represented by a set of shallow convolutional brain multiplex
(SCBM) used to train an ensemble of CCA-SVM and LDA-based classi-
fiers, and an accuracy of 80.95% was reported. Parisa Forouzannezhad
et al. [9] combined the features extracted from cortical region and
subcortical region of MRI and PET images, neuropsychological test
scores, age and education to train a deep neural network for EMCI
classification and reported an accuracy of 84%. In addition, the authors
trained a SVM classifier utilizing the same data in paper [9] and re-
ported an accuracy of 81.1% [10].

The aforementioned approaches based on traditional machine
learning try to find distinguishing features from neuroimaging data
through complex feature engineering, then perform classification task.
However, the above feature engineering not only needs accurate prior
knowledge using for calculating brain region-based features, but also
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needs considerable time and manpower. The low accuracy score reveals
that it is very challenging to distinguish EMCI from NC just utilizing
low-level and coarse-grained features based on prior knowledge
[11,12]. Recently, researchers have shown an increasing interest in
convolutional neural network (CNN) method for classification task
[13,14]. CNN can extract low- and high-level features from complex
high-dimensional image data in the form of end-to-end. Compared with
the above brain region-based feature engineering, CNN is good at au-
tomatically seeking the most discriminating disease-related features
from voxel values of image, which is beneficial to avoid errors in-
troduced from feature engineering and retain the subtle but complex
differences between EMCI and NC. There have been several relevant
investigations into EMCI diagnosis using the popular CNN method.

Tae-Eui Kam et al. [15] proposed a novel 3DCNN framework using
fMRI data to extract deep embedded features from both static and dy-
namic brain functional networks for EMCI diagnosis and reported an
accuracy of 76.07%. However, time-consuming, multi-channel and
multi-model training did not exchange higher classification accuracy.
Mukul Puranik et al. [16] employed Inception Resnet V2 model with
transfer learning technique to classify NC, EMCI and AD, and obtained
an accuracy of 98.41%. However, the input data are the 2D slices of
fMRI images, which means the classification task isn’t based on subject-
level, deviating clinical needs.

In this study, in order to effectively solve the challenging binary
classification problem for EMCI vs. NC, a hybrid diagnosis method
based on deep CNN and support vector machine (SVM) was proposed,
where SVM classifier has successfully been applied to EMCI classifica-
tion in many researches [17-19]. Specifically, we selected sMRI as re-
search data due to its universality in the clinical practice and con-
venience in the examination. Then, 120 sMRI 3D images (70 EMCI, 50
NC) acquiring from ADNI were decomposed into 3840 2D slice images
for training VGG16 CNN with transfer learning technique. At last, all
slice features of each subject were fused into a feature vector for LASSO
feature selection and SVM classification. The experimental results
showed that the proposed method greatly improved the classification
performance thanking to the combination of CNN and SVM and the
elimination of redundant features. What's more, transfer learning
technique effectively alleviated the problems caused by small dataset
and reduced a lot of training time. Most of EMCI diagnosis researches
based on traditional machine learning utilized region-based features
extracted from multi-step feature engineering for classification, the
proposed method classified EMCI and NC using volumetric features of
sMRI data with higher accuracy, which overcame the limitation of
traditional machine learning and promoted the development of end-to-
end computer-aided diagnosis of EMCIL.

2. Material and methods
2.1. Participants

Data used in this study were obtained from Alzheimer's Disease
Neuroimaging Initiative (ADNI) project launched in 2003 as a public-
private partnership. The goal of ADNI study is to detect AD at the
earliest possible stage and support advance in intervention, prevention
and treatment through new diagnostic methods.

A total of 120 preprocessed MRI scans in NIfTI file format were
downloaded from ADNIGO and ADNI2 database. The corresponding
demographic information of the dataset is shown in Table 1. This study
included 70 EMCI subjects and 50 age-matched Normal Control’ (NC).
All subjects from the basebline/screening visit have passed strict in-
clusion criteria. EMCI diagnostic criteria included 1) Mini Mental State
Examination (MMSE) scores between 24-30, 2) a subjective memory
concern reported by subject, informant or clinician, 3) objective
memory loss of 0.5-1.5 SD (standard deviation) below normal mea-
sured by education adjusted scores on delayed recall of one paragraph
from Wechsler Memory Scale Logical Memory II, 4) a Clinical Dementia
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Table 1
Corresponding demographic information of subjects.
EMCI NC
Number 70 50
Gender(F/M) 27/43 27/23
Age(year) 729 + 8.3 72.5 + 6.1
MMSE 27.86 + 1.66 28.93 + 1.18

Rating (CDR) of 0.5, 5) absence of significant levels of impairment in
other cognitive domains, essentially preserved activities of daily living,
and absence of dementia. LMCI diagnostic criteria are the same as that
of EMCI except that the objective memory loss score is more than 1.5
SD below normal.

2.2. sMRI acquisition

The origin T1-weighted structure MR images (sMRI) were acquired
by 3-Tesla GE medical systems scanners at multiple sites with rigorous
quality control to reduce site effect. The following imaging parameters
were used: acquisition plane = sagittal, minimum full echo time, Tl =
400 ms, volume size = 256 X 256 X 196, voxel size = 1.0 X 1.0 X 1.2
mm3, flip angle = 11°. More information about the parameters of the
images can be searched on the website of ADNI (http://adni.loni.usc.
edu/).

2.3. Preprocessing

All obtained data have been preprocessed through a series of stan-
dard preprocessing procedures. Using FSL and FreeSurfer software, the
raw T1-weighted structure MR images are preprocessed with skull-
stripping, intensity normalization and registration with a standard
template Colin27 having the same coordinate system as MNI152.
Finally, the sMRI image of each subject has a resolution of
110 X 110 X 110 voxels.

In order to highlight most distinguishable features and improve the
efficiency of classification task, 2D slices data of sMRI were studied.
Each 3D sMRI image was decomposed into 2D slices along axial view
and the slices with indices 37-68 were converted to JPEG image format
by means of MATLAB (2018a). It is worth noting that some brain re-
gions associating with memory, such as hippocampus and callosum, are
contained in 32 slices. Then a subject-level dataset for SVM classifica-
tion was built, which consists of 120 folders each of which includes 32
slices of one subject. In addition, another slice-level dataset was built
for training 2DCNN model, which contains 2240 (32 X 70) EMCI slices
and 1600 (32 x 50) NC slices split into train set and validation set with
the ratio of 8:2.

2.4. Proposed method

The pipeline of proposed approach for EMCI classification is shown
in Fig. 1, where a CNN model of VGG16 [20] is chosen as feature ex-
tractor, LASSO algorithm is utilized for feature selection and SVM
classifier performs classification task. Firstly, VGG16 network is fine-
tuned by slice-level dataset using transfer learning technique through
loading pre-trained weight, then the optimal VGG16 model is saved in
term of the minimum loss value during training process. Secondly, the
features of each slice in subject-level dataset are extracted by VGG16
optimal model whose output is a matrix of 1 X 256. Each subject has 32
slices; therefore 32 matrixes of 1 X 256 are concatenated into a total
feature matrix as a feature representation of one subject. All feature
representations of 70 EMCI and 50 NC subjects are integrated into a
matrix dataset, as described in Fig. 1 (2). Thirdly, feature selection is
performed by LASSO algorithm to reduce the dimension and irrelevant
information of the above matrix dataset. Finally, the output of LASSO
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Fig. 1. An illustration of the pipeline of proposed method, where (1) is the optimal VGG16 model which is used as feature extractor in next step, (2) is a matrix with
the size of 120 x 8192(32 x 256), (3) represents a matrix with the size of 120xnumber of selected features of each subject.

algorithm is used to train and test SVM classifier for binary classifica-
tion of EMCI and NC.

2.4.1. Convolutional neural network and transfer learning

Convolutional neural network (CNN) is one of popular deep
learning algorithm, which has gotten great success in computer vision
and image processing applications in recent years. CNN commonly
consists of convolution layer, pooling layer and fully connected layer
[21]. In convolution layer, the convolution calculation is performed on
an image of size h X w using a kernel size of k, padding of p and stride
of s, then 2"(neZ) feature maps with a size of
("—"7”1’ +1)x ("—"7”1’ + 1) will be output. The convolution kernels
play vital roles, just like feature detector which can learn general and
fine-grained features, such as edge, shape and some hidden information
[22]. With the similarity features among adjacent regions, the pooling
layer can reduce redundant information through acquiring the max-
imum or mean of a region, and therefore high feature dimensions, vast
network parameters and long training time will be reduced drastically.
In the fully connected layer, all neurons have full connection to the
output of the previous layer. The fully connected layer converges all
learned features to classify, finally outputs the classification score and
give the actual prediction of input data. Fig. 2 shows the network
structure of VGG16 CNN model which consists of five convolution
blocks and a fully connected layer containing one flatten layer and two
dense layers.

However, the training of VGG16 network in Fig. 1 with small da-
taset will cause overfitting problem in a large probability. Therefore we
used dropout layer and transfer learning technique to alleviate

overfitting phenomenon. Dropout layer set the output of neurons in the
hidden layers into 0 with a probability of r. Transfer learning technique
is to utilize the pre-trained weights to initialize own network whose
structure is the same as pre-trained model trained by a much larger
dataset, thus realizes self-adaption from source to target domain
[23,24]. In this study, we transferred VGG16 pre-trained weights
trained by nature image dataset Imagenet with 1000 categories into own
VGG16 network. Although brain image is very different from nature
images, the first few layers in CNN can extract many generic features,
such as side, angle, colour. According to the difference of category
number and image attribute between source domain and target domain,
we replaced fully connected layer and freezed the pre-trained weights
of the first four convolution blocks of VGG16, then the pre-trained
weights in the fifth convolution block and the initial weights of fully
connected layer were continually updated during training process, the
above courses are also called fine-tuning. The freezed layers will be
used to extract generic feature while the fine-tuned layer extract high-
level target-specific features.

2.4.2. LASSO

With high-dimensional features of each subject, the feature selection
algorithm of least absolute shrinkage and selection operator (LASSO)
was performed to remove the irrelevant or redundant features so that
the feature dimensions would be reduced drastically and overfitting
phenomenon can be alleviated effectively. LASSO is performed through
minimizing the penalized objective function with L1 regularization,
which tends to give zero weight to irrelevant features; therefore the
useful discriminative features can be saved [25]. The objective function

VGG16 Network Structure
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Fig. 2. VGG16 network structure, the gray-scale image in target domain with the size of 110 x 110 x 1 will be converted into the format of RGB in source domain

with the size of 110 x 110 x 3.
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of LASSO is defined as follows:

J(0) = %IIY— XTel5 + allél &)
where X = [x;, X%, ...xn] € RV*4 is a feature matrix. N is the number of
subjects and d is the number of features of each subject, thus each x;
represents all features of one subject. Y = {yly, € {—1, +1}}¥, is a set of
corresponding class labels of subjects. 6 represents the regression
coefficient and « is the regularization parameter to balance the com-
plexity of the model.

2.4.3. SVM

Support vector machine is suitable for the classification of high-di-
mensional small dataset [26], and Peng Yang et al. [27] and Xiaoke Hao
et al. [28] found that SVM is superior to other classifiers in EMCI di-
agnosis. Given a training set {x, yk}kN=1 with input data x;, € R" and
corresponding binary class labels y, € {—1, +1}, the output of primal
SVM is presented as follows:

y(x) = sign[wTp(x) + b] (2)

where ¢(x) is a nonlinear function mapping the input space to higher
dimensional feature space, which makes the input data linearly separ-
able in hyperplane. The term b is a bias term. The optimization objec-
tive function is defined as follows [26]:

N
1

minJ (w, &) = —w'w + ¢ Y §

wbs 2 gll ‘ ®3)

subject to:
VewToGa) + b1 21 -§,k=1,...N,§ >0 )

&, is slack variable which can allow model to appear misclassification.
W is the weight applied for input data x. The positive constant c is a
tuning parameter.

2.5. Implementation

The training of VGG16 network is implemented based on Keras with
a single GPU (i.e. NVIDIA GTX TITAN 12GB). The network is optimized
by root mean square propagation (RMSProp) with a learning rate of
10~*. The weight update is performed in mini-batches of 32 samples per
batch and stops after 100 epochs.

3. Results
3.1. Experimental setting

We first implemented all the steps in Fig. 1, then in order to high-
light the advantage of transfer learning technique, we also trained
VGG16 model from scratch without transferring pre-trained weights. In
addition, to demonstrate the effectiveness of feature selection algo-
rithm, we also made another contrast test where LASSO algorithm did
not perform before training SVM classifier. Finally, we compared the
proposed approach with other present methods based on sMRI and
EMCI diagnosis. In the following, there are some corresponding ex-
perimental setup illustrated below.

As described in section 2, the regularization parameter a of LASSO
feature selection algorithm can balance the model complexity. we
found from many trial experiments that the magnitude of a will influ-
ence the classification results to some extent. The variation curve of
classification accuracy of EMCI and NC changing with « is shown in
Fig. 3, where the range of a varies from 0 to 10 and the interval is 0.1.
However, we did not select the a corresponding to the highest accuracy
because the selected features will lead to overfitting in classification. In
order to acquire a relatively robust classification model, an appropriate
a would be selected through repeating experiment with different a.
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Fig. 3. The variation curve of classification accuracy changing with a.

To alleviate the effect of data abnormity as far as possible, the
original data distribution of features was normalized as a normal dis-
tribution with unit standard deviation and zero mean before SVM
classification. In order to obtain the optimal parameters of SVM clas-
sifier, we used GridSesearchCV [29] method to generate the training
results of different parameter combinations through exhaustive search,
and then acquired the optimal parameters according to validation ac-
curacy. We repeated SVM classification task with optimal parameters
10 times using stratified 10 folds cross-validation strategy and acquired
the mean of every metric as the final results. In addition, in order to
alleviate the problem of data imbalance, class weights were imposed
during training.

3.2. Features extraction and visualization

CNN is believed to have great ability of extracting class-dis-
criminative features from images, and visualization of the activation
map of features is a helpful approach to explore training progress of
CNN model. We visualized the output of the first Maxpooling layer of
VGG16 model, as shown in Fig. 4(a). Different filter (or convolution
kernel) learns different features from various aspects, for example,
some filters learn the brain shape, and others learn the interior struc-
ture of brain. In Maxpooling layer, after taking the maximum value
within a 2 X 2 region in turn in whole feature map, the size of feature
map in previous layer was decreased in half and the details became
more obvious. The features will become more and more sparse and
localized in deeper layers, at the same time, the embedded high-level
abstract features can be learned.

Fig. 4(b) shows the feature matrix output of LASSO algorithm,
which was also described in Fig. 1. There are apparent distinctions
between 70 EMCI and 50 NC subjects in Fig. 4(b) where it is clearly
seen that the color of the features of NC is more green while that of
EMCI is more pink. The well discrimination between EMCI and NC
benefited by the ability of feature extraction of VGG16 model to a large
extent.

3.3. Performance evaluation

We quantitatively evaluated the classification performance of the
proposed method based on accuracy (ACC), sensitivity (SEN), specifi-
city (SPE), and area under the receiver operating characteristic curve
(AUC). The ROC curves of one 10-folds cross-validation are shown in
Fig. 5. To our best knowledge, we are the first to combine CNN with
traditional machine learning algorithm for EMCI diagnosis. In order to
compare the classification performance with other recent methods
reasonably, we chose these researches which used sMRI data from ADNI
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(b)

Fig. 4. (a) 64 feature activation maps of a SMRI slice with the size of 55 x 55 pixels, the output of the first Maxpooling layer of VGG16 model. (b) The feature matrix

with the size of 120 x 330 from feature selection.
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Fig. 5. The ROC curve of SVM classifier, where the blue-black ROC curve is the
average of ten ROC curves of 10-folds cross-validation.

Table 2
Classification performance comparison with pervious researches using sMRI for
distinguishing EMCI from NC. Where from scratch and no LASSO respectively
represents transfer learning technique and LASSO algorithm did not performed
in experiment. Fine-tune & LASSO is the complete process of the proposed
method.

Method ACC(%) SEN(%) SPE(%)
Forouzannezhad et al. [9] 61.1 66.5 58.7
Forouzannezhad et al. [10] 73.1 76.8 68.4
Raeper et al. [8] 81.0 83.3 78.57
ours (from scratch) 63.3 72.0 56.3
ours (no LASSO) 80.0 84.0 75.6
ours (fine-tune &LASSO) 89.4 92.9 89.3

website, as shown in Table 2. With the same metrics, it can be clearly
seen that the proposed method yielded the best results whatever ACC,
SEN or SPE. An mean AUC of 96% reported in Fig. 5 also illustrates that
the classifier has fairly well classification capacity for positive samples
and negative samples.

On the one hand, under the condition of using the same sMRI
modality, our proposed method outperformed paper [8-10], achieving
a accuracy of 89.4%, 8.4% higher than paper [8], 16.3 % higher than
paper [10] and 28.3 % higher than paper [9]. It illuminates that the

proposed CNN-based method is more effective than other methods just
based on traditional machine learning algorithm. CNN plays a sig-
nificant role in this study considering that it can efficiently extract
useful features in different level and reduce the error resulting from
incomplete prior hypothesis to some extent. For example, EMCI may
have different pathosis from AD, such as degree of lesion, while the
prior hypothesis of some researches about EMCI lesion still based on
AD. On the contrary, CNN can ignore this difference between EMCI and
AD better than prior hypothesis because CNN can automatically extract
the most discriminative features no matter what the pathology is. On
the other hand, the accuracy of using the features extracted from fine-
tuned VGG16 model is much higher than that of using the features from
the VGG16 model trained from scratch. The main reason is that VGG16
model trained from scratch cannot learn enough features with small
dataset, conversely, the VGG16 model transferring pre-trained weights
trained by much bigger source-domain dataset has good generalization
for small dataset, which can extract many general features of target-
domain data from the first few layers without updating weights. It also
illustrates that model trained on mass of general images can be fine-
tuned by few MRI images to extract specific target-domain features.

In addition, LASSO algorithm is a key step to improve classification
accuracy in this study. As shown in Table 2, the LASSO algorithm im-
prove the accuracy by 9.4%. It demonstrates that the LASSO algorithm
can effectively eliminate redundant features that affect the reasonable
distribution of data in SVM feature space. It also explains that there are
only subtle but manifest changes for EMCI subjects; therefore these
changes are sensitive to vast redundant features.

4. Discussion

The incidence of AD is increasing rapidly every year; therefore it is
urgent to find effective methods to delay and prevent AD. Diagnosis of
EMCI is helpful for early intervention of AD. We reviewed previous
researches about EMCI diagnosis and proposed a more effective method
combining CNN and SVM to distinguish EMCI from NC. The results
suggest that the classification performance is significantly improved
compared with the previous researches, and the average accuracy
achieves an unprecedented 89.4%. Two factors are identified as being
potentially important: 1) LASSO can deal with a small number of sub-
jects with high-dimensional features and get rid of a large number of
redundant features. 2) Transfer learning based on CNN can greatly
enhance the learning ability of small dataset and helps excavate more
target-domain high-level features. Additionally, transfer learning can
reduce training time due to the usage of pre-trained model realizing
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faster convergence with less data. Similarly, Wee et al. [30] used the
model pre-trained on the ADNI-2 cohort (including NC, EMCI, LMCI,
AD) to test the ADNI-1 cohort (including NC, MCI, AD), and the ex-
perimental results illustrated that the classification performance of the
fine-tuned model were better than the learn-from-scratch model, which
is consistent with our experimental results. Actually, they constructed
cortical thickness graphs using sMRI data and input them into a cortical
graph neural network including three graph convolutional layers and a
fully connected layer, achieving 51.8% accuracy for EMCI vs. NC. The
possible reason of low classification accuracy is that the selected cor-
tical thickness feature is too single for identifying EMCI and NC.

In recent years, CNN gradually becomes an important tool of ana-
lyzing medical image with small dataset. Lulu Yue et al. [21] and Gorji
et al. [31] made 3D gray matter images of sMRI data decompose into
many 2D slices to train the CNN including three convolutional layers
and sub-sampling layers. Although they achieved the high accuracy of
more than 90% for identifying EMCI, the classification results are based
on slice-level. Similarly, Yosra Kazemi et al. [32] and Saman Sarraf
et al. [33] acquired the high slice-level accuracy in AD classification
using 2D slices images. Apparently, the subject-level accuracy can be
further acquired through majority voting mechanism in the above
studies, however, we acquired the subject-level accuracy through in-
tegrating all slice features of each subject for SVM classification, which
can obtain disease-related information from all slices for prediction
rather than from one slice.

In this study, the classification results using CNN method still have a
certain gap with clinical diagnosis. The possible reason is that there are
no significative difference between some EMCI subjects and NC in brain
structure. Although sMRI is one of the commonest neuroimaging tool
for disease diagnosis, more and more researchers turn their attention
from structure change of brain to functional change [17-19] in recent
years. They used fMRI data to construct brain functional networks of
EMCI group and NC group for classification and achieved over 80%
accuracy. It is worth noting that they found that temporal lobe is the
discriminating disease-related region, in this study, we have in-
tentionally selected all 2D slices including temporal lobe. In addition,
there are many researches illustrating that multi-modality data are
more effective than single modality data for EMCI classification
[28,34,35]. Therefore, we will combine other neuroimaging techniques
to further improve the classification performance utilizing the proposed
method and use bigger dataset to enhance the robustness of model in
the following study.
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