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Abstract

Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of 

Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). 

However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, 

where the sparse model is learned using data from a single time-point. Actually, multiple time-

points of data are often available in brain imaging applications, which can be used in some 

longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in 
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this paper we propose a novel temporally-constrained group sparse learning method aiming for 

longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear 

regression model by using the imaging data from multiple time-points, where a group 
regularization term is first employed to group the weights for the same brain region across 

different time-points together. Furthermore, to reflect the smooth changes between data derived 

from adjacent time-points, we incorporate two smoothness regularization terms into the objective 

function, i.e., one fused smoothness term which requires that the differences between two 

successive weight vectors from adjacent time-points should be small, and another output 
smoothness term which requires the differences between outputs of two successive models from 

adjacent time-points should also be small. We develop an efficient optimization algorithm to solve 

the proposed objective function. Experimental results on ADNI database demonstrate that, 

compared with conventional sparse learning-based methods, our proposed method can achieve 

improved regression performance and also help in discovering disease-related biomarkers.

Index Terms

Sparse learning; longitudinal data analysis; temporal smoothness; group sparsity; Alzheimer’s 
Disease (AD); Mild Cognitive Impairment (MCI)

I. Introduction

Alzheimer’s disease (AD) is the most common form of dementia, which leads to progressive 

loss of memory and cognition function [1]. As a prodromal stage of AD, mild cognitive 

impairment (MCI) tends to progress to probable AD at a rate of approximately 10% to 15% 

per year. Thus, early and accurate diagnosis of AD/MCI is of vital importance for early 

treatment and possible delay of disease. At present, many pattern classification and 

regression methods have been proposed for AD or MCI diagnosis and prognosis by using 

biomarkers from different modalities, e.g., structural brain atrophies measured by magnetic 

resonance imaging (MRI) [2–5], metabolic brain alterations measured by 

fluorodeoxyglucose positron emission tomography (FDG-PET) [6, 7], and pathological 

amyloid depositions measured through cerebrospinal fluid (CSF) [3, 8–10], etc.

Recently, sparse learning techniques have attracted increasing attention due to their excellent 

performances in a series of neuroimaging applications on different modalities. For example, 

in a recent study [11], a voxel-based sparse classifier based on a L1-norm regularized linear 

regression model, also known as the least absolute shrinkage and selection operator 

(LASSO) [12], was applied for classification of AD and MCI using MRI data, showing 

better performance than support vector machine (SVM) which is one of the state-of-the-art 

methods in brain imaging classification. In the literature, several other advanced sparse 

learning models (i.e., LASSO variants) have also been developed in neuroimaging 

applications. For example, researchers in [13] proposed to use elastic net [14] to identify 

both neuroimaging and proteomic biomarkers for AD and MCI based on MRI and proteomic 

data, and researchers in [15] proposed a generalized sparse regularization term with domain-

specific knowledge for functional MRI (fMRI) based brain decoding. Recently, group 

LASSO [16] with a L2,1-norm regularization term was used for jointly learning multiple 

Jie et al. Page 2

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tasks including both classification tasks (e.g., AD/MCI vs. Normal Controls (NC)) and 

regression tasks (e.g., estimation of clinical cognitive scores) with MRI data in [17] and 

multimodal data (i.e., MRI, FDG-PET, and CSF) in [18], respectively. It is worth noting that 

both above-mentioned methods assume that multiple regression/classification variables are 

inherently related and determined by the same underlying AD pathology (i.e., the diseased 

brain regions). With such assumption, both regression tasks and classification tasks can be 

solved jointly.

Most existing sparse learning-based studies focus on using cross-sectional analysis methods, 

where only the data from a single time-point is used for model construction. However, 

multiple time-points of data are often available in some brain imaging applications, which 

can be used in longitudinal analysis to uncover the disease progression patterns. According 

to the number of time-points in the input and output of learning models, we can categorize 

the existing sparse models into four types: 1) Single-time-point Input and Single-time-point 

Output (SISO), 2) Single-time-point Input and Multi-time-points Output (SIMO), 3) Multi-

time-points Input and Single-time-point Output (MISO), and 4) Multi-time-points Input and 

Multi-time-points Output (MIMO). In Fig. 1, we give an illustration for all these four 

learning problems, with more details given in next section.

In this paper, we address the above problems (i.e., SIMO, MISO and MIMO) by using 

sparse learning-based methods, where longitudinal data in either output or input (or both) 

can be employed. For that purpose, we develop a novel temporally-constrained group 

LASSO method, namely tgLASSO, where both the group regularizer and the temporal 

smoothness regularizer are incorporated into the objective function. Specifically, as in group 

LASSO (gLASSO), we first learn a sparse linear regression model by using data from each 

time-point, and further utilize a group regularizer to group the weights corresponding to the 

same brain region across different time-points together. In addition, to reflect the smooth 

changes between data from adjacent time-points, we also develop two smoothness 

regularizers: 1) a fused smoothness term (originated from fused LASSO [19, 20]), which 

requires the differences between two successive weight vectors from adjacent time-points to 

be small; 2) an output smoothness term, which requires that the differences between outputs 

of two successive models from adjacent time-points to be small. Furthermore, we develop an 

efficient optimization algorithm for solving the proposed problem. It is worth noting that, in 

order to capture temporal changing patterns of biomarkers in disease progression [21, 22], 

some researchers recently have explored to model disease progression via fused LASSO 

method [23]. However, different from their methods, our method incorporates a new 

smoothness regularizer (i.e., output smoothness term) into the objective function to capture 

the smoothness of outputs of two successive prediction models from adjacent time-points, 

which is one of our major contributions and was not investigated before [15, 23].

To validate the efficacy of our proposed method, we first perform a set of experiments 

(corresponding to the above MIMO, MISO and SIMO learning problems) on estimating 

clinical scores from MRI data on 445 subjects (including 91 AD, 202 MCI and 152 NC) 

from the Alzheime’s Disease Neuroimaging Initiative (ADNI) database. Here, each subject 

has MRI data and the corresponding clinical scores, including Mini Mental State 

Examination (MMSE) and Alzheimer’s Disease Assessment Scale - Cognitive Subscale 
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(ADAS-Cog), at 4 different time-points (i.e., baseline, 6-month, 12-month and 24-month). 

Then, we perform experiments on predicting MCI conversion from baseline MRI data using 

the biomarkers discovered in the first set of experiments. Our hypothesis is that, using 

longitudinal data, the proposed temporally-constrained group sparse learning method would 

perform better in discovering AD-related biomarkers and thus would achieve better 

performances in subsequent regression and classification tasks than the conventional 

methods.

II. Method

The data used in the preparation of this paper were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) database (www.adni-info.org). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies, and non-profit organizations, as a $60 million, 5-year public-

private partnership. The primary goal of ADNI has been to test whether the serial MRI, PET, 

other biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of MCI and early AD. Determination of sensitive and specific 

markers of very early AD progression is intended to aid researchers and clinicians to 

develop new treatments and monitor their effectiveness, as well as lessen the time and cost 

of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center 

and University of California–San Francisco. ADNI is the result of efforts of many 

coinvestigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal 

of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research, 

approximately 200 cognitively normal older individuals to be followed for 3 years, 400 

people with MCI to be followed for 3 years and 200 people with early AD to be followed for 

2 years. For up-to-date information, see www.adni-info.org.

A. Subjects

In the current study, we use all 445 ADNI subjects (including 91 AD, 202 MCI, and 152 

NC) with all corresponding MRI data as well as two cognitive scores (MMSE and ADAS-

Cog) at 4 different time-points (i.e., baseline, 6-month, 12-month and 24-month). In 

particular, for the MCI cohort, it contains 104 MCI converters (MCI-C) and 98 MCI non-

converters (MCI-NC). In Table 1, we list the demographic characteristics of all studied 

subjects.

B. MRI Data Acquisition

In our previous works, we have described in detail on acquiring MRI data from ADNI [18, 

24]. In short, structural MR scans were acquired from 1.5T scanners. Raw Digital Imaging 

and Communications in Medicine (DICOM) MRI scans were downloaded from the public 

ADNI site (adni.loni.usc.edu) [22], reviewed for quality, and automatically corrected for 

spatial distortion caused by gradient nonlinearity and B1 field inhomogeneity.
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C. Image Analysis

In our experiments, we follow our previous works [18, 24] to perform image pre-processing 

for all MR images. Specifically, anterior commissure (AC) - posterior commissure (PC) 

correction is first performed on all images using MIPAV software (http://mipav.cit.nih.gov/

index.php), followed by the N3 algorithm [25] which is used to correct the intensity 

inhomogeneity. Then, we perform skull-stripping on structural MR images, using a learning 

based method proposed in [26] that includes both brain surface extractor (BSE) [27] and 

brain extraction tool (BET) [28]. Next, the skull stripping results were further manually 

reviewed to ensure clean skull and dura removal. After the removal of cerebellum, the FSL 

package [29] is used to segment structural MR images into three different tissues: grey 

matter (GM), white matter (WM), and cerebrospinal fluid (CSF). Afterwards, a fully 

automatic 4-dimensional atlas warping method called 4D HAMMER [30] is used to register 

all different time-point images of each subject to a template with 93 manually-labeled 

Regions of Interest (ROI) [31]. After registration, we can label all images based on the 93 

labeled ROIs in the template. For each of the 93 ROIs in the labeled MR image, we compute 

the total GM volume of that region and use it as feature. In this study, we only use GM for 

feature extraction, because GM is the most affected by AD and also widely-used in the 

literature [11,18, 24, [32, 33]. Note that if there is no any GM in a specific region, the 

feature value for this region will be 0.

D. Temporally-constrained Group Sparse Learning (tgLASSO)

1) Four Different Learning Problems—Since AD (and its prodromal form, MCI) is a 

progressive neurodegenerative disease, we can obtain a series of temporal changes reflected 

in MRI data and clinical scores (e.g., MMSE and ADAS-Cog for AD) from studied subjects. 

In this work, we focus on estimating clinical scores by using MRI data. According to the 

number of time-points in both MRI data (input) and clinical scores (output), there are four 

different learning problems as shown in Fig. 1.

Specifically, as shown in Fig. 1(a), in the first learning problem (i.e., SISO), we want to 

estimate the clinical scores at a certain time-point, e.g., time-point 1 (baseline), by using 

imaging data from single time-point (e.g., baseline). Because both input and output are 

derived from a particular single time-point, the SISO problem contains no longitudinal 

information, and thus can be easily solved by the existing sparse learning methods (e.g., 

LASSO [12]). In the second learning problem, i.e., SIMO shown in Fig. 1(b), the clinical 

scores at each time-point (ranging from 1 to T) can be estimated by using imaging data from 

single time-point (e.g., baseline). Similarly, in the third learning problem, i.e., MISO shown 

in Fig. 1(c), we aim to estimate clinical scores at time-point T, by using imaging data from 

all time-points (from 1 to T). Finally, in the fourth learning problem, i.e., MIMO shown in 

Fig. 1(d), we want to estimate clinical scores at each time-point j (j = 1, …, T), by using 

imaging data from its corresponding time-point j. It is worth noting that MIMO will 

degenerate to be SIMO if we set the input (imaging data) xj = x1 (j = 1, …, T). Similarly, 

MIMO will degenerate to be MISO if we set the output (clinical score) zj = z1 (for j = 1, …, 

T). In the following, we will develop a new temporally-constrained group sparse learning 

(tgLASSO) method for solving the MIMO (as well as MISO and SIMO) problems.
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2) Objective Function—Assume that we have N training subjects, and each subject has 

imaging data derived from T different time-points, represented as {xi1, …, xij, …, xiT} 

where xij ∈ ℜ1×D is a D-dimensional row vector. Denote Xj = [x1j; …; xij; …; xNj] (∈ 
ℜN×D) and yj (∈ ℜN) as the training data matrix (input) and the corresponding clinical 

scores at the j-th time-point, respectively. We use the linear model to estimate the clinical 

score from the imaging data x at the j-th time-point as hj (x) = xwj, where the feature weight 

vector wj ∈ ℜD. Let W = [w1, …, wj, …, wT] (∈ ℜD×T) denote the weight vector matrix for 

all T learning tasks, with each column vector corresponding to one specific task. The 

objective function of our temporally-constrained group LASSO (tgLASSO) can be defined 

as follows:

(1)

where Rg (W) and Rs (W) are the group regularization term and the smoothness 
regularization term, respectively. Specifically, the group regularization term is defined as 

below:

(2)

Here, wd is the d-th row vector of W. It is worth noting that the use of L2-norm on row 

vectors encourages the weights corresponding to the d-th feature across multiple time-points 

to be grouped together, and the further use of L1-norm tends to jointly select features based 

on the strength of T time-points. The regularization parameter λ1 controls the group sparsity 

of the linear models.

In addition, the smoothness regularization term is defined as follows:

(3)

where the first term in Eq. (3) is called the fused smoothness term which originates from 

fused LASSO [19, 20], and it constrains the differences between two successive weight 

vectors from adjacent time-points to be small. Due to the use of L1-norm in the fused 

smoothness term that encourages the sparsity on difference of weight vectors, there will be a 

lot of zero components in the weight difference vectors. In other words, a lot of components 

from adjacent weight vectors will be identical because of using the fused smoothness 

regularization. In our study, we will select those features with non-zero weights for 

subsequent regression or classification tasks. The second term in Eq. (3) is called the output 
smoothness term that requires the differences between outputs of two successive models 

from adjacent time-points to be small as well. The regularization parameters λ2 and λ3 

balance the relative contributions of the two terms and also control the smoothness of the 

linear models. It is easy to know that when both λ2 and λ3 are zero, our method will 
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degenerate to group LASSO [16]. In the next section, we will develop an efficient 

optimization algorithm to solve the objective function defined in Eq. (1).

3) Efficient Iterative Optimization Algorithm—It is worth noting that the above 

defined objective function is the first time to simultaneously include both the group and the 

(fused plus output) smoothness regularizations, which has not been studied before. In the 

Appendix, we have developed an efficient algorithm to solve the objective function. Here, 

the key idea is to separate the objective function into the smooth term and the non-smooth 

term and then use the iterative projected gradient descent approach [34], which combines the 

gradient descent and proximal mapping to update the iterations for final solution. For more 

details, please refer to the Appendix.

E. Validation

In our experiments, each of the 445 subjects has the corresponding MRI data and clinical 

scores (including MMSE and ADAS-Cog) at 4 different time-points, i.e., baseline, 6-month 

(M06), 12-month (M12), and 24-month (M24). To evaluate the efficacy of our proposed 

tgLASSO method, we compare our method with existing popular sparse learning methods, 

including LASSO and group LASSO (gLASSO). In addition, we perform two sets of 

experiments on longitudinal data from ADNI database, i.e., estimating clinical scores and 

predicting MCI conversion.

In the first set of experiments, we estimate the clinical scores (i.e., MMSE and ADAS-Cog) 

from MRI data in three different problem settings, i.e., MIMO, MISO and SIMO, which 

involve the use of different types of longitudinal information as shown in Fig. 1. To evaluate 

the regression performance of our proposed method, we use a 10-fold cross-validation 

strategy by computing the Pearson’s correlation coefficient between the predicted and the 

actual clinical scores, and also computing the root mean square error (RMSE) between the 

predicted and the actual clinical scores. Specifically, the whole set of samples are first 

partitioned into 10 subsets (each subset with a roughly equal size). Then, the samples within 

one subset are selected as the testing data, and samples in the other 9 subsets are combined 

as the training data. This process is repeated for 10 times independently. In the experiment, 

we compute both the average value of the Pearson’s correlation coefficients and the average 

value of the RMSEs in all 10-fold cross-validation as the final results.

In the second set of experiments, we predict the MCI conversion from baseline MRI data 

using the biomarkers discovered by tgLASSO under the MIMO problem setting. 

Specifically, we first perform feature selection by using our proposed tgLASSO method on 

longitudinal training data (with MRI data and corresponding clinical scores of MMSE and 

ADAS-Cog at 4 time-points, i.e., baseline, M06, M12 and M24), in order to select the most 

discriminative brain regions. Then, a support vector machine (SVM) classifier is constructed 

based on the baseline training data (with MRI data and corresponding class labels at baseline 

time-point) with the selected brain regions for the prediction of MCI. Similar to the first set 

of experiments, we also adopt a 10-fold cross-validation strategy to evaluate the 

classification performance by three statistical measures, including the classification accuracy 

(i.e., the proportion of MCI subjects correctly classified), the sensitivity (i.e., the proportion 
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of MCI converters correctly classified), and the specificity (i.e., the proportion of MCI non-

converters correctly classified). Besides, we also calculate the area under receiver operating 

characteristic (ROC) curve (AUC) as performance measure.

In our experiments, for each extracted feature value, we perform the following feature 

normalization, i.e., subtracting the mean and then dividing the standard deviation (of all 

training subjects). For all respective methods, another round of cross-validation on the 

training data is used for determining the values for parameters (e.g., λ1, λ2 and λ3). 

Specifically, we, respectively, vary the values of λ1, λ2 and λ3 within the range of {0.25 0.2 

0.15 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01} and compute the prediction 

performance via the inner 10-fold cross-validation on the training subjects. The parameter 

values with the best performance (on the inner 10-fold cross-validation) will be used for 

prediction of the unknown subjects (i.e., testing subjects in each (outer) cross validation). 

The linear SVM is implemented using LIBSVM toolbox with the default parameter value 

(i.e., C=1) [35]. It is worth noting that the cross-validation on training subjects is only used 

to determine the optimal parameter values.

III. Results

A. Estimating Clinical Scores

In this group of experiments, we first estimate two regression variables (i.e., MMSE and 

ADAS-Cog) in three learning problems (i.e., MIMO, MISO and SIMO) at four time-points, 

respectively. Before showing the estimation results, we first plot the average longitudinal 

changes of clinical scores from baseline to M24 in different kinds of subjects (i.e., AD, 

MCI-C, MCI-NC and NC) in Fig. 2. Fig. 3 and Fig. 4, respectively, show the comparison of 

correlation coefficients and RMSEs achieved by LASSO, gLASSO and tgLASSO in 

estimating the clinical scores of MMSE and ADAS-Cog under different longitudinal 

analysis settings (i.e., MIMO, MISO and SIMO). In addition, for better comparison, Fig. 3 

and Fig. 4 also give the estimation results of the proposed tgLASSO method with λ3 = 0.

It can be seen from Fig. 2 that, as disease progresses, the cognitive performance of the AD 

and MCI-C subjects decline gradually as reflected by the decreased MMSE and increased 

ADAS-Cog scores, while the cognitive performance of the MCI-NC and NC subjects 

declines much slower than those of the AD and MCI-C subjects.

As can be seen from both Fig. 3 and Fig. 4, our proposed tgLASSO method consistently 

outperforms other methods in estimating clinical scores. Specifically, tgLASSO achieves the 

average (i.e., across four time-points) correlation coefficients of 0.613, 0.657 and 0.594 for 

estimating MMSE scores in the MIMO, MISO and SIMO learning problems, respectively, 

while the best average correlation coefficients of the competing methods are 0.607, 0.647 

and 0.589, respectively. Similarly, for estimating ADAS-Cog scores, tgLASSO achieves the 

average correlation coefficients of 0.639, 0.676 and 0.623 in the three learning problems, 

while the best average correlation coefficients of the competing methods are 0.635, 0.665 

and 0.622, respectively. Also, tgLASSO achieves the average (i.e., across four time-points) 

RMSEs of 2.988, 2.845 and 3.022 for estimating MMSE scores in the MIMO, MISO and 

SIMO learning problems, respectively, while the best average RMSEs of the competing 
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methods are 3.011, 2.867 and 3.032, respectively. Similarly, for estimating ADAS-Cog 

scores, tgLASSO achieves the average RMSEs of 6.080, 5.853 and 6.181 in the three 

learning problems, while the best average RMSEs of the competing methods are 6.107, 

5.925 and 6.179, respectively. Moreover, we perform, respectively, the paired t-test between 

correlation coefficients of the proposed tgLASSO method and the correlation coefficients of 

the competing methods (i.e., gLASSO and LASSO), and between RMSEs of the proposed 

tgLASSO method and RMSEs of the competing methods (i.e., gLASSO and LASSO). The 

results in both tests show that the proposed tgLASSO method is significantly better than 

gLASSO and LASSO methods in three learning problems (i.e., with all p-values less than 

0.05). Also, we perform the paired t-test over squared residuals between the proposed 

tgLASSO method and each competing method, and show results in Table 2. From Table 2, 

we can see that most of p-values in three learning problems are also less than 0.05. These 

results validate the efficacy of our proposed method in jointly estimating the clinical scores 

based on longitudinal analysis. Besides, both Fig. 3 and Fig. 4 also indicate that estimating 

later time-point scores often achieves better performance than estimating earlier time-point 

scores. This may be because the relationship between imaging features and clinical scores 

becomes much stronger with progress of disease or brain aging, e.g., atrophy in the brain is 

more obvious in advanced disease and thus the related features are more distinctive and 

correlated to the clinical scores. In addition, from Fig. 3 and Fig. 4, we can further observe 

that the prediction results of tgLASSO with λ3 = 0 are worse than tgLASSO, while better 

than any other competing methods. These further show the advantage of using two 

smoothness items (i.e., fused smoothness and output smoothness). Besides, the prediction 

results of MISO learning model are usually superior to those of MIMO learning model in the 

first three time-points, which indicates that the clinical scores at last time-point (i.e., M24) 

may help induce more important features (i.e., brain atrophy regions) for prediction. It is 

worth noting that MIMO and MISO are the two different types of learning model, and 

should be used for different longitudinal analysis settings, respectively. Specifically, MIMO 

is a multi-time-points input and multi-time-points output learning model, which can be used 

to estimate clinical scores at multiple time-points by using imaging data from the same time-

point. On the other hand, MISO is a multi-time-points input and single-time-point output 

learning model, which can be used to predict clinical score at the last time-point by using 

imaging data from all previous time-points.

Fig. 5 shows feature weight maps of three different methods in a certain cross-validation 

case when estimating MMSE scores for MIMO learning problem. In addition, both Fig. S1 

and Fig. S2 in Supplementary Material also show the corresponding feature weight maps of 

different methods for the MISO and SIMO learning problems, respectively. Here, it is worth 

noting that both gLASSO and tgLASSO jointly learn weight vectors for the four time-

points, while LASSO learns each weight vector independently for each time-point.

As can be seen from Fig. 5 and Figs. S1–S2 in Supplementary Material, due to the use of 

group regularization, gLASSO and tgLASSO obtain more grouped weights across different 

time-points than LASSO. Furthermore, due to the use of smoothness regularization, 

tgLASSO achieves more smooth weights across different time-points than other two 

methods. These properties are helpful to discover those intrinsic biomarkers relevant to brain 

diseases. For example, as shown in Fig. 5, both left and right hippocampal regions, the well-
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known AD-relevant biomarkers, are detected by tgLASSO, while only the left hippocampal 

region is detected by other two methods.

B. Predicting MCI Conversion

In this set of experiments, we predict the future conversion of MCI patients based on 

baseline data, using the biomarkers discovered in the first set of experiments corresponding 

to MIMO learning problem. Here, for both joint learning methods (i.e., gLASSO and 

tgLASSO), we first learn the corresponding gLASSO and tgLASSO models using 

longitudinal training MRI data (with longitudinal MMSE/ADAS-Cog scores) at four time-

points to select the important brain regions (with respect to MMSE/ADAS-Cog scores), and 

then train SVM classifiers on the baseline training MRI data with above-selected brain 

regions, respectively. On the other hand, since LASSO cannot deal with longitudinal data, 

we learn a LASSO model using only the baseline training MRI data (with baseline MMSE/

ADAS-Cog scores) to select the important brain regions, and then train a SVM classifier on 

the baseline training MRI data with above-selected brain regions. Table 3 gives the results of 

different methods in predicting the MCI conversion.

As can be seen from Table 3, our proposed tgLASSO method consistently outperforms the 

other two methods in all performance measures. Specifically, our proposed method achieves 

a classification accuracy of 75.7%, a sensitivity of 72.9%, and a specificity of 82.0% when 

learning the tgLASSO model with guidance from MMSE clinical score, while achieves a 

classification accuracy of 74.7%, a sensitivity of 73.9%, and a specificity of 76.1% when 

learning the tgLASSO model with guidance from ADAS-Cog clinical score. These results 

are consistently better than other methods on each performance measure. In addition, Table 

3 also indicates that, by using longitudinal data, the gLASSO method can obtain better 

performance than the LASSO method, but it is still inferior to our proposed method 

(tgLASSO).

C. The Most Important Brain Regions

In this subsection, we investigate the top selected brain regions by our proposed tgLASSO 

method in the MIMO learning problem. Since the selected brain regions are different in each 

10-fold cross-validation, we chose the brain regions with top occurrence frequency in all 

cross-validation as the most important brain regions, when learning models using the clinical 

scores of MMSE and ADAS-Cog, respectively. Table 4 lists the 16 most important brain 

regions detected by the proposed tgLASSO method. Also, in Table 4, we give the average of 

each selected ROI’s weights across all folds and time-points, as well as the corresponding 

standard deviation. The result shows that the most important regions obtained by our method 

include hippocampal, amygdala, temporal pole, uncus and middle temporal regions, which 

are consistent with previous studies. In addition, from Table 4, we can see the obtained 

standard deviations are very small, indicating that the weight maps of each selected ROI 

across different time-points are very smooth. This furthermore shows the advantage of using 

our proposed smoothness regularizations. For visual inspection, in Fig. 6, we also highlight 

those selected brain regions listed in Table 4.

Jie et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. Discussion

In this paper we have proposed a novel temporally-constrained group sparse learning 

method for longitudinal analysis with multiple time-points of data. Our proposed method has 

been validated on 445 subjects (including 91 AD, 202 MCI and 152 NC) with cognitive 

scores at 4 different time-points (i.e., baseline, 6-month, 12-month and 24-month) through 

two sets of experiments, i.e., 1) estimating MMSE and ADAS-Cog scores at each time point 

in three learning problems (including SIMO, MISO and MIMO), and 2) predicting future 

conversion of MCI subjects using baseline data. The experimental results show that our 

proposed method can not only significantly improve regression performance but also help in 

discovering disease-related biomarkers useful for MCI conversion prediction, compared with 

the conventional sparse learning methods.

A. Significance of Results

Recently, sparse learning methods have been widely used for diagnosis of AD/MCI. 

However, multiple time-points of data, which are often available and may potentially further 

improve performance, are not fully utilized in existing methods. Our study demonstrated 

that, by embedding the longitudinal information of data, our proposed method can achieve 

better performance in estimating the clinical scores as well as predicting the MCI 

conversion. It is worth noting that, some recent works, e.g., methods in [36] and [23], also 

adopted the sparse feature learning method for analyzing longitudinal data. Different from 

both above-mentioned methods, we propose to use both the group and the (fused + output) 

smoothness regularizations in sparse learning to better reflect the longitudinal change 

patterns of the brain with the progression of disease. The experimental results also show the 

advantage of our proposed method compared with existing sparse learning methods.

The brain regions selected by our proposed method are known to be related to the AD by 

many studies using group comparison methods, which include hippocampal [37–41], 

amygdala [38], temporal pole [42], uncus [43] and middle temporal regions [38, 39]. For 

example, it has been reported that there exists a strong correlation between hippocampal 

volume and dementia severity [44].

B. Predicting Clinical Scores and MCI Conversion

A lot of works have studied the relationship between cognitive scores and imaging markers 

with neuroimaging data [45–47]. A variety of high-dimensional regression methods have 

been used for estimating or predicting clinical scores for AD/MCI subjects, based on the 

neuroimaging data. For example, [48] used a principal component analysis (PCA) based 

model to predict the 12-month change in MMSE score based on the baseline MRI data of 49 

MCI subjects. In [49], researchers used a joint Bayesian classifier by sharing the same 

hyper-parameters for model parameters to estimate the MMSE and ADAS-Cog scores from 

the ADNI baseline MRI data of 264 subjects. Recently, in [50, 51], researchers used the 

sparse learning methods to predict scores of MMSE and ADAS-cog based on MRI data from 

ADNI dataset. Table 5 summarizes the results of these methods. As can be seen from Table 

5, our proposed method achieves comparable results in estimating clinical scores of MMSE 

and ADAS-Cog, compared with those recently published results in AD/MCI studies.
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In addition, MCI is a prodromal stage of AD, with high likelihood of conversion to AD. 

There was a strong association between the structural pattern of atrophy identified in AD 

and the pattern of atrophy found in MCI converters. It has been proposed in [52] that there is 

a long preclinical phase of AD with no symptoms of cognitive dysfunction but with an 

ongoing AD pathology, and recent study [53] has suggested that the structural changes 

detected by MRI may be evident even ten years before clinical diagnosis of AD. Therefore, a 

lot of recent studies in early diagnosis of AD have been focused on predicting the conversion 

of MCI to AD, i.e., identifying the MCI converters (MCI-C) from MCI non-converters 

(MCI-NC) [18, 54–60]. For example, in a recent work [54], an accuracy between 67.4% and 

74.7% was reported on 21 MCI-C and 98 MCI-NC subjects using MRI data. More recently, 

in [60], an accuracy of 0.68 was reported on 97 MCI-C and 93 MCI-NC subjects based on 

MRI data in the ADNI dataset. In contrast, our method achieves the accuracy between 

74.7% and 75.7% on 104 MCI-C and 98 MCI-NC subjects from ADNI, which are 

comparable to the best results reported in those recent studies.

C. Effect of Parameters

In the objective function of our proposed tgLASSO method, there are two regularization 

terms, i.e., the group regularization term and smoothness regularization term, where the 

second one consists of two parts including the fused smoothness term and the output 
smoothness term. The regularization parameters λ1, λ2 and λ3 balance the relative 

contribution of these regularization terms. Here, the larger λ1 value means few features 

preserved for estimating the clinical scores due to the imposed ‘group sparsity’ constraint 

via the L2,1-norm. The parameters λ2 λ3and control the contributions of two smooth 

regularization items.

To investigate the effect of two smoothness regularization terms on the performance of our 

proposed method, we first fix the value of (i.e., setting λ1 to 0.1 and 0.07 for estimating 

regression scores of MMSE and ADAS-Cog, respectively), and test the values of λ2 and λ3 

from a set of [0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.15 0.20 0.25]. Fig. 7 

gives the regression performance of MMSE and ADAS-Cog scores using different values of 

λ2 and λ3 in our proposed method for the MIMO learning problem. It is worth noting that, 

for each plot, the bottom row and the right column denote the results when using only the 

output smoothness regularization (λ2 = 0) or only the fused smoothness regularization (λ3 = 

0), respectively. As we can see from Fig. 7, the larger values (i.e., better estimation 

performance) mainly focus on the inner intervals of the square, which indicates the 

effectiveness of combining two smoothness regularization terms for predicting clinical 

scores. This also implies that each term is indispensable for achieving good performance.

Furthermore, we test the performance of our proposed method with different values of λ1. 

Specifically, we vary the value of λ1 from the range of [0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 

0.08 0.09 0.10 0.15 0.20 0.25], and compute the prediction results of our proposed tgLASSO 

with the optimal λ2 and λ3s obtained by using the inner cross-validation on training data. 

Fig. 8 graphically shows the obtained results for the MIMO learning problem. For 

comparison, we also give the prediction performance of gLASSO method, where only the 

group regularization term is included (i.e., setting both λ2 and λ3 to zero). It is worth noting 
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that, for each plot, the leftmost points denote the results with no feature selection (i.e., using 

all features for estimating clinical scores). As can be seen from Fig. 8, for estimating two 

kinds of clinical scores (i.e., MMSE and ADAS-Cog), our proposed tgLASSO method 

consistently achieves better performance than gLASSO method for all λ1 values. 

Specifically, at each time point, our method yields relatively high correlation coefficients for 

all λ1 values (except for zero), showing its robustness to regularization parameter λ1 and 

also the advantage of including the smoothness regularization terms.

D. Limitations

The current study is limited by the following factors. First, our proposed method performs 

prediction based on longitudinal data and thus requires each subject having the 

corresponding data, i.e., MRI data and corresponding clinical scores, at each time point, 

which limits the size of subjects that can be used for study. For example, there are more than 

400 MCI subjects in the ADNI dataset, while there are only 202 MCI subjects with MRI 

data and corresponding MMSE and ADAS-Cog scores at multiple time-points (including 

baseline, 6-month, 12-month and 24-month). Second, there also exist other modalities of 

data, e.g., PET and CSF. However, since the number of subjects with all modality data 

(including MRI, PET and CSF) is too small for reasonable learning, the current study does 

not consider using multi-modality data. In the future work, we will study how to utilize 

subjects with incomplete multi-modality data (i.e., missing of certain modality data) for 

further performance improvement. Third, selecting important and stabilized features (i.e., 

brain regions) and determining the optimal regularization parameters are the two important 

problems for sparse-based methods. However, some brain regions reported in the literature, 

such as the precuneus and (posterior) cingulate, the entorhinal, perirhinal and 

parahippocampal regions, and the lateral ventricles, were not found by our proposed method. 

In future work, we will explore some techniques, such as performing more cross-validations 

on the training subjects to select most frequently occurring features as stabilized features, 

and also using Bayesian models (instead of the grid-searching approach) to determine the 

optimal parameter values, to address the above problems. Finally, during image pre-

processing, the brain region parcellation is also a very important step for the subsequent 

feature extraction and prediction. Also, previous studies have demonstrated that other 

methods, such as voxel-based methods, still obtained comparable results to region-based 

methods [55]. But this paper does not analyze the impact of different brain parcellation 

atlases on regression performance.

V. Conclusions

In this paper, we propose a new sparse learning method called tgLASSO for longitudinal 

data analysis with multiple time-points of data, which is different from most existing sparse 

learning methods that focus on cross-sectional data analysis such as using only the data from 

single time-point. Our methodological contributions include two parts, i.e., 1) we propose to 

simultaneously use group and (fused + output) smoothness regularizations in sparse learning 

models; and 2) we develop an efficient iterative optimization algorithm for solving the new 

objective function. Experimental results on estimating clinical scores from imaging data at 
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multiple time-points illustrate the advantages of our method over existing sparse methods in 

both regression performance and ability in discovering disease-related imaging biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Illustration of four different learning problems: (a) Single-time-point Input and Single-time-

point Output (SISO), (b) Single-time-point Input and Multi-time-points Output (SIMO), (c) 

Multi-time-points Input and Single-time-point Output (MISO), and (d) Multi-time-points 

Input and Multi-time-points Output (MIMO). Here, each edge represents a model, and the 

nodes xj and zj denote the imaging data (input) and clinical score (output) at the j-th time-

point, respectively.
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Fig. 2. 
Average longitudinal changes of clinical scores in different kinds of subjects: MMSE (up) 

and ADAS-Cog (down).
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Fig. 3. 
Comparison of correlation coefficients of different methods in estimating the MMSE (up) 

and ADAS-Cog (down) scores in three different learning problems, i.e., (a) MIMO learning 

problem, (b) MISO learning problem, and (c) SIMO learning problem.
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Fig. 4. 
Comparison of RMSEs of different methods in estimating the MMSE (up) and ADAS-Cog 

(down) scores in three different learning problems, i.e., (a) MIMO learning problem, (b) 

MISO learning problem, and (c) SIMO learning problem.
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Fig. 5. 
Comparison of the feature weight maps of three different methods in the MIMO learning 

problem: (a) LASSO, (b) gLASSO, and (c) tgLASSO.
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Fig. 6. 
The important brain regions detected by the proposed tgLASSO method when estimating the 

MMSE score (left) and ADAS-Cog score (right).
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Fig. 7. 
Regression performance of MMSE (left) and ADAS-Cog (right) scores under different 

combinations of λ2 and λ3 values.
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Fig. 8. 
Correlation coefficients of proposed method (tgLASSO) and gLASSO method w.r.t. to the 

select ion of λ1 value. Left: estimating the MMSE score; Right : estimating the ADAS-Cog 

score.
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Table 1

Demographic characteristics of the studied population from the ADNI database. The values are denoted as 

mean ± standard deviation.

AD
(n=91)

MCI-C
(n=104)

MCI-NC
(n=98)

NC
(n=152)

Female/Male 38/53 38/66 30/68 76/76

Age 75.4 ± 7.5 75.1 ± 6.8 74.3 ± 7.2 76.1 ± 4.8

Education 15.1 ± 2.9 15.8 ± 3.1 16.2 ± 2.9 16.0 ± 2.9

MMSE (bl) 23.2 ± 2.0 26.7 ± 1.7 27.6 ± 1.7 29.2 ± 0.9

MMSE (M06) 22.3 ± 3.2 25.4 ± 2.7 27.7 ± 2.1 29.1 ± 1.0

MMSE (M12) 21.0 ± 4.3 25.0 ± 2.7 27.8 ± 2.5 29.2 ± 1.1

MMSE (M24) 18.6 ± 6.0 23.1 ± 4.2 27.2 ± 3.2 29.0 ± 1.2

ADAS-Cog (bl) 18.6 ± 5.7 12.9 ± 4.0 9.7 ± 4.2 5.8 ± 2.9

ADAS-Cog (M06) 20.6 ± 6.5 13.6 ± 5.1 9.7 ± 4.1 6.0 ± 3.0

ADAS-Cog (M12) 21.9 ± 8.2 14.4 ± 5.8 9.4 ± 4.9 5.5 ± 2.8

ADAS-Cog (M24) 27.5 ± 11.8 17.6 ± 8.0 10.7 ± 5.7 5.7 ± 3.1

AD = Alzheimer’s Disease; MCI = Mild Cognitive Impairment; MCI-C = MCI converter; MCI-NC = MCI non-converter; NC = Normal Controls; 
MMSE = Mini-Mental State Examination; ADAS-Cog = Alzheimer’s Disease Assessment Scale - Cognitive Subscale.
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Table 4

The most important brain regions detected by the proposed tgLASSO method.

MMSE AVG OF WEIGHTS ±STD

CORPUS CALLOSUM −0.155±1.06E-02

LINGUAL GYRUS RIGHT −0.104±7.48E-05

LATERAL FRONT-ORBITAL GYRUS RIGHT −0.084±9.69E-06

CUNEUS RIGHT −0.067±2.24E-04

PERIRHINAL CORTEX LEFT 0.026±1.30E-06

LATERAL OCCIPITOTEMPORAL GYRUS LEFT 0.026±5.84E-06

CAUDATE NUCLEUS LEFT 0.027±1.61E-02

PRECUNEUS LEFT 0.029±4.54E-05

LATERAL OCCIPITOTEMPORAL GYRUS
RIGHT

0.040±1.14E-05

TEMPORAL POLE LEFT 0.048±1.36E-04

ANGULAR GYRUS RIGHT 0.049±1.30E-03

ANGULAR GYRUS LEFT 0.057±6.68E-05

MIDDLE TEMPORAL GYRUS LEFT 0.094±3.96E-03

HIPPOCAMPAL FORMATION LEFT 0.111±1.13E-03

MIDDLE TEMPORAL GYRUS RIGHT 0.119±9.82E-03

AMYGDALA RIGHT 0.120±2.30E-04

ADAS-COG AVG OF WEIGHTS ±STD

INFERIOR TEMPORAL GYRUS LEFT −0.062±1.44E-03

HIPPOCAMPAL FORMATION RIGHT −0.058±1.19E-03

CORPUS CALLOSUM −0.039±4.46E-04

ANGULAR GYRUS LEFT −0.039±4.04E-04

MIDDLE TEMPORAL GYRUS LEFT −0.032±4.50E-04

PERIRHINAL CORTEX LEFT −0.029±2.82E-04

ANGULAR GYRUS RIGHT −0.024±2.03E-04

AMYGDALA RIGHT −0.023±5.62E-04

AMYGDALA LEFT −0.02±6.79E-04

LINGUAL GYRUS RIGHT −0.019±3.76E-04

PERIRHINAL CORTEX RIGHT −0.019±2.81E-04

HIPPOCAMPAL FORMATION LEFT −0.009±7.40E-04

LATERAL OCCIPITOTEMPORAL GYRUS LEFT −0.009±3.22E-04

CAUDATE NUCLEUS LEFT 0.002±2.83E-04

THALAMUS LEFT 0.024±2.68E-04

MIDDLE TEMPORAL GYRUS RIGHT 0.038±4.03E-03
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Table 5

Comparison with correlation coefficient of the state-of-the-art methods.

Method Subjects MMSE ADAS-cog

(Duchesne et al.,
2009) [48]

20 MCI-C+ 29
MCI-NC

0.31 -

(Fan et al., 2010)
[49]

52 AD+148 MCI+
64 NC

0.57 0.52

(Wan et al., 2014)
[50]

171 AD+222 NC 0.758±0.011 0.767±0.026

(Yan et al., 2015)
[51]

172 AD+349
MCI+197 NC

0.5552±0.0078 0.6438±0.0258

Proposed (MIMO) 91 AD+202
MCI+152 NC

0.613±0.010 0.639±0.008
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