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Abstract
Background Predicting the risk of disease progression from mild cognitive impairment (MCI) to Alzheimer’s disease 
(AD) has important clinical significance. This study aimed to provide a personalized MCI-to-AD conversion prediction 
via radiomics-based predictive modelling (RPM) with multicenter 18F-fluorodeoxyglucose positron emission tomography 
(FDG PET) data.
Method FDG PET and neuropsychological data of 884 subjects were collected from Huashan Hospital, Xuanwu Hospital, 
and from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. First, 34,400 radiomic features were extracted 
from the 80 regions of interest (ROIs) for all PET images. These features were then concatenated for feature selection, and 
an RPM model was constructed and validated on the ADNI dataset. In addition, we used clinical data and the routine semi-
quantification index (standard uptake value ratio, SUVR) to establish clinical and SUVR Cox models for further comparison. 
FDG images from local hospitals were used to explore RPM performance in a separate cohort of individuals with healthy 
controls and different cognitive levels (a complete AD continuum). Finally, correlation analysis was conducted between the 
radiomic biomarkers and neuropsychological assessments.
Results The experimental results showed that the predictive performance of the RPM Cox model was better than that of 
other Cox models. In the validation dataset, Harrell’s consistency coefficient of the RPM model was 0.703 ± 0.002, while 
those of the clinical and SUVR models were 0.632 ± 0.006 and 0.683 ± 0.009, respectively. Moreover, most crucial imaging 
biomarkers were significantly different at different cognitive stages and significantly correlated with cognitive disease severity.
Conclusion The preliminary results demonstrated that the developed RPM approach has the potential to monitor progres-
sion in high-risk populations with AD.
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Introduction

Alzheimer’s disease (AD) is the most common neurode-
generative disease and is the leading cause of death for 
which no disease-modifying therapy is currently avail-
able [1, 2]. At present, it has been recognized as a dis-
tinct entity and is defined pathologically by the presence 
of a specific neuropathological profile, i.e., extracellular 
deposition of β-amyloid (Aβ) and Tau, while cognitive 
impairment is evaluated externally [3, 4]. Meanwhile, cog-
nition is considered a continuum, in which mild cognitive 
impairment (MCI) refers to individuals who have objective 
evidence of impaired cognition but preserved independ-
ent function and is undisputedly a high-risk factor for AD 
[5]. The reported annual rate of MCI conversion to AD-
dementia is approximately 10%; however, more than 60% 
of MCI cases likely will not progress, even after 10 years 
[6–9]. Therefore, clarifying which patients with MCI will 
develop dementia is of great significance for enriching 
clinical trials and carrying out prevention strategies for 
target individuals.

Previous studies have verified that the pathological 
deposition of Aβ and/or Tau accelerates the progression 
of MCI, and both biomarkers robustly predict cognitive 
decline [10]. Nevertheless, their detection results may vary 
by the use of different ligands, analysis methods, or cut-
off values [11–13]. In addition, the invasiveness of lum-
bar puncture, and the low popularity of amyloid-positron 
emission tomography (PET) and tau-PET scans further 
limit their application. Comparatively, [18F] fluoro-2-de-
oxyglucose (18F-FDG) PET imaging has been widely used 
in the clinical evaluation of neurodegeneration [14]. Some 
FDG PET imaging studies, including ours, have obtained 

plausible results with high accuracy using principal com-
ponent analysis or statistical parametric mapping analysis 
or deep belief network analysis [15–17], suggesting the 
necessity and potential of glucose metabolism. Further-
more, the standard uptake value ratio (SUVR), the most 
popular quantification surrogate to present the regional 
glucose activity, may be very helpful for clinical diagnos-
tic. Previous studies have suggested that applying SUVR 
as a predictive index to perform an MCI conversion model 
is feasible [18–20], however, while integral to its role as 
a predictive biomarker, may require the sacrifice of com-
plete information needed to delineate underlying regional 
metabolic activity. Therefore, developing advanced bio-
markers and predictive models to disclose more metabolic 
information and further improve its predictive ability 
remains a significant challenge for MCI-to-AD conver-
sion prediction.

Radiomics aims to extract the high-throughput mining 
of quantitative image features from specific imaging and 
to establish relevant statistical models that could improve 
clinical diagnostic, prognostic, and predictive accuracy; this 
approach is gaining importance in brain disease research 
[21, 22]. Quantitative radiomic features (such as intensity, 
shape, texture, and wavelet) disclose the information on neu-
ral activity as well as abnormal regional metabolism that is 
distinct and complementary to other semiquantitative meas-
urements, such as SUVR. For example, radiomic features, as 
high dimensional features, represent spatial change rate lev-
els of voxel intensity in the brain (Fig. 1), and may contain 
unique information about changes at the microscopic level, 
while SUVR offers only two regional quantitative values. 
Recently, we showed that the radiomic features extracted 
from FDG-PET images contribute to the diagnosis of neuro-
degenerative diseases including AD and Parkinson’s disease 

Fig. 1  The representative 
characteristics of routine semi-
quantification method (SUVR) 
and radiomics method. For the 
targeted region, the radiom-
ics discloses the sensitive and 
complete information about 
underlying pathophysiologi-
cal metabolism, while SUVR 
method only offers the rough 
metabolic intensity description FDG PET scan
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[23–25]. Thus, radiomics-derived features based on FDG 
PET images, when combined with clinical information and 
correlated with outcome results, can advance the develop-
ment of accurate robust predictive models.

Thus, the primary objectives of this study were to (a) 
establish a radiomics-based prediction model (RPM) of 
MCI conversion using FDG-PET imaging, (b) investigate 
the robustness using multicenter cohorts, and (c) explore 
its performance in a separate cohort including individuals 
with different cognitive levels (a complete AD continuum). 
We hypothesized that imaging biomarkers derived from the 
RPM model may have the potential to predict individual 
progression risk in MCI patients.

Materials and methods

Subjects

The total sample for the subsequent analysis consisted of 
FDG PET images from 884 subjects from three differ-
ent cohorts (Alzheimer Disease Neuroimaging Initiative 
(ADNI), Huashan Hospital, and Xuanwu Hospital). For 
construction of the RPM model, a total of 355 patients 
with either stable MCI (sMCI, n = 187) or progressive MCI 
(pMCI, n = 168) and 94 healthy control (HC) subjects were 
recruited from ADNI-1, ADNI-2, and ADNI-3. Among 
them, each HC subject had twice longitudinal follow-up 
(time interval: 2.0 ± 0.05 years) images. We used twice HC 
images to perform radiomic feature selection and charac-
terize the feature’s stability. To evaluate the RPM model’s 
predictive ability, we also collected cohort II from the 
ADNI-Go database as an independent test dataset, which 
included 81 sMCI and 39 pMCI patients. Furthermore, to 
explore the performance of distinct features in the overall 
AD continuum, 138 HC subjects and a total of 177 patients 
with either subjective cognitive decline (SCD, n = 76), MCI 
(n = 41), or AD (n = 60) were collected from local hospitals 
(Xuanwu Hospital: Sino Longitudinal Study on Cognitive 
Decline project (SILCODE) project and Huashan Hospi-
tal) as cohort III. All subjects underwent FDG PET scans, 
T1-MPRAGE structural MRI scans, and demographic data. 
Part of subjects also underwent AV45 amyloid-PET scans. 
Detailed inclusion information related to subject consent 
in ADNI could be obtained at http:// adni. loni. usc. edu. The 
inclusion criteria of MCI patients enrolled from ADNI data-
base have been reported previously [17] and were as follows: 
(1) all patients with sMCI and pMCI underwent FDG PET 
scans and clinical diagnoses at the baseline visit and were 
followed up for at least 3 years; (2) sMCI patients who had 
not converted to AD at follow-up and pMCI patients who 
had converted to AD within the follow-up interval; and (3) 
participants with a bidirectional change in diagnosis (MCI 

to AD, and back to MCI) within the follow-up period were 
excluded. The inclusion criteria of cohort III have also been 
reported previously [26]. The entry criteria for healthy indi-
viduals have been described previously [27]. The diagnosis 
of dementia was based on the guidelines of the NIA-AA 
workgroups [28]; SCD was defined by the research criteria 
for pre-MCI (SCD) proposed by Jessen et al. in 2014 [29], 
and MCI was based on neuropsychological methods [30].

For cohort I, the randomized cross validation method was 
used to randomly partition into a 70% training dataset and a 
30% internal test dataset multiple times (100 times). Cohort 
II was regarded as an independent external test dataset. The 
amyloid status of ADNI was determined by the global AV45 
amyloid-PET SUVR normalized to the whole cerebellum 
using a pre-established FreeSurfer-based protocol [31]. The 
amyloid status of individuals in cohort III was determined 
by the same global AV45 amyloid SUVR. The amyloid level 
for each subject was confirmed by two senior radiologists 
who were blinded to any clinical information and made 
positive or negative judgment. This study was approved by 
institutional review boards of ADNI, Huashan, and Xuanwu 
Hospital, and written informed consent was obtained from 
all participants or authorized representatives.

Acquisition protocol and preprocessing

All subjects in this study were scanned by FDG PET and 
structural T1 MRI imaging. Detailed information on the data 
acquisition of ADNI can be found on the website (http:// 
adni. loni. usc. edu/). MRI data from Huashan Hospital were 
acquired with General Electric 3 T MR750 scanner. The 
subjects in Huashan Hospital underwent FDG PET scanning 
with Siemens Biograph 64 HD PET/CT. After intravenous 
injection of 185 MBq FDG, subjects underwent a PET scan 
after resting for 45 min. MRI and FDG data from Xuanwu 
Hospital were acquired using General Electric 3 T TOF 
PET/MR scanner. Approximately 40 min after intravenous 
injection of 3.7 MB/kg of 18F-FDG, a 35-min dynamic scan 
was performed. The detailed acquisition protocol has been 
reported previously [26, 27, 32].

Data preprocessing was performed by using Statistical 
Parametric Mapping 12 (SPM12, the Wellcome Depart-
ment of Neurology, London U.K.) implemented in MAT-
LAB 2016b (Mathworks Inc.). First, the original FDG PET 
image for each subject was registered with the corresponding 
structural MRI image. Then, MRI images were segmented 
into gray matter (GM), white matter (WM), and cerebro-
spinal fluid (CSF) tissue probability maps using the unified 
segmentation method. The registered PET image was spa-
tially normalized to the MNI space using the transforma-
tion parameters. Finally, the normalized PET images were 
smoothed using an isotropic Gaussian kernel of 8 mm to 

http://adni.loni.usc.edu
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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increase signal-to-noise ratios. Notably, all FDG PET images 
underwent count normalization using global cortical uptake.

Radiomics‑based predictive modelling analysis

In this study, the RPM method was implemented to develop 
predictive models of brain-behavior relationships from glu-
cose metabolic data. The RPM method included the fol-
lowing steps: (1) radiomics feature extraction, (2) radiom-
ics feature summarization, and (3) model construction and 
assessment.

Radiomics feature extraction

To obtain more detailed features, 80 cortical regions from 
the automated anatomical labelling (AAL) atlas were used 
as regions of interest (ROIs). We extracted 430 radiomics 
features from each ROI for FDG PET data. In brief, the most 
basic features in each ROIs include two parts: first-order 
intensity features (n = 3) and texture features (n = 40). We 
extracted features under the combination of different wavelet 
filter weights (5 levels) and quantization of gray levels (2 
levels), and the total number of features per ROI was 430 
((3 + 40) × 5 × 2 = 430). The details of these features pro-
vided in supplementary.

Radiomics feature summarization

The tenfold cross-validation and Z-normalization strategies 
were implemented in cohort I. To reduce the dimension 
of features and solve the overfitting problem, three feature 
selection steps were performed separately for the training 
data in cohort I: (1) feature stability analysis: stable fea-
tures with Cronbach’s alpha coefficient greater than 0.75 
were selected based on longitudinal HC data in cohort I; 
(2) statistical test: t test and rank sum t test with family-
wise error option multiple correction were used to identify 
the features with significant differences (P < 0.05); and (3) 
least absolute shrinkage and selection operator (LASSO). 
As a result, radiomic features after the feature summariza-
tion steps were considered as the conserved features for the 
future prediction model.

Model construction and assessment

The proportional hazards model (Cox) model was con-
structed as the prediction model. The Cox model is a method 
for investigating the effect of several variables (predictive 
features) upon the time (conversion time or follow-up inter-
val). Therefore, the outcome of the Cox model in this study 
was whether MCI subjects converted to AD. The time of out-
come appearance was the interval between the baseline time 
and the endpoint. The Harrell’s concordance index (C-index) 

was used to evaluate risk models in survival analysis (MCI 
to AD) [17]. Tenfold cross-validation was used to evaluate 
the prediction performance. In addition, forwards stepwise 
selection was employed to choose the optimal feature subset 
(stopping rule: lowest Akaike information criterion, AIC) in 
the Cox construction. The Cox model was used in the test 
dataset to calculate the prognostic index (PI) for each sub-
ject. PI was a linear combination of the selected feature and 
its coefficient. The Kaplan–Meier survival curves analysis 
based on ranked PI value was employed to examine the dif-
ferences of MCI conversion rate. A clinical Cox model was 
also constructed using available clinical variables (age, sex, 
education, and Mini-Mental State Examination-MMSE) to 
compare the predictive performance with the RPM method.

To further evaluate the predictive ability, we also com-
pared the conventional regional model, SUVR, with our pro-
posed RPM model. Based on abnormal metabolic regions 
derived from the SPM test [20], we predefined 6 merged 
ROIs (Supplementary Table) and calculated SUVR values 
in these 6 ROIs as predictive indexes to construct SUVR 
Cox model. Cohort II data was used for external validation 
of the predictive model derived from the RPM method [33].

Validation of crucial features

To further explore the relationship between conserved radi-
omic features and neuropsychiatric assessments at different 
cognitive stages, correlation coefficients were calculated 
between the features and neuropsychological assessments 
(MMSE scores) in the AD continuum (SCD, MCI, and AD 
subjects) from cohort III. Differences in the crucial features 
of the HC group and the whole AD continuum were also 
evaluated to check whether the value distribution of the con-
served radiomic features had good consistency in the whole 
AD spectrum.

Statistical analysis

Subject characteristics were compared between groups 
using chi-squared tests for categorical variables (sex) and 
two-sample t tests (cohorts I and II) and ANOVAs (cohort 
III) for numeric variables (age, education, MMSE, amyloid 
level, and conversion time). The feature differences of cohort 
III across groups were statistically analyzed using ANOVA 
with Dunnett’s multiple comparison test. The correlation 
analyses were repeated using a general linear model con-
trolled for covariates (i.e., age, education, sex), to ensure that 
the association between radiomic features and MMSE was 
not driven by these covariates. P values were 2-tailed, and 
P < 0.05 was considered statistically significant. All statisti-
cal tests were performed using SPSS 24.0. Cox models were 
constructed in R (http:// www.R- proje ct. org/) employing the 
“glmnet” and “survival” packages [34–36].

http://www.R-project.org/
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Results

Subjects

Table 1 shows the demographic information of the partici-
pants from each cohort. There was a higher amyloid level 
in the pMCI group both cohort I and cohort II (P < 0.001), 
but there was no significant difference in the amyloid level 
between HC and SCD (P = 0.49, Dunnett’s correction). 
Patients with MCI had higher amyloid level than HCs and 
SCD patients (P < 0.001, Dunnett’s correction). Cognitive 
disease severity (MMSE) was significantly different in sMCI 
compared to pMCI (all P < 0.001), in AD compared to HC 
(P < 0.001), and in MCI compared to HC (P < 0.001). Meas-
ures of MMSE were not significantly different between SCD 
and HCs (P = 0.21).

Conserved features in Cox model

Radiomics analysis was used to extract 34,400 features from 
PET images of each subject. In the tenfold cross-validation 
with 100 iterations, we chose the optimal feature subset that 
was included in the RPM model using a forward stepwise 
selection approach. This resulted in 11 conserved features 
in the Cox model (C-index: 0.859; AIC: 1550.2). As shown 
in Table 2, the conserved features mainly came from the 

texture features of the hippocampus, cingulate cortex, para-
hippocampal gyrus, precuneus, and other frontal regions.

PET model radiomics analysis predicts 
the progression MCI to AD

Three prediction models were constructed, including the 
clinical model, SUVR model, and RPM model. This study 
evaluated the model’s prediction performance and identified 
the conserved features associated with MCI conversion in 
each model. The average C-index with 100 iterations was 
used to assess the predictive performance. As summarized 
in Table 3, there was a superior predictive performance in 
the RPM model (C-index of train and validation datasets: 
0.838 and 0.703), while there was moderate performance in 
the SUVR model (C-index: 0.788 and 0.683) and lower per-
formance in the clinical model (C-index: 0.692 and 0.632). 
Figure 2 demonstrates the characteristics of the conserved 
features found in the RPM model and that of the composite 
quantification values in the SUVR model and the related 
Kaplan–Meier survival curves. In the RPM model, zone 
percentage of left hippocampus showed the strongest pre-
dictive power (hazard ratio, HR: 1.465, 95% confidence 
interval, 95% CI: 1.236–1.737, P < 0.001). For cohort II, the 
Kaplan–Meier survival curves demonstrated good separa-
tion of groups with high and low risks of conversion to AD. 
The best MCI conversion stratification was reached with 

Table 1  The clinical characteristics of all cohorts

a Chi-squared tests; btwo samples t test; cpaired samples t test; dANOVA test. HC, healthy control; SCD, subjective cognitive decline; MCI, mild 
cognitive impairment; AD, Alzheimer’s disease; sMCI, stable mild cognitive impairment; pMCI, progressive mild cognitive impairment; MMSE, 
mini-mental state examination

Group Sex (M/F) Age (years) Education (year) MMSE Amyloid β level Conver-
sion time 
(months)

Cohort I sMCI
(n = 187)

109/78 72.1 ± 7.5 16.0 ± 2.6 28.0 ± 1.6 1.16 ± 0.20 0

pMCI
(n = 168)

95/73 74.0 ± 7.1 16.0 ± 2.6 26.5 ± 2.2 1.40 ± 0.22 14.1 ± 8.9

P value 0.74a 0.018b 0.91b  < 0.001b  < 0.001b  < 0.001
HC
(n = 94)

HC 1 48/46 72.8 ± 5.9 16.9 ± 2.4 29.2 ± 1.2 / /
HC 2 48/46 74.8 ± 5.9 16.9 ± 2.4 29.1 ± 1.2 / /

P value 1a  < 0.001c 1c 0.57c / /
Cohort II sMCI

(n = 81)
44/37 72.2 ± 7.8 15.6 ± 2.8 28.2 ± 1.4 1.16 ± 0.18 0

pMCI
(n = 39)

21/18 72.1 ± 6.9 16.3 ± 2.7 26.7 ± 1.9 1.37 ± 0.19 16.4 ± 7.3

P value 0.96a 0.68b 0.35b  < 0.001b  < 0.001b  < 0.001
Cohort III HC (n = 138) 67/71 58.9 ± 10.5 13.1 ± 3.1 29.1 ± 1.2 1.16 ± 0.07 /

SCD (n = 76) 12/64 66.1 ± 5.1 12.9 ± 2.8 28.9 ± 0.9 1.15 ± 0.08 /
MCI (n = 41) 20/21 66.5 ± 7.4 12.6 ± 3.6 24.0 ± 5.4 1.28 ± 0.14 /
AD (n = 60) 23/37 61.7 ± 10.3 10.1 ± 2.3 19.3 ± 7.2 / /
P value  < 0.001a  < 0.001d  < 0.001d  < 0.001d  < 0.001 /
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the prognostic index resulting from the RPM model (RPM 
model, P < 0.001; SUVR model, P = 0.006).

Validation of crucial features

As shown in Fig. 3, of 11 conserved radiomic features, five 
showed significant correlations with the MMSE scores 
in the AD continuum (SCD, MCI, and AD) of cohort III 
(P < 0.05), including GLV of left hippocampus, LGZE of 
left median cingulate, ZP of left hippocampus, correlation 
of right precuneus, and energy of left cuneus. As a result, 
ZP of left hippocampus had strongest positive relationship 
(r = 0.59, 95% CI: 0.48 ~ 0.68; P < 0.001) while the energy 
of left cuneus had strongest negative relationship (r =  − 0.47, 
95% CI: − 0.57 ~  − 0.35; P < 0.001).

We explored differences in these five crucial features 
in the healthy controls and AD continuum in cohort III. 
Figure 4 demonstrates examples of feature distributions 

at different cognitive stages. The results showed that these 
features were significantly different (all P < 0.001, ANOVA 
test). In addition, the results showed that all 5 features were 
significantly different between HC and AD groups (all 
P < 0.001, Dunnett’s correction), but no differences were 
found between SCD and HC groups (all P > 0.05, Dunnett’s 
correction).

Discussion

In this study, we proposed a workflow for radiomics-based 
predictive modelling analysis using FDG PET images. This 
workflow extracted a large number of quantitative features 
from PET images and identified crucial biomarkers. Based 
upon these biomarkers, we built and evaluated Cox regres-
sion models to predict the conversion outcome results of 
MCI patients. Notably, as a multicenter study, we also 

Table 2  Conserved features in the radiomics-based predictive model

Label Feature Feature’s name Gray-level Wavelet 
filter 
weights

Texture matrices Location Anatomical 
classifica-
tion

1 GLV Gray-level variance 32 3/2 Global features Left hippocampus Temporal
2 Correlation Correlation 64 3/2 Gray-level cooccurrence 

matrix
Right precuneus Parietal

3 LGZE Low gray-level zone 
emphasis

32 3/2 Gray-level size zone 
matrix

Left median cingulate Frontal

4 SZHGE Small zone high-gray-level 
emphasis

32 2 Gray-level size zone 
matrix

Right supramarginal gyrus Parietal

5 Busyness Busyness 64 1 Neighborhood gray-tone 
difference matrix

Left parahippocampal 
gyrus

Temporal

6 LZLGE Large zone low gray-level 
emphasis

32 3/2 Gray-level size zone 
matrix

Left median cingulate Frontal

7 ZSV Zone-size variance 32 2 Gray-level size zone 
matrix

Left precuneus Parietal

8 Energy Energy 64 2 Gray-level cooccurrence 
matrix

Right cuneus Parietal

9 Correlation Correlation 64 1 Gray-level cooccurrence 
matrix

Right precuneus Parietal

10 ZP Zone percentage 32 1 Gray-level size zone 
matrix

Left hippocampus Temporal

11 SRLGE Small zone high-gray-level 
emphasis

32 2/3 Gray-level run-length 
matrix

Left superior frontal gyrus Frontal

Table 3  The prediction 
performance of each model

C index, Harrell’s concordance index; AIC, Akaike information criterion

Model Train dataset of cohort I Test dataset of cohort I Cohort II

C index AIC C index AIC C index AIC

Clinical 0.692 ± 0.004 1607.2 0.684 ± 0.006 1622.1 0.632 ± 0.006 1640.1
SUVR 0.788 ± 0.010 1581.3 0.720 ± 0.010 1597.8 0.683 ± 0.009 1615.4
Radiomics 0.838 ± 0.002 1550.2 0.745 ± 0.006 1577.3 0.703 ± 0.002 1598.7
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validated our methodology using independent ADNI data, 
and explored the correlation between optimal biomarkers 
and clinical information from local hospitals. Furthermore, 
the stratification effects of the predictors found in the study 
and the routine SUVR model were compared.

As a result, 34,400 quantitative features were extracted 
in 80 cortical regions for each modality of each subject. In 
this study, three Cox models were constructed based on the 
source of the features, and the performance of the RPM 
model was superior to that of the clinical and SUVR mod-
els. This may be related to the low sensitivity and higher 
subjectivity of the neuropsychological scales and the incom-
plete characteristics of the SUVR quantification [37]. On the 

external test dataset (cohort II) in our study, the performance 
of the RPM model was also better than that of other models. 
These results further demonstrated that the methodology of 
this study is stable and reliable, thereby proving the great 
potential of quantitative features from PET images to predict 
MCI conversion.

In this study, we considered all cortical regions as ROIs 
and extracted quantitative features from them. Surprisingly, 
our study found that most of the selected conserved features 
were in areas consistent with previous studies, such as the hip-
pocampus and parahippocampal gyrus in the temporal cortex, 
the precuneus and supramarginal gyrus in the parietal cortex, 
and the medial and paracingulate gyri in the frontal region. 
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On the one hand, the medial temporal areas, precuneus, and 
cingulate gyrus are all brain regions of early AD-related patho-
logical protein (Aβ and hyperphosphorylated tau) deposition 
[4], and they are also regions with early atrophy, thickness 
reduction, or metabolism reduction [38–40]. On the other 
hand, atrophy or decreased metabolism of these regions is a 
robust biomarker for predicting MCI conversion. Based on the 
conserved texture features extracted from these regions, the 
constructed model had a better prediction efficiency than the 
SUVR model or clinical model. In addition, our study evalu-
ated the changes in these crucial image markers at different 
cognitive stages in cross sections. Most features were signifi-
cantly different among the HC, MCI, and AD groups. Con-
ceptually, the GLV measures the variance of gray-level values 
in the zones with a greater value, indicating larger differences 
between the gray-level values and more heterogeneity of image 
texture [41]. From our perspective, these features may contain 
unique information about changes at the microscopic level that 
can occur before changes at the macroscopic level, which is in 
consistent with the ideas of previous studies [26]. In conclu-
sion, our study confirmed that metabolic features from AD 
pathologically susceptible regions were more effective at pre-
dicting MCI conversion, and the metabolic abnormalities in 
these areas could be better represented by high dimensional 
radiomic features. Moreover, the results also provided strong 
evidence for using radiomic features to track the progress of 
high-risk individuals, which is important for clinical purposes.

Further correlation analyses suggested that the levels of fea-
tures including GLV, LGZE, and ZP, were significantly and 
positively correlated with the MMSE scores, and other features 
including the correlation and energy showed a negative cor-
relation. The results were consistent with their performance 
on the Alzheimer’s continuum, specifically, the expression of 
positive (negative) correlation features in dementia subjects 
was significantly reduced (increased), suggesting their predic-
tive roles in cognition [26].

We draw attention to some limitations of this study. First, 
the limited medical center was a barrier to the reproducibility 
of our RPM model. Further studies should assess its potential 
within larger and more heterogeneous external test groups. 
Second, this study lacked in-depth evaluation of the pathologi-
cal mechanism, such as the pathological basis of crucial imag-
ing markers, which could be further explored by combining 
genetic information and tau pathology in subsequent studies. 
Third, due to the lack of longitudinal data, the longitudinal 
changes in crucial bioimaging markers could not be explored.

Conclusions

In this study, we designed an approach for radiomics-
based predictive modelling analysis on PET images. Our 
results demonstrated that the combination of radiomic 

features extracted in the whole brain from PET images 
can more accurately predict MCI conversion, has good 
stability and reliability, and can be used for disease strati-
fication management. Moreover, the results also provided 
strong evidence for using radiomic features to predict the 
risk in MCI patients to convert to AD, which is impor-
tant for clinical purposes. These preliminary tests dem-
onstrated the potential of the RPM method as a clinical 
auxiliary tool to help MCI conversion prediction.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00259- 022- 05687-y.
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