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a b s t r a c t 

Background and Objective: Previous studies have indicated that brain morphological measures change in 

patients with amnestic mild cognitive impairment (aMCI). However, most existing classification methods 

cannot take full advantage of these measures. In this study, we improve traditional multitask learning 

framework by fully considering the relevance among related tasks and supplementary information from 

other unrelated tasks at the same time. 

Methods: We propose a feature level-based group lasso (FL-GL) method in which a feature represents 

the average value of each ROI for each measure. First, we design a correlation matrix in which each row 

represents the relationship among different measures for each ROI. And this matrix is used to guide the 

feature selection based on a group lasso framework. Then, we train specific support vector machine (SVM) 

classifiers with the selected features for each measure. Finally, a weighted voting strategy is applied to 

combine these classifiers for a final prediction of aMCI from normal control (NC). 

Results: We use the leave-one-out cross-validation strategy to verify our method on two datasets, the 

Xuan Wu Hospital dataset and the ADNI dataset. Compared with the traditional method, the results show 

that the classification accuracies can be improved by 6.12 and 4.92% with the FL-GL method on the two 

datasets. 

Conclusions: The results of an ablation study indicated that feature level-based group sparsity term was 

the core of our method. So, considering correlation at the feature level could improve the traditional mul- 

titask learning framework and our FL-GL method obtained better classification performance of patients 

with MCI and NCs. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Alzheimer’s disease (AD) is one of the most common types of 

ementia [1] . Previous studies have found that there will be nearly 

00 million individuals with AD in 2050 worldwide [2] . Thus, con- 

idering that earlier detection might delay the progression of AD, 
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t is important to diagnose the early stage of AD, mild cognitive 

mpairment (MCI). In addition, amnestic MCI (aMCI), a subtype of 

CI, is more likely to progress to AD because of primary memory 

mpairment [ 3 , 4 ]. Therefore, early detection of aMCI is especially 

mportant because timely treatment can effectively delay the de- 

elopment of AD. 

Surface measures have been widely used for the early detec- 

ion of AD such as aMCI detection [5–7] . These measures have 

nique neuropathological and genetic bases and could be repre- 

ented by the volume and geometry of the cerebral cortex [ 8–11 ]. 

hey can be divided into two categories: volumetric and geomet- 

ic measures. Volumetric measures include cortical thickness, sur- 

ace area and gray matter (GM) volume, while geometric measures 

nclude sulcal depth, metric distortion, and average curvature. 

https://doi.org/10.1016/j.cmpb.2021.106286
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Table 1 

Demographic and clinical characteristics of the subjects. 

Xuan Wu Hospital dataset ADNI dataset 

Subjects aMCI ( n = 46) NC ( n = 52) MCI ( n = 69) NC ( n = 53) 

Gender (M/F) 24/22 21/31 32/37 20/33 

Age 65.4 ± 9.5 63.0 ± 8.6 74.5 ± 6.3 75.3 ± 4.9 

Education 10.1 ± 4.4 11.7 ± 4.4 15.6 ± 2.8 15.3 ± 3.5 

MMSE 24.6 ± 4.0 28.5 ± 2.0 27.0 ± 1.6 29.1 ± 1.1 

Age, education, and MMSE are shown as the mean ± SD. MMSE: mini-mental state 

examination. aMCI: amnestic mild cognitive impairment. 
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ompared with NCs, aMCI patients show abnormal changes in 

hese measures [12] , such as thinning of the global cortex, widen- 

ng of the sulcus [13] and a decrease in the average curvature of 

he temporal lobe. Moreover, all these measures have played a cru- 

ial role in aMCI and NC classification [14] . 

Generally, the brain can be partitioned into multiple regions 

f interest (ROIs) and different kinds of volumetric and geomet- 

ic measures are extracted for each ROI. For each measure, a d × N 

ata matrix can be obtained where d is the number of brain ROIs 

nd N is the number of subjects. Previous methods did not take 

dvantage of these measures when training the classifier model 

etween aMCI and NC group. They simply concatenate or average 

hese data matrices, which could introduce redundant information 

nd ignore potential relationships among different measures. Thus, 

ur previous work embed our data into a multitask learning frame- 

ork by treating each measure as a task [15] , which aims at learn-

ng related tasks simultaneously. A group least absolute shrinkage 

nd selection operator (lasso) method is a typical multitask learn- 

ng method that selects a subset of features for all related tasks by 

aking whole rows in model W zeros [16] . This method assumes 

hat all tasks are related to each other, which is not always true in

ractice. Therefore, our previous work used the robust multitask 

eature learning (rMTFL) method, which divides model W into two 

arts: the related tasks feature selection model P and the outlier 

ask detection structure Q [17] . However, there are two shortcom- 

ngs. First, this approach considers relevance at the task level. This 

eans that if two tasks are related, then all the features in these 

asks are related, which may not always be true in practice. Addi- 

ionally, the nonzero columns in structure Q represent the outlier 

ask, and in the feature selection part, the nonzero elements indi- 

ate that the features need to be selected. Thus, the rMTFL method 

elects almost all the features in outlier tasks, and this strategy is 

bviously not reasonable. To solve the above problems, a feature 

evel-based group lasso (FL-GL) method is proposed. First, for each 

eature, we compute a vector that represents the correlation be- 

ween different tasks. To eliminate the impact of other tasks, the 

artial correlation is used instead of the Pearson correlation. Then, 

e connect these vectors to a correlation matrix. Finally, we use 

his matrix to guide us to select features at the feature level. For 

elated tasks, we select the same features across these tasks with 

roup sparsity. Moreover, we also sparse other tasks to capture 

upplementary information. 

In this study, the FL-GL method is used to identify MCI from NC 

ased on multidimensional surface measures. Specifically, we first 

xtract multidimensional surface measures for each subject with 

he FreeSurfer software and treat each measure as a task. Then, the 

L-GL method is used to select features by comprehensively con- 

idering both measure relatedness and supplementary information 

rovided by other unrelated measures at the feature level. Next, for 

ach measure, we train a support vector machine (SVM) classifier 

18] with the selected features and obtain the most suitable fea- 

ure for the corresponding task. Finally, a weighted voting method 

s used to make a final prediction by fusing all the classifiers. We 

dopt this integration strategy since it is very popular and easy to 

mplement [ 19 , 20 ]. To evaluate the validity of the above method,

e conduct experiments on two datasets, and the results show the 

fficacy of our method in improving the diagnosis of AD. Moreover, 

e also perform an ablation study, and the results indicate that the 

eature level-based group sparsity term obviously improves the tra- 

itional multitask learning method. 

In summary, the main contributions of our work are as follows: 

1) we calculate task correlation at the feature level; (2) based on 

he correlation, we present a novel FL-GL method to classify MCI 

nd AD and to obtain better results; and (3) we validate the pro- 

osed method on two datasets to obtain more comprehensive re- 

ults. 
t

2 
. Materials and methods 

To better verify the proposed feature selection method, we use 

he same flowchart proposed in our previous paper [15] it consists 

f three parts: feature extraction, feature selection and ensemble 

lassification. An overview is provided in Fig. 1 . In the following 

ection, we describe each step in detail. 

. Datasets 

.1. Xuan Wu Hospital dataset 

The first dataset in this research is the Xuan Wu Hospital 

ataset, which was approved by the Research Ethics Review Board 

f Xuan Wu Hospital. The inclusive criteria of aMCI were proposed 

y Petersen [21] and the diagnose of aMCI was affirmed by two 

xperienced neurologists [22] . The measures used in this dataset 

ere taken by the FreeSurfer software. Specifically, we first nor- 

alized the MRI data and corrected inhomogeneities. Afterwards, 

he skull was stripped by the watershed algorithm. Next, we seg- 

ented the images and performed deformation procedures. For ex- 

mple, the surface was inflated [23] and registered to a spherical 

tlas [24] , and the cerebral cortex was partitioned into 148 regions 

25] . Finally, the surface measures were computed in these regions. 

This dataset contains 46 aMCI patients (24 males and 22 fe- 

ales) and 52 NCs (20 males and 32 females). The subjects were 

etween the ages of 43 and 82 years and were right-handed. We 

arried out a statistical test, and the results showed that there 

ere no significant differences ( p > 0.05) between the aMCI pa- 

ients and NCs in gender, age, or years of education, while the two 

roups showed significant differences in mini-mental state exami- 

ation (MMSE) scores ( p < 0.01). The statistical p values were an- 

lyzed using t tests for age, education and MMSE and chi-square 

ests for gender. The detailed demographic information and clinical 

haracteristics involved in this research are summarized in Table 1 . 

.2. ADNI dataset 

The second dataset used in this research is the ADNI dataset 

adni.loni.usc.edu). The ADNI dataset was created in 2003, and the 

rimary goal of creating this dataset was to test and verify the 

ossibility of the progression of MCI and early AD with various 

inds of data, other biological markers, and clinical neuropsycho- 

ogical assessments. The measures used in this study are from the 

niversity of California San Francisco (UCSF) team, who used the 

reeSurfer software for cortical reconstruction and volumetric seg- 

entation on the imaging data according to the atlas in [26] . These 

easures are cortical volume, surface area, cortical thickness aver- 

ge and cortical thickness standard deviation, which are abbrevi- 

ted as CV, SA, TA and TS, respectively. 

We only selected the data without any missing values, and the 

elected dataset included 69 MCI patients (32 males and 37 fe- 

ales) and 53 NCs (20 males and 33 females). Then, a statistical 

est was carried out. The results show that there were no signifi- 
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Fig. 1. The flowchart of our study. We first use FreeSurfer software to extract surface measures from each brain image. Then, we use the LOOCV strategy. These different 

feature selection methods are trained on the training set, and the feature selection models are applied on the testing set. Afterwards, for each measure, we train a specific 

SVM classifier. Finally, we use the weighted voting strategy to fuse the results of the above classifiers to make a final prediction. 
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ant differences ( p > 0.05) between MCI patients and NCs in gen- 

er, age, or years of education, but the two groups showed sig- 

ificant differences in MMSE scores ( p < 0.01). The detailed de- 

ographic information and clinical characteristics involved in this 

esearch are summarized in Table 1 . 

.3. Feature extraction 

As shown in the left part of Fig. 1 , we partition the brain into

ultiple ROIs and extract different kinds of volumetric and ge- 

metric measures for each ROI. These measures include cortical 

hickness, surface area, gray matter volume, sulcal depth, metric 

istortion, and average curvature. For each measure, we compute a 

-dimensional feature vector in which a feature represents the av- 

rage value of each ROI, where d is the number of brain ROIs. Thus, 

or each subject, we have a feature matrix X n ∈ R 

K × d , wher e K

epresents the number of measures. Obviously, we can get the data 

atrix X k ∈ R 

d × N of all subjects and all brain ROIs for each mea-

ure, where N is the number of subjects. In this way, each measure 

as a data matrix X k . 

.4. Feature selection 

The features obtained from the two datasets contain consider- 

ble redundant information, so we cannot directly use them for 

lassification. Considering the relationship among these measures, 

n our study, we embed our data into a multitask learning frame- 

ork by treating each measure as a task. In the following sections, 

e first briefly describe previous multitask feature learning meth- 

ds. Then, the FL-GL method is presented. 

.4.1. Previous multitask feature learning method 

In our study, there are K ( K = 6 in the first dataset and K = 4 in

he second dataset) measures, and we treat them as tasks. For the 

 th measure, X k ∈ R 

d × N is denoted as input feature data that has

 subjects, and each subject has a d-dimensional feature vector. 

oreover, for these input data, we denote Y k ∈ R 

N as a label vector.

e also indicate the feature selection model W ∈ R 

d × K . The i th

ow and j th column of W are denoted as w 

i and w j , respectively.

hen, by treating each measure as a task, we can embed our data 

nto traditional multitask feature learning method that is proposed 

s follows [ 27–29 ]: 

in 

W 

1 

2 

K ∑ 

k=1 

∥∥X 

T 
k w k −Y k 

∥∥2 

F 
+ α‖ 

W ‖ 2 , 1 . (1) 

The first term of function (1) is the loss function, which com- 

utes the least square error between the predicted label and the 
3 
rue label. The second term is used to reduce the complexity of 

he model by penalizing the rows of the weight matrix W , where 

 W ‖ 2 , 1 = 

d ∑ 

i=1 

‖ w 

i ‖ 2 is the l 2,1 -norm of W . It can be computed by 

alculating the sum of the l 2 -norms of w 

i [30] , which results in

any rows with all zero elements. Thus, we only select the same 

eatures across all different tasks [30] . 

The above feature selection method assumes that there are no 

nrelated tasks, which may not be reasonable in practice. For this 

urpose, the rMTFL method, which can help us select a set of fea- 

ures across different related tasks and identify unrelated tasks 

imultaneously, is proposed. However, there are two shortcom- 

ngs. First, this approach discusses relevance at the task level. This 

eans that if two tasks are related, then all the features in these 

asks are related. Additionally, the nonzero columns in structure Q 

epresent the outlier tasks, and in feature selection, the nonzero 

lements indicate that the features need to be selected. Therefore, 

his method selects almost all the features in outlier tasks. 

.4.2. Feature level-based group lasso method 

To solve the above problems, the FL-GL method is proposed. 

he key to this method is to find the feature level-based corre- 

ation matrix, and an overview of this part is provided in Fig. 2 .

irst, for each feature, we compute the correlation between each 

air of tasks. To eliminate the impact of other tasks, we use the 

artial correlation instead of the Pearson correlation. Then, we set 

he diagonal elements to 0 and add all rows together. In this way, 

e obtain a row vector, and the i th element represents the rele- 

ance between the i th task and all other tasks at the corresponding 

eature level. Next, we connect all these vectors into a matrix and 

et a threshold for it. Finally, we use this feature level-based cor- 

elation matrix to guide us to select features at the feature level 

ith the help of the Hadamard product. The formulation is as 

ollows: 

in 

W 

K ∑ 

k=1 

∥∥X 

T 
k w k −Y k 

∥∥2 

F 
+ ρ1 ‖ 

A � W ‖ 2 , 1 + ρ2 ‖ 

(I − A) � W ‖ 1 , (2) 

here � is the Hadamard product, which denotes the product 

f the corresponding elements of two matrices. Matrix A is the 

eature-based correlation matrix, and all elements of matrix I are 

ne. 

The first term is the loss function without any changes. The 

econd term is a feature level-based group sparsity term, and the 

hird term penalizes the uncorrelated features. According to the 

revious introduction of matrix A , we can find that for each fea- 

ure, an element equal to one or zero in A indicates a high or 

ow correlation, respectively. Therefore, the second term is used to 
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Fig. 2. The flowchart of the feature-based correlation matrix. First, for each feature (the value of each ROI for each measure), we use the partial correlation to compute the 

correlation between each pair of tasks and obtain a correlation matrix. Then, we set the diagonal element to zero and add all rows together to obtain a row vector. The i th 

element of this vector represents the relevance of the i th task and all other tasks. In this way, we can obtain several vectors, each corresponding to a specific feature. Finally, 

we connect all the vectors into a matrix and set a threshold for it. 

Fig. 3. The difference among the three predictive models. The group lasso method selects features across all different tasks. The rMTFL can select a set of features among 

related tasks and identify unrelated tasks simultaneously. However, this approach discusses relevance at the task level and selects almost all the features in the outlier tasks. 

To overcome these two shortcomings, our method can select shared features from related tasks and capture supplementary information from other tasks at the feature level. 
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elect features across tasks with high correlations. Moreover, I –A 

enotes the low-correlation tasks, and these tasks are also useful 

or classification. Therefore, we use the l 1 -norm to select features. 

bove all, our method selects shared features from related tasks 

nd captures supplementary information from other tasks at the 

eature level. The differences among these three predictive models 

re shown in Fig. 3 . 

.5. Optimization algorithms and convergence analysis 

Although function (2) is convex, it is hard to solve due to the 

ast two nonsmooth terms. Therefore, we use an efficient algorithm 

o solve it and prove convergence. 

Taking the derivative of w i (1 ≤ i ≤ k) and setting it equal to 0,

e obtain: 

 i X 

T w i −X i y i + ρ1 D i w i + ρ2 ̄D i w i = 0 
i 

4 
here D i (1 ≤ i ≤ k) and D̄ i ( 1 ≤ i ≤ k ) are diagonal matrices and 

heir k th elements are 
a 2 

ki 

2 ‖ ( A �W ) k ‖ and 

| 1 −a ki | 
2 | w ki | , respectively. There- 

ore, 

 i = 

(
X i X 

T 
i + ρ1 D i + ρ2 ̄D i 

)−1 
X i y i . (4) 

Considering that D i and D̄ i depend on W , we cannot obtain 

hem directly. Hence, we adopt an iterative algorithm, listed in 

lgorithm 1 , to solve the above problem. 

In the following, we prove convergence. 

Theorem 1 Algorithm 1 decreases the objective value of func- 

ion (4) in each iteration. 

Prove: According to Step 2 in the algorithm and function (4), 

e know that: 

 

( t+1 ) = min 
W 

Tr 
(
X 

T W − Y 
)T (

X 

T W − Y 
)
+ ρ1 

K ∑ 

i=1 

w 

T 
i D 

(t) 
i 

w i + ρ2 

K ∑ 

i=1 

w 

T 
i D̄ 

(t) 
i 

w i . (5) 
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Algorithm 1 

Input: X, Y, A 

Initial W 

1 ∈ R d × K , t = 1; 

While not converge do 

Calculate the diagonal matrices D (t) 
i 

and D̄ (t) 
i 

, whose k th diagonal elements are 
a 2 

ki 

2 ‖ ( A �W ) 
k ‖ and | 1 −a ki | 

2 | w ki | , respectively; 

For each i(1 ≤ i ≤ k), 

w i = ( X i X 
T 
i 
+ ρ1 D i + ρ2 ̄D i ) 

−1 X i y i . ; 

t = t + 1 

Output: W 

t ∈ R d × K . 

T
 

 

(
w 

(t+1) 
i 

)T 
D̄ 

(t) 
i 

w 

(t+1) 
i 

t) 
 

)T 
D̄ 

(t) 
i 

w 

(t) 
i 

. (6) 

as 

T  

‖ 

(
( A � W ) ( 

t+1 ) 
)k ‖ 

2 
2 

2 ‖ 

(
( A � W ) ( 

t ) 
)k ‖ 2 

− ‖ 

(
( A � W ) ( 

t+1 ) 
)k ‖ 2 

) 

T
 � W ) ( 

t ) 
)k ‖ 

2 
2 

 

A � W ) ( 
t ) 
)k ‖ 2 

− ‖ 

(
( A � W ) ( 

t ) 
)k ‖ 2 

) 

(7) 

 

≥ ‖ w 0 ‖ 2 2 
2 ‖ w 0 ‖ 2 −‖ w 0 ‖ 2 . 

T

 

 

1 

K ∑ 

j=1 

∥∥( ( I − A ) � W ) 
(t+1) 
ij 

∥∥ ≤

T ( ( I − A ) � W ) 
(t) 
ij 

∥∥. (8) 

is means that W is a globally optimum solution. Hence, the proposed 

a al optimum of function (2). 

3

n method to obtain a better classification performance. Specifically, the 

d e-one-out cross-validation (LOOCV) method. Different feature selection 

m s are used to train the individual SVM classifier for each measure. And 

t applied on the testing set. Finally, we use a weighted voting method 

t on. Here, the weight is the normalized accuracy of each trained SVM 

c as the classifier because it is suitable for various training datasets from 

d

3

3

sults of patients with MCI and NCs. To better evaluate the performance 

r dy because it has two obvious advantages. (1) In each cross-validation 

p  data information is retained, and the results are convincing. (2) There 

a the results do not change. Therefore, the experiment can be repeated 

b le is selected as the testing set, and the others are the training set. We 

u  train the SVM classifiers. The feature selection model is used in the 

t sifiers to obtain a label. We independently repeat this process N times 
Therefore, we have 

r 
(
X 

T W 

(t+1) −Y 

)T (
X 

T W 

(t+1) −Y 

)
+ ρ1 

K ∑ 

i=1 

(
w 

(t+1) 
i 

)T 
D 

(t) 
i 

w 

(t+1) 
i 

+ ρ2 

K ∑
i=1

≤ Tr 
(
X 

T W 

(t) −Y 

)T (
X 

T W 

(t) −Y 

)
+ ρ1 

K ∑ 

i=1 

(
w 

(t) 
i 

)T 
D 

(t) 
i 

w 

(t) 
i 

+ ρ2 

K ∑ 

i=1 

(
w 

(
i

According to the definition of D 

(t) 
i 

and D̄ 

(t) 
i 

, we can rewrite (6) 

r 
(
X 

T W 

( t+1 ) − Y 

)T (
X 

T W 

( t+1 ) − Y 

)
+ ρ1 

d ∑ 

k=1 

( 

‖ 

(
( A � W ) ( 

t+1 ) 
)k ‖ 2 +

+ ρ2 

d ∑ 

i=1 

K ∑ 

j=1 

| 1 − a ij | 
( 

‖ w 

( t+1 ) 
ij 

‖ + 

(
w 

( t+1 ) 
ij 

)2 

2 ‖ w 

( t ) 
ij 

‖ 

− ‖ w 

( t+1 ) 
ij 

‖ 

) 

r 
(
X 

T W 

( t ) − Y 

)T (
X 

T W 

( t ) − Y 

)
+ ρ1 

d ∑ 

k=1 

( 

‖ 

(
( A � W ) ( 

t ) 
)k ‖ 2 + 

‖ 

(
( A

2 ‖ 

(
(

+ ρ2 

d ∑ 

i=1 

K ∑ 

j=1 

| 1 − a ij | 
( 

‖ w 

( t ) 
ij 

‖ + 

(
w 

( t ) 
ij 

)2 

2 ‖ w 

( t ) 
ij 

‖ 

− ‖ w 

( t ) 
ij 

‖ 

) 

Following [31] , for any vector w and w 0 , we have 
‖ w ‖ 2 

2 
2 ‖ w 0 ‖ 2 −‖ w ‖ 2

Therefore, we can rewrite (7) as 

r 
(
X 

T W 

(t+1) −Y 

)T (
X 

T W 

(t+1) −Y 

)
+ ρ1 

d ∑ 

k=1 

∥∥∥(
( A � W ) 

(t+1) 
)k 

∥∥∥
2 
+ ρ2 

d∑
i=

r 
(
X 

T W 

(t) −Y 

)T (
X 

T W 

(t) −Y 

)
+ ρ1 

d ∑ 

k=1 

∥∥∥(
( A � W ) 

(t) 
)k 

∥∥∥
2 
+ ρ2 

d ∑ 

i=1 

K ∑ 

j=1 

∥∥
Function (2) is a convex problem and satisfies function (4). Th

lgorithm can decrease the training error and converges to the glob

.6. Ensemble classification 

After the feature selection part, we use an ensemble classificatio

ataset is divided into a training set and a testing set by the leav

ethods are trained on the training set, and these selected feature

hen the trained feature selection models and SVM classifiers are 

o fuse the outputs of the classifiers and obtain the final predicti

lassifier on the training set. In this study, we choose a linear SVM 

ifferent fields [ 32–35 ]. 

.7. Experiments and results 

.7.1. Experimental settings 

We evaluate our proposed method based on the classification re

esults of different methods, we use the LOOCV method in this stu

rocess, almost all subjects take part in the training, so most of the

re no random factors. Regardless of the number of experiments, 

y any researcher. Specifically, for each experiment, only one samp

se only the training set to calculate matrix A , select features and

esting set, and the selected features are input into the trained clas
5 
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Table 2 

Classification performance on the MRI datasets. (ACCuracy (ACC), SENsitivity (SEN), 

SPEcificity (SPE) and Area Under Curve (AUC)). 

Method ACC (%) SEN (%) SPE (%) AUC 

Xuan Wu 

Hospital 

dataset 

Group lasso 77.55 73.91 80.77 0.7366 

rMTFL 80.61 78.26 82.69 0.7446 

Ours 83.67 78.26 88.46 0.8311 

ADNI 

dataset 

Group lasso 80.33 82.61 77.36 0.8389 

rMTFL 81.15 86.96 73.58 0.8253 

Ours 85.25 86.96 83.02 0.8690 

Table 3 

Classification performance of ablation experiments on MRI datasets. (ACCuracy 

(ACC), SENsitivity (SEN), SPEcificity (SPE) and Area Under Curve (AUC)). 

Method ACC (%) SEN (%) SPE (%) AUC 

Xuan Wu 

Hospital 

dataset 

rho1 = 0 73.47 58.70 86.54 0.7646 

rho2 = 0 80.61 76.09 84.62 0.8303 

Ours 83.67 78.26 88.46 0.8311 

ADNI 

Dataset 

rho1 = 0 80.33 82.61 77.36 0.8515 

rho2 = 0 84.43 86.96 81.13 0.8682 

Ours 85.25 86.96 83.02 0.8690 
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F

l

o eliminate any biases caused by randomly segmenting the 

atasets in the LOOCV process. Then, we can obtain labels and the 

orresponding accuracy for each SVM. Finally, the weighted voting 

nsemble method is used to fuse the predicted labels of different 

lassifiers based on their accuracies to make a final prediction. To 

btain a better result, we use a grid search strategy to choose hy- 

erparameters. There are three kinds of parameters in our method: 

he penalty term of the SVM classifier, feature selection parame- 

ers and the threshold of correlation matrix A . The range of the 

rst two parameters is {2 -10 ,.......,2 10 }, while the range of the last 

arameter is {0, 0.1,......., 1}. 

We compare our approach with some existing multitask learn- 

ng methods, including group lasso and rMTFL, on both datasets. 

oreover, we perform an ablation study to better prove the effec- 

iveness of the proposed method by setting the two parameters of 

eature selection ( ρ1 , ρ2 ) to zero. Specifically, we use a multitask 

earning framework to select features. For the above five methods, 

he overall process is the same. The only differences are in feature 

election. Then, we train the SVM classifiers with the selected fea- 

ures, and each SVM corresponds to one measure. Finally, we use a 

eighted voting strategy to fuse all classifiers and give a final pre- 

iction. All the above feature selection methods are implemented 

y the MALSAR toolbox [36] . 

To compare the different methods, we adopted four criteria: 

lassification accuracy (ACC), sensitivity (SEN), specificity (SPE), 

nd the area under the curve (AUC). Specifically, accuracy is the 

atio of correctly classified samples to all samples and reflects the 

erformance of the classifier. Sensitivity is defined as the ratio of 

orrectly classified patients to all patients, and it can reflect the 

lassifier’s ability to distinguish patients. Similarly, specificity is the 

atio of correctly classified NCs to all NCs. The receiver operating 

haracteristic (ROC) curve can avoid the bias caused by the classi- 

cation threshold in the SVM, and each point on this curve repre- 

ents a specific decision threshold. Therefore, we use the AUC to 

omprehensively show the classification performance. 

.7.2. Classification results 

The classification results of aMCI vs. NC on the Xuan Wu Hos- 

ital dataset and MCI vs. NC on the ADNI dataset can be found in

able 2 . 

It is clearly shown that the performance of our FL-GL method 

s better on both datasets. Specifically, on the first dataset, the ac- 

uracy, sensitivity, specificity, and AUC are 83.67%, 78.26%, 88.46% 

nd 0.8311, respectively. The accuracies are 6.12 and 3.06% higher 

han those of the other two methods. Moreover, the AUC is appar- 

ntly higher than those of the other methods. On the ADNI dataset, 
ig. 4. (a) and (b) represent the ROC curves of the different methods on the Xuan Wu H

asso method. The red line represents the robust multitask feature learning method. The l

6 
ll methods perform better than they do on the first dataset, 

nd the proposed method is still superior to the other methods. 

he accuracy, sensitivity, specificity, and AUC are 85.25%, 86.96%, 

3.02% and 0.8690, respectively. The accuracies are 4.92 and 4.10% 

igher than those of the other two methods. To comprehensively 

how the classification performance, we also plot the ROC curves. 

ig. 4 shows the curves of the different methods. From these fig- 

res, especially Fig. 4 (a), we can see that the curves of our method 

re closer to the (0,1) point (upper left corner), which means that 

he accuracy of the experiments is better. In summary, all criteria 

re better with our method than with the other methods on both 

atasets. 

Moreover, to further evaluate our method, we performed an 

blation study by setting the two parameters of feature selection 

 ρ1 , ρ2 ) to zero. The classification results can be found in Table 3 . 

For both datasets, it can be clearly shown that when we set ρ1 

o zero, the accuracy drops sharply. This means that the second 

erm of function (2) is much more important than the third term. 

t is the feature level-based group sparsity term used to extract 

he relationship among tasks. The third term is used to extract 

dditional information from unrelated tasks. Therefore, the second 

erm is much more important than the third term. Moreover, when 

e set ρ1 to zero, the accuracy drops by 10.2% and 4.92% on the 
ospital dataset and ADNI dataset, respectively. The blue line represents the group 

ast line represents our proposed method. 
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atasets, respectively, which means that when the task number is 

arger, the second term is particularly crucial. Finally, when we set 

2 to zero, our method is similar to the group lasso method, but 

he accuracy increases by 3.06% and 4.1%, respectively. Therefore, 

he feature level-based correlation matrix is a good guide for se- 

ecting features at the feature level. 

. Discussion 

In the present study, we use the FL-GL method to classify pa- 

ients with aMCI and NCs, and the results show that our method 

mproves classification performance. Here, we interpret the reasons 

n two ways: (1) Traditional methods discuss relevance at the task 

evel. This means that if two tasks are related, then the method 

ssumes all features in these tasks are related, which may not al- 

ays be true in practice. However, in our proposed method, we 

se a feature level-based relationship matrix to guide us to select 

 group of features across tasks at the feature level. (2) With the 

elp of the l 1 norm, we also capture supplementary information 

rom other unrelated tasks at the feature level. 

Moreover, by setting the two feature selection parameters to 

ero, we find that the feature level-based group sparsity term is 

ery important, and this is especially true for a large number of 

asks. Moreover, the feature level-based relationship matrix plays 

n important role in the feature selection model. 

However, we acknowledge that our study has two limitations. 

1) The number of samples is relatively small in both datasets and 

annot represent the pathological characteristics of a large number 

f patients. (2) For each feature, we average the features from all 

oxels, which may ignore some important information. Therefore, 

n our future work, we will consider applying our method to large 

atasets or other voxel-based datasets to reveal more significant 

esults. 

. Conclusion 

In this paper, the FL-GL method is proposed to classify patients 

ith MCI and NCs; the FL-GL method makes full use of the task 

elationship and supplementary information from other unrelated 

asks at the feature level. Specifically, we first extract features from 

everal measures. Next, we compute the feature level-based corre- 

ation matrix, which is used for feature selection. Then, we train a 

pecific SVM classifier for each measure. Finally, we use a weighted 

oting strategy to fuse the results of the above classifiers for a final 

rediction. The results show that the performance of our method 

s superior to previous methods on both datasets and that the fea- 

ure level-based group sparsity term, which can significantly im- 

rove the results, is the core of the method. The last term is also 

mportant and can supply supplementary information from other 

nrelated tasks. 
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