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Generalizable, Reproducible, and Neuroscientifically
Interpretable Imaging Biomarkers for Alzheimer’s Disease

Dan Jin, Bo Zhou, Ying Han, Jiaji Ren, Tong Han, Bing Liu, Jie Lu, Chengyuan Song,
Pan Wang, Dawei Wang, Jian Xu, Zhengyi Yang, Hongxiang Yao, Chunshui Yu, Kun Zhao,
Max Wintermark, Nianming Zuo, Xinqing Zhang, Yuying Zhou, Xi Zhang, Tianzi Jiang,
Qing Wang,* and Yong Liu*

Precision medicine for Alzheimer’s disease (AD) necessitates the
development of personalized, reproducible, and neuroscientifically
interpretable biomarkers, yet despite remarkable advances, few such
biomarkers are available. Also, a comprehensive evaluation of the
neurobiological basis and generalizability of the end-to-end machine learning
system should be given the highest priority. For this reason, a deep learning
model (3D attention network, 3DAN) that can simultaneously capture
candidate imaging biomarkers with an attention mechanism module and
advance the diagnosis of AD based on structural magnetic resonance imaging
is proposed. The generalizability and reproducibility are evaluated using
cross-validation on in-house, multicenter (n = 716), and public (n = 1116)
databases with an accuracy up to 92%. Significant associations between the
classification output and clinical characteristics of AD and mild cognitive
impairment (MCI, a middle stage of dementia) groups provide solid
neurobiological support for the 3DAN model. The effectiveness of the 3DAN
model is further validated by its good performance in predicting the MCI
subjects who progress to AD with an accuracy of 72%. Collectively, the
findings highlight the potential for structural brain imaging to provide a
generalizable, and neuroscientifically interpretable imaging biomarker that
can support clinicians in the early diagnosis of AD.
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1. Introduction

Alzheimer’s disease (AD) is the most preva-
lent cause of dementia, leading to irre-
versible brain damage. The disease is ac-
companied by memory deficits, communi-
cation difficulties, disorientation, and be-
havior changes and is a leading cause of
death.[1] Mild cognitive impairment (MCI),
especially amnestic MCI, has a relatively
high risk of conversion to AD and may be
an intermediate state between healthy aging
and dementia.[2,3] It is essential to identify
underlying biomarkers or neuroimaging
measures that can accurately capture clin-
ical early diagnosis and quantify the stage
of disease.[4–6] However, despite decades
of research, generalizable and reproducible
biomarkers have not yet emerged.

Structural magnetic resonance imaging
(sMRI) analysis provides an effective way
to characterize anatomic abnormalities and
the progression of AD, making it possible
for medical scientists to identify imaging
biomarkers of early neurodegeneration.[7,8]

Existing structural MRI-based studies have
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performed extensive morphometric analyses at the voxel level or
region of interest (ROI) level, with the goal of quantifying the
morphological characteristics of relevant regions in terms of vol-
ume, shape, and cortical thickness.[6] However, statistical map-
ping methods can only characterize the detailed feature presen-
tation of disease-related changes from one perspective, such as
volume or shape. Such neuroimaging biomarkers are modeled
by compressing multi-voxel imaging data into one or several val-
ues based on a pre-determined ROI, a process which may have
limited usefulness for individual diagnosis. To address this lim-
itation, extracting high-dimensional morphometric features has
attracted increasing attention.[9–13]
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Deep learning methods, especially convolutional neural net-
works, have been gradually applied to various medical image
analysis tasks.[14–17] A convolutional neural network (CNN) can
automatically learn the features that optimally represent the data.
The CNN model, as a type of end-to-end architecture, can op-
timize both the representation of features and the classifica-
tion performance based on a brain image. Conversely, the black
box aspect of neural networks hinders us from obtaining valu-
able information about the focus of a network (i.e., the most
discriminative localizations of brain abnormalities), which plays
a key role in the diagnosis of disease. To this end, the atten-
tion mechanism module was developed to reveal the network on
which to focus and to refine the feature representation and in-
crease the representation power.[18–22] Attention-based networks
have achieved successful applications in fields such as natural
language processing,[23] object detection,[22] image classification,
and synthesis.[18]

Inspired by recent advances in attention-based networks,[20–22]

we propose a 3D attention network (3DAN) that integrates an
attention mechanism with a residual neural network (ResNet)
to automatically capture the most discriminative localizations in
brain images and jointly optimize the feature extraction and clas-
sifier performance for AD based on structural MRI images (Fig-
ure 1). Because the extent to which brain structures are affected
by AD varies,[11,24–26] we adopted an attention module to empha-
size important atrophy localizations and suppress unnecessary
ones along the spatial dimension. Based on the attention mod-
ule, the discriminative localizations and refined feature represen-
tation were simultaneously learned in a data-driven fashion. To
test the robustness and generalizability of the imaging biomark-
ers for AD, cross validations were performed with two totally in-
dependent databases (n = 1832, in total). We also expected that
the classification output would have a solid neurobiological basis.
To investigate this hypothesis, we researched the association be-
tween the attention network output and clinical measures [that is
the cognitive function measured by the Mini-Mental State Exam-
ination (MMSE), CSF beta-amyloid (A𝛽), CSF tau, and polygenic
risk scores (PGRS)] in the AD and MCI groups. Finally, we in-
vestigated whether the 3DAN could capture features that could
predict the progression of disease.

2. Results

2.1. Diagnostic Performance

In total, 1832 subjects from our in-house multi-center database
(n = 716) and the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (n = 1116) were employed in this study (Ta-
ble S1, Supporting Information). For the AD versus normal con-
trol (NC) classification, we conducted cross-validations between
the ADNI and the in-house databases. For each strategy, one of
the two databases was used as the training set and the other as
the testing set. The classification accuracies were 86.1% (sensi-
tivity (SEN) = 88.1%, specificity (SPE) = 84.6%, area under the
curve (AUC) = 0.912) and 87% (SEN = 78.9%, SPE = 96.1%,
AUC = 0.913) when taking the ADNI database and the in-house
database as the testing set, respectively (Figure 2A,B, Table 1).
Then, we performed cross-validations between the different
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Figure 1. Schematic of the data analysis pipeline. A) The architecture of the 3D attention network (3DAN). In the attention mechanism module, each
voxel i of the H × W × D-dimensional feature maps Fi,c was weighted by the H × W × D-dimensional attention map Mi. The trainable attention map Mi
was independent of the channel of the features and was only related to the spatial position. B) The attention score map (left: in-house database, right:
ADNI database) was generated by the attention mechanism module of the 3DAN model, indicating the discriminative power of various brain regions for
AD diagnosis. C) To test the robustness and generalizability of the 3DAN model, cross validations were performed using two completely independent
databases (an in-house database and the ADNI database) (Details can be found in Table 1). D) Investigation of the association between the classification
output and clinical measures [that is the cognitive function measured by Mini-Mental State Examination (MMSE), CSF beta-amyloid (A𝛽), CSF tau, and
polygenic risk scores (PGRS)] in the AD and MCI groups.

Table 1. Classification performance of the proposed 3DAN method in the
AD and NC classification tasks.

Training set Testing set ACC SEN SPE AUC

Strategy 1 In-house
(n = 716)

ADNI
(n = 1116)

0.861 0.881 0.846 0.912

Strategy 2 ADNI In-house 0.870 0.789 0.961 0.913

Strategy 3 In-house leave-center-out
cross-validation

0.909 0.869 0.957 0.940

Strategy 4 ADNI 10-fold
cross-validation

0.921 0.890 0.944 0.941

Abbreviations: ACC = accuracy; SEN = sensitivity; SPE = specificity; AUC = area
under the curve of the receiver operating characteristic.

scanners in the in-house database using leave-center-out cross
validation. The mean classification accuracy was 90.9% (SEN =
86.9%, SPE = 95.7%, AUC = 0.940, Figure 2C, Table 1). In the
ADNI database, we performed a tenfold cross-validation, and the
mean classification accuracy was 92.1% (SEN = 89%, SPE =

94.4%, AUC = 0.941) (Figure 2D, Table 1; Figure S1, Supporting
Information). For the progressive MCI (pMCI) versus the stable
MCI (sMCI) classification, the mean classification accuracy was
71.7% (SEN= 74.0%, SPE= 70.1%, AUC= 0.721) using a tenfold
cross-validation on the ADNI database (Figure 2E,F).

2.2. Important Regions Captured by the 3D Attention Network

For each testing sample, by introducing the attention mechanism
module, we obtained an attention value map, which indicated the
discriminative power of various brain regions for AD diagnosis
(Figure 3A). The higher the value, the greater the discrimination
ability of the region and the greater its potential as a biomarker.
We resampled the mean attention map from an image size of 23
× 28 × 23, which is derived through two pooling operations (Fig-
ure 1A) on the original images for visualization. The attention
network highlighted brain regions that were mainly located in the
temporal lobe, hippocampus, parahippocampal gyrus, cingulate
gyrus, thalamus, precuneus, insula, amygdala, fusiform gyrus,
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Figure 2. Diagnostic performance of the ROC curves for AD/NC classification (A–D) and pMCI/sMCI classification (E,F). A) ROC curve for the clas-
sifier that was trained on the in-house database and tested on the ADNI database; B) ROC curve for the classifier that was trained on the ADNI
database and tested on the in-house database; C) ROC curve for the classifier that was trained and tested on the in-house database with leave-
center-out cross-validation (CV); D) ROC curve for the classifier that was trained and tested on the ADNI database with tenfold cross-validation; E)
ROC curve of the pMCI/sMCI classification with tenfold cross-validation on the ADNI database; F) violin plots for the distributions of the pMCI/sMCI
classifications.
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Figure 3. A) Mean attention score map derived from the in-house database (left) and the ADNI database (right) and the correlation between these
two attention maps (middle). Brighter colors indicate that the region is more discriminative for AD classification. The regions whose attention
scores were in the top 30% (82/273) are displayed. The correlation figure indicates the replicability of the in-house and ADNI databases. B) Cor-
relation analysis between the mean attention score and the t statistic score of the gray matter volume between the NC and AD for the 273 ROIs
in the Brainnetome Atlas for the in-house database (left) and ADNI database (right). C) Correlation maps between the attention score for the re-
gions and the MMSE scores with FDR correction (p < 0.05) in the in-house database (left) and the ADNI database (right) and the relationship be-
tween the two correlation maps (middle). The correlation figure indicates the replicability of the in-house and ADNI databases. D) Correlation be-
tween classification accuracy and the mean attention score of K groups of regions. The abscissa value of each point in the scatter plots represents
the mean attention score of [273/K] brain regions in each group, and the ordinate value of each point in the scatter plots represents the classifi-
cation accuracy based on the images of [273/K] brain regions in each group. At each K, the fact that higher attention scores are associated with
higher classification accuracy reflects the effectiveness of the attention mechanism (Details of the method can be found in Figure S4, Supporting
Information).

and medial frontal cortex (Figure 3A). More importantly, the at-
tention pattern for the in-house database and the ADNI database
were significantly correlated (r = 0.59, p = 4.75e-27, Figure 3A),
which indicates the strong reproducibility of the results.

2.3. Attention Score for the Network is Associated with the
Atrophy Pattern and MMSE Score

To evaluate whether the attention score changes were associated
with brain alteration, we performed a correlation analysis be-
tween the significance of the group differences (T-map) and the
attention scores of regions derived from the network. The atten-
tion values had a significant correlation with the group differ-
ence map in the in-house database (r = 0.30, p = 4.97e-7) and
the ADNI database (r = 0.22, p = 2.66e-4), which indicates that
the proposed model captured the features of the abnormal re-
gions in AD (Figure 3B). We also repeated the above correlation
analyses for the linear SVM model based on the Brainnetome
(BN) atlas and found that the weights of the regions had no
significant correlation with brain atrophy in either the in-house
database (r= 0.09, p= 0.14; Figure S2A, Supporting Information)

or the ADNI database (r = 0.11, p = 0.07, Figure S2B, Supporting
Information).

To evaluate whether the attention scores were associated with
the patients’ cognitive abilities, regional correlation coefficients
were calculated to measure the relationship between the atten-
tion scores and the Mini-Mental State Exam (MMSE) scores in
the AD and MCI groups. The attention scores of 220 (220/273 =
81%) and 210 (210/273 = 77%) brain regions were significantly
associated with the MMSE scores (p < 0.05, FDR correction) for
the in-house and the ADNI databases, respectively. The high sig-
nificance of this correlation indicates that the variability in the
brain regions with higher attention scores in the subjects may re-
flect the degree of cognitive impairment of the subjects to some
extent. These two MMSE-associated maps of the in-house and
ADNI databases were significantly correlated (r = 0.46, p = 6.17e-
16, Figure 3C), which indicates that the results can be replicated
across sites.

In addition, we preformed correlation analyses between the re-
gional attention scores and the regional correlation coefficients
to evaluate the overlap between the regions with higher attention
scores and the regions whose attention score showed a signifi-
cant correlation with the MMSE scores. The result showed that
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the greater the attention score for brain regions, the more signif-
icant the correlation between the attention score and the MMSE
(r = 0.22, p = 2.73e-4 for the in-house database, r = 0.30, p =
3.77e-7 for the ADNI database, Figure S3, Supporting Informa-
tion). We also calculated the Dice similarity coefficient between
the regions with a significant correlation with the MMSE score
(regions in Figure 3C) and the top n regions with higher attention
scores (n = 220 and 210 for the in-house and ADNI databases, re-
spectively). The results showed that regions with significant cor-
relations between the attention scores and the MMSE had a wide
overlap with the regions with higher attention scores (Dice co-
efficients = 0.83 and 0.82 for the in-house and ADNI databases,
respectively).

2.4. Effectiveness of the Attention Mechanism for Key Regions
Identification

To evaluate the effectiveness of the attention module at captur-
ing the key regions, we performed a correlation analysis between
the attention score of a region and the classification accuracy of
the model trained on those regions (Figure S4, Supporting Infor-
mation). We carried out the experiments with a mean attention
map obtained from models trained on the ADNI and in-house
databases, separately. There was a significant correlation between
the attention score and classification performance (Figure 3D),
which indicates that the key regions captured by the attention
mechanism might be potential biomarkers for AD diagnosis.

2.5. Classification Probability is Related to Clinical Measures,
Cognitive Functions, and Genetic Risk

To investigate the clinical relevance of the prediction perfor-
mance, we first performed a correlation analysis between the
classification output and the MMSE scores of the AD and MCI
groups (two groups together and separately) in the ADNI and in-
house databases. There was a significant correlation between the
probability of AD predicted by the model and the cognitive im-
pairment in the AD and MCI groups, with age and gender con-
trolled (all p < 0.001, Figure 4A,B). Then, we analyzed the cor-
relation between the classification output and the CSF A𝛽 (n =
472), tau (n = 472), and PGRS (n = 321) using the ADNI database
(details can be found in the Supporting Information). These re-
sults showed that the predicted probability of AD correlated sig-
nificantly with the neuropathological changes and genetic factors
(Figure 4C–E). There was a significant difference between the
apolipoprotein E 𝜖4 (APOE 𝜖4) negative and APOE 𝜖4 positive
subjects in the MCI group, with age and gender controlled (t341
= 2.56, p = 0.01; Figure S5, Supporting Information). More im-
portantly, we found that the more similar an MCI individual was
to the AD group, the shorter the time to convert to AD (r =−0.16,
p = 0.02, Figure 4F).

We also performed correlation analyses between the classifica-
tion output of a linear SVM model based on the BN atlas and the
MMSE score, CSF A𝛽, tau, PGRS, and disease progression of the
AD and MCI groups in the in-house and ADNI databases. The
classification output (i.e., individual pseudo-probability of AD)
was represented by the distances of the individual samples from

Table 2. Comparison of the classification performance of the proposed
3DAN method with other methods for AD diagnosis in Strategies 1 and 2
in Table 1.

Method Training: In-house, Testing: ADNI Training: ADNI, Testing: In-house

ACC SEN SPE AUC ACC SEN SPE AUC

3DAN 0.861 0.881 0.846 0.912 0.870 0.789 0.961 0.913

ResNet 0.853 0.863 0.846 0.907 0.860 0.759 0.974 0.910

VBM 0.712 0.947 0.538 0.907 0.821 0.667 0.996 0.908

ROI-AAL 0.720 0.947 0.551 0.885 0.811 0.651 0.991 0.888

ROI-BNA 0.744 0.960 0.584 0.901 0.813 0.651 0.996 0.894

Abbreviations: ACC = accuracy; SEN = sensitivity; SPE = specificity; AUC = area
under the curve of the receiver operating characteristic; BNA = Brainnetome Atlas;
AAL = anatomical automatic labeling; ROI = region of interest; VBM = voxel-based
morphometric.

the discrimination hyperplane. The results also showed signifi-
cant correlations between the classification output and the neu-
robiological indices, MMSE scores, and disease progression (Fig-
ure S6, Supporting Information). Compared with the results of
the linear SVM model, the individual pseudo-probabilities of AD
from our 3DAN model were more related to cognitive impair-
ment, neurobiological changes, and genetic factors.

2.6. Comparison with Other Methods

From Table 2, we can observe that the proposed method gen-
erally outperformed the VBM-based and ROI-based methods in
the AD versus NC classifications for both the ADNI and the in-
house databases. It is worth noting that the in-house database in-
cluded subjects from different hospitals with different scanners.
Although the heterogeneity between the data sources was great,
the proposed method still achieved a classification accuracy of
87%. This indicates that the proposed method has good gener-
alizability and robustness in dealing with independent datasets,
factors which make this method very useful for clinical applica-
tions. The proposed method generally had better classification ac-
curacies than VBM-based (about 82%) and ROI-based methods
(about 81%) for AD diagnosis, which could be due to the richer
feature representation power learned by the neural network.

3. Discussion

To the best of our knowledge, this is the first attention-based net-
work to integrate automatic discriminative regions detection and
classification into a unified framework for the identification of
potential imaging biomarkers and the diagnosis of brain disease.
The simple yet effective 3D attention network achieved a remark-
able classification performance without handcrafted feature gen-
eration and model stacking when trained and tested on large-
and multi-scale analyses of databases (n = 1832) across sites
and countries, highlighting the robustness and reproducibility
of our proposed 3DAN method. It is also worth noting that the
3DAN introduced an attention mechanism to capture impor-
tant atrophy localizations that are particularly associated with the
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Figure 4. Correlations between the class scores and the MMSE scores in the in-house database (A) and the ADNI database (B). Correlations be-
tween the class scores and the CSF A𝛽 (n = 472) (C), CSF tau (n = 472), (D) and polygenetic risk factors (n = 321) (E) of individual subjects in the
ADNI database. F) Correlation between the classification output and the length of time before conversion to AD of the pMCI individuals in the ADNI
database.
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diagnosis of disease. The classification output showed a strong
association with the neurobiological indices (that is cerebrospinal
fluid (CSF) amyloid 𝛽 (A𝛽), tau, and genetic risk scores). These
results are highly advantageous for understanding the neurobi-
ological architecture of a complex brain disease, thus making a
step forward toward a precise early diagnosis of AD.

In terms of feature representation methods, the typical deep
learning methods for AD, MCI, and normal control (NC) clas-
sification can be roughly categorized into four classes, includ-
ing i) 2D slice-level,[15,27] ii) 3D patch-level,[11,28] iii) ROI-level,[29]

and iv) 3D subject-level.[30–32] Contrary to conventional statisti-
cal mapping methods, few studies have provided valuable in-
formation about the discriminative localizations of images. Liu
and colleagues proposed a two-stage framework, by which the
first stage could be used to identify discriminative landmarks
at the patch-based level and the second stage could be used to
train a classifier using the selected patch-based features.[28] Lian
and colleagues proposed a hierarchical, fully convolutional net-
work to integrate the process of discriminative patches identi-
fication and the training of classification models into a unified
framework for AD diagnosis.[11] However, the potential for learn-
ing the discriminative localizations of the brain at the 3D sub-
ject level had not been well explored. Specifically, the proposed
method introduced an attention module that highlights discrim-
inative brain regions (such as the temporal lobe, hippocampus,
parahippocampal gyrus, cingulate gyrus, and medial frontal cor-
tex) at the subject level for AD diagnosis, and the post hoc analysis
clearly showed that a higher attention score contributed signifi-
cantly to the classification and that the attention maps had a high
degree of replication (Figure 3A,D). The above related brain re-
gions have been confirmed to be affected by AD pathology and are
correlated with cognitive impairment in AD and/or MCI.[33–35]

As opposed to the conventional ROI- and voxel-level based pat-
tern analysis methods,[36–39] our proposed method does not re-
quire a priori information about pre-defined brain regions. Ba-
sically, the method integrates a feature extraction process with
a classification task and automatically learns discriminative fea-
tures in a data-driven fashion, leading to optimal classification
performance.

Deep learning methods have increasingly been used in the
computer-aided diagnosis of AD due to their ability to learn to
optimize feature representation and robustness. Thus, the most
important advance offered by the present study is that the clas-
sifiers achieved high accuracy in the cross validation based on
large independent multi-site databases. Cross validation is very
important for biomarker searching while the traditional leave-
one-out or N-fold cross validation using single site data is lim-
ited by relative smaller sample sizes, often leading to a poor
generalization performance by the classifiers.[40–45] The proposed
method achieved higher accuracy and a larger area under the
curve (AUC) compared with the traditional support vector ma-
chine (SVM) classifiers based on ROI features in inter-sites cross
validations. The models trained here can be directly applied to
new datasets; such generalizability is very important for future
clinical translation.[40,41,43,46,47] Another finding was that the clas-
sifier retained a relatively highly accurate prediction using only
the baseline data to predict whether or not an MCI subject would
convert to AD within three years, highlighting the effectiveness
of the 3DAN and, therefore, its translational potential.

Critically, when we evaluated the relationship between the
imaging measures and clinical features, the attention scores of
the identified brain regions that were replicated across sites and
between databases were significantly associated with the MMSE
scores in these two databases. A highly significant positive cor-
relation was also found between the attention scores and the
pattern of atrophy in the gray matter (Figure 3B), which indi-
cates that 3DAN captured the abnormal regions with a significant
group difference between the AD and NC groups. Furthermore,
there was a significant correlation between the classification out-
put and the MMSE scores, revealing that the probability of an in-
dividual being classified as a patient with AD was correlated with
the severity of the cognitive symptoms. AD patients are typically
characterized by the presence of A𝛽, tau neuritic plaques, and
neurofibrillary tangles in the cerebral cortex.[5,48] The PGRSs are
used to assess the cumulative genetic risk for a disorder,[49] espe-
cially for AD,[50–52] as confirmed by previous large-scale genome-
wide association studies for the association between the PRGSs
for AD and clinical markers (cognitive abilities, clinical evalua-
tion, brain atrophy, tau, and A𝛽).[53–56] More importantly, for a
MCI individual, the closer the classification output was to that
of the AD group, the more quickly the subject converted to AD.
This finding provided additional evidence of the effectiveness of
the 3DAN model. Hence, the significant associations between
the classification output and the A𝛽, tau, PGRS indices, and the
length of time for MCI patients to convert to AD further provided
a solid neurobiological basis for potential clinical applications of
3DAN.[57,58] And our further analyses showed that 5/6 of these
correlations are stronger in 3DAN model than that in SVM (Fig-
ure S6, Supporting Information) highlighted the effectiveness of
the attention mechanism for key regions identification and early
classification.

While the experimental results emphasized promising poten-
tial clinical applications of the proposed method for AD stud-
ies, our study has some limitations that warrant consideration.
First, the proposed method achieved good results in detect-
ing important regions and diagnosing AD on two multi-center
databases. However, the performance and robustness of the pro-
posed method should be further validated on a larger population
before any actual clinical use.[59] Second, we only employed one
sMRI scan for each subject in the databases to explore the dis-
criminative power of single mode data. It should be noted that
in the present study the ADNI dataset was used to show the
biological meaningfulness of the class scores, but the in-house
dataset only showed the disease severity associated alterations
in the patient groups due to lack of other neurobiological mea-
sures. In the future, we need to introduce longitudinal and mul-
timodal data, such as functional MRI, PET images, genetic data,
and other techniques, to further improve the classification perfor-
mance and understand the neurological basis(es) of AD.[27,60–62]

The ability to predict which subjects had a higher risk of pro-
gression as well as the ability to detect earlier stages of AD is
of great importance. Although we successfully classified pMCI
and sMCI subjects with a classification accuracy of 72%, the clas-
sification performance for pMCI and sMCI needs further im-
provement using a large longitudinal dataset.[63] Finally, higher
resolution images and more advanced deep neural networks
to improve the performance will be critical avenues for future
studies.[61,64,65]
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Overall, our proposed method is a novel model that integrates
the attention mechanism into a deep CNN algorithm; we tested
it in the largest neuroimaging analysis of AD to date. Without
multi-step feature selection and classification processes, the pro-
posed end-to-end network achieved a better classification perfor-
mance by leveraging the attention module. The interpretability
of the 3DAN is conducive to promoting the clinical application of
the deep learning algorithm for AD diagnosis. Our research team
plans to investigate more specific neuroanatomical traits and AD
phenotypes and explore sophisticated brain imaging measures to
improve our understanding of AD and to increase early diagnosis
and progression prediction.

4. Experimental Section
Study Design: Two sMRI databases were employed to cross validate

the results in this study, 1) an in-house multi-center database; and 2)
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http:
//adni.loni.usc.edu). These databases contain baseline brain MR imag-
ing from AD patients and normal controls (NC). This study was approved
by the Medical Ethics Committee of the Institute of Automation, Chinese
Academy of Sciences. The demographic information about the subjects
in both the in-house and ADNI databases are presented in Table S1, Sup-
porting Information.

In-house: The in-house database consisted of 716 (261 AD, 224 MCI,
and 231 NC) subjects imaged by six different scanners. These studies were
approved by the medical ethics committees of the local hospitals. All the
subjects or their legal guardians signed written consent forms and met
identical stringent methodological criteria. Comprehensive clinical details
can be found elsewhere in our previous studies.[66–70] Detailed MRI ac-
quisition protocol information for the different scanners is provided in the
Supporting Information (Tables S1 and S2, Supporting Information).

ADNI: The data included in the present study consists of 1.5T or 3T
T1-weighted MR images acquired from a total of 1116 subjects (227 AD,
584 MCI, and 305 NC subjects). Of these subjects, 612 subjects had cere-
brospinal fluid (CSF) amyloid-𝛽 (A𝛽), tau, and apolipoprotein E 𝜖4 (APOE
𝜖4) genotype measurements, and 536 subjects had polygenic risk scores
(PGRS). The detailed information can be found in Tables S3 and S4, Sup-
porting Information. In addition, MCI patients were further divided into
progressive MCI (pMCI) subjects who converted to AD and stable MCI
(sMCI) subjects who did not convert to AD. The subjects (203 and 295
sMCI) who had follow-up data more than one year after the initial MRI and
had consistent diagnoses for all their longitudinal scans were employed for
pMCI/sMCI classification (Table S5, Supporting Information).

Image Pre-Processing: To learn valuable information about regional
changes in gray matter for the training model, structural MRI images
were pre-processed with the standard steps in the CAT12 toolbox (http:
//dbm.neuro.uni-jena.de/cat/). All sMRI data were bias-corrected, seg-
mented into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) and registered to Montreal Neurological Institute (MNI) space
using a sequential linear (affine) transformation. The gray matter images
were resliced to 2 mm × 2 mm × 2 mm cubic size, resulting in a volume
size of 91 × 109 × 91 with 2 mm3 isotropic voxels.

Attention Based 3D Deep Learning Method: A simple yet effective 3D
attention-based network (3DAN) was proposed for AD diagnosis and to
identify discriminative localizations.[71] Specifically, the residual network
(ResNet) [72] was used as the basic architecture. The 3DAN consisted of a
convolutional layer, eight residual blocks, an attention mechanism module
and a fully connected layer (Figure 1A). Each basic block consisted of two
convolutional layers and each convolutional layer was followed by batch
normalization, and a nonlinearity activation function ReLU.[73] The sizes
of the 3D feature maps were reduced from 91 × 109 × 91 to 46 × 55 ×
46 to 23 × 28 × 23 by an average pooling function with a kernel size of
3 × 3 × 3. In the residual block, the output of each block H (x) adds the

input x and the stacked nonlinear mapping of input F(x) directly through
“shortcut connection” that addresses the degradation problem.

H(x) = F(x) + x (1)

The attention mechanism was carried out simply by a convolution layer
with a set of filters of 3 × 3 × 3 kernel size.[71] In the attention mechanism
module, each voxel i of the H × W × D-dimensional feature maps Fi,c was
weighted by the H × W × D-dimensional attention map Mi. The trainable
attention map Mi was independent of the channel of the features and was
only related to the spatial position (Figure 1).

Hi,c = Fi,c ∗ Mi (2)

where, the spatial position (x, y, z) of the voxel is defined as i (i∈{1, …,
H × W × D}, x ∈{1, …, H}, y∈{1, …, W}, z∈{1, …, D}) and c ∈ {1, …,
C} is the index of the channel. The proposed network was implemented
using Python based on the platform of Pytorch (version = 0.3.1). The code
can be downloaded at https://github.com/YongLiuLab. The input is the
normalized 3D gray matter density image and the output is a probability
for each individual obtained by a soft-max classifier trained with cross-
entropy loss. It is worth noting that this end-to-end network has no need
of prior knowledge to design its selected features. The attention generation
process for 3D feature maps has less computation overhead and adds little
network complexity. The proposed network was optimized using the Adam
algorithm with an initial learning rate of 10−6, and the batch size was set
as 8.

Diagnostic Performance: To maximize the generalizability of the clas-
sifications, multiple classifiers that could provide individual-level predic-
tions of group status under four different cross-validation strategies (Ta-
ble 1) were created to evaluate the impact of pooling data across sites and
training/testing at different centers. For the first strategy, the model was
trained on an in-house database and it was tested on the ADNI database.
For the second strategy, subjects from ADNI were used as the training set,
while subjects from in-house database were used as an independent test-
ing set. For the third strategy, the situation of inter-site cross-validation
was considered, in which leave-center-out cross-validation was conducted
for the in-house database between the different scanners. For the fourth
strategy, the classifiers were trained and tested within the ADNI database
using tenfold cross-validation for discriminating the AD from NC (Table 1).
In addition, the classifiers were trained and tested the classification per-
formance for the pMCI versus sMCI classifications. For all the analyses,
the accuracy, sensitivity, specificity, and area under the curve (AUC) of the
receiver operating characteristic were used to evaluate the performance of
our model.

The Link between the Network’s Attention Score, Predication Ability,
and Atrophy Pattern: To further evaluate the effectiveness of the at-
tention module for capturing the key regions, the relationship between
the attention score and the discriminative capacity of the brain re-
gions involved in AD diagnosis was assessed. Specifically, the attention
score for each of the 273 regions designated in the Brainnetome Atlas
(http://atlas.brainnetome.org/) was first calculated. To reduce the num-
ber of repetitions needed for the retraining and classification process, the
273 brain regions were subdivided into K groups by sorting the attention
scores. For groups 1 to K − 1, each group had [273/K] regions, and for
group K, it had 273 − (K − 1)[273/K] regions (see Figure S4, Supporting
Information). The mean attention score for each group of brain regions
was calculated, so that each of the K groups had an attention score. To
evaluate the classification capacity of each group, the gray matter density
images of the brain regions represented by each group were used as the
input for the network to retrain the classification model and recalculate
the accuracy of the AD versus NC classification. The retraining and classi-
fication process was conducted K times. Finally, the Pearson’s correlation
coefficients between the classification accuracies and the attention scores
for the K groups were calculated. To evaluate the generalization of the re-
sult, three different values were used for K (K = 10, 12, 15). This process
was repeated three times (The details also can be found in Figure S4, Sup-
porting Information).
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In addition, a correlation analysis was performed between the signifi-
cance of the group difference as indicated by a two-sample t test and the
attention scores of the regions derived from the network. Specifically, the
mean gray matter density of 273 ROIs was calculated based on the Brain-
netome Atlas and performed a two-sample two-side t test between the
patients with AD and the NC group after regressing out the effects of age,
gender, and site. Then, the Pearson’s correlation coefficient between the
absolute value of the t statistics and the mean attention score for the 273
ROIs in the in-house database and in the ADNI database were calculated
separately.

To validate whether the importance of the brain regions identified by the
attention mechanism was associated with cognitive ability, the correlation
between the attention scores and the MMSE scores for each ROI was also
investigated, based on the Brainnetome Atlas, in the inter-database cross
validation strategies (the first and second strategies). The correlation be-
tween the two correlation maps that were obtained from the two databases
to test the reproducibility was also calculated.

Correlation between Prediction Performance and Clinical Measures, Cog-
nition, and Genetic Risk: To further assess the clinical relevance of the
prediction performance, the correlations between the class score (i.e., in-
dividual pseudo-probability of AD) and cognitive ability, neuropathological
changes, or genetic risk factors of individual subjects in the ADNI and in-
house databases (here with the MCI subjects included to test whether a
disease severity association exists) were investigated. The un-normalized
class scores from the 3DAN model were used, rather than the class pos-
teriors returned by the soft-max layer. The Pearson correlation coefficients
were calculated between the classifier output and MMSE scores, CSF beta-
amyloid (A𝛽), tau, or polygenic risk scores (PGRS) (details about the PGRS
can be found in the Supporting Information) in individual subjects in the
AD and MCI groups (also each group separately) after regressing out the
effects of age and gender. We also evaluated the effect of the high risk
APOE gene for the MCI group in the ADNI database by a two-sample two-
sided t test between the two subgroups (APOE 𝜖4+ versus APOE 𝜖4-) (p
< 0.05). In addition, to test whether a disease conversion rate association
could be identified, the relationship between the classifier output and the
length of the time to convert to AD for the pMCI individuals in the ADNI
database was also evaluated.

Methods for Comparison: The proposed 3D attention-based method
was compared with four conventional classification methods. These were
1) base ResNet architecture and 2) support vector machine (SVM) classi-
fiers based on the anatomical automatic labeling (AAL) atlas, 3) SVM clas-
sifiers based on the Brainnetome (BN) atlas, and 4) SVM classifiers based
on voxel-level features. 1) The residual network architecture with 18 layers
(ResNet-18) was trained for AD diagnosis and included a convolutional
layer, eight basic ResNet blocks, and a fully connected layer. Unlike our
attention-based method, the base ResNet did not integrate the attention
mechanism into the network. SVM based on ROI features: Region-level
features were extracted from gray matter images based on 2) a coarse-
grained template (AAL atlas) and 3) a finer template (Brainnetome Atlas,
BN atlas). The gray matter volumes of the respective 90 ROIs and 273
ROIs were separately quantified to train non-linear support vector machine
classifiers with a Gaussian RBF kernel. 4) SVM based on voxel-level fea-
tures: Considering the high dimension of the voxel-based features, a sta-
tistical group comparison analysis was performed based on a t test to re-
duce the dimensionality and then constructed a non-linear SVM classifier
for disease classification.[28]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
D.J. and B.Z. contributed equally to this work. The authors express ap-
preciation to Drs. Rhoda E. and Edmund F. Perozzi for English language

and editing assistance. The authors thank Dr. Feng Shi (United Imag-
ing Intelligence), Dr. Shandong Wu (University of Pittsburgh) and Dr.
Li Su (University of Cambridge) for their critical discussions and com-
ments. The authors gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Titan Xp GPU. This work was partially
supported by the National Key Research and Development Program of
China (Nos. 2016YFC1305904, 2018YFC2001700), the Strategic Priority
Research Program (B) of the Chinese Academy of Sciences (Grant No.
XDB32020200), the National Natural Science Foundation of China (Grant
Nos. 81871438, 81901101, 61633018, 81571062, 81400890, 81471120,
81701781), the Medical Big Data R&D Project of the PLA General Hospi-
tal (No. 2018MBD028). Data collection and sharing for this project were
funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Na-
tional Institutes of Health Grant U01 AG024904) and DOD ADNI (Depart-
ment of Defense award number W81XWH-12-2-0012). ADNI is funded
by the National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, and through generous contributions from
the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discov-
ery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuti-
cals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd
and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IX-
ICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development,
LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.;
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.;
NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals
Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical
Company; and Transition Therapeutics. The Canadian Institutes of Health
Research provides funds to support ADNI clinical sites in Canada. Private
sector contributions are facilitated by the Foundation for the National In-
stitutes of Health (www.fnih.org). The grantee organization is the North-
ern California Institute for Research and Education, and the study is coor-
dinated by the Alzheimer’s Therapeutic Research Institute at the University
of Southern California. ADNI data are disseminated by the Laboratory for
Neuro Imaging at the University of Southern California.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
Alzheimer’s disease, computer-aided diagnosis, neurobiological basis,
neuroscientifically interpretable biomarkers, structural magnetic reso-
nance imaging

Received: February 22, 2020
Revised: May 1, 2020

Published online: June 9, 2020

[1] K. A. Matthews, W. Xu, A. H. Gaglioti, J. B. Holt, J. B. Croft, D. Mack,
L. C. McGuire, Alzheimer’s Dementia 2019, 15, 17.

[2] R. C. Petersen, R. Doody, A. Kurz, R. C. Mohs, J. C. Morris, P. V. Ra-
bins, K. Ritchie, M. Rossor, L. Thal, B. Winblad, Arch. Neurol. 2001,
58, 58.

[3] R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos,
E. Kokmen, Arch. Neurol. 1999, 56, 56.

[4] H. Hampel, K. Bürger, S. J. Teipel, A. L. Bokde, H. Zetterberg, K.
Blennow, Alzheimer’s Dementia 2008, 4, 4.

[5] A. Nakamura, N. Kaneko, V. L. Villemagne, T. Kato, J. Doecke, V. Dore,
C. Fowler, Q. X. Li, R. Martins, C. Rowe, T. Tomita, K. Matsuzaki, K.
Ishii, K. Ishii, Y. Arahata, S. Iwamoto, K. Ito, K. Tanaka, C. L. Masters,
K. Yanagisawa, Nature 2018, 554, 249.

Adv. Sci. 2020, 7, 2000675 2000675 (10 of 12) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

[6] S. Rathore, M. Habes, M. A. Iftikhar, A. Shacklett, C. Davatzikos, Neu-
roImage 2017, 155, 530.

[7] G. B. Frisoni, N. C. Fox, C. R. Jack Jr., P. Scheltens, P. M. Thompson,
Nat. Rev. Neurol. 2010, 6, 67.

[8] M. Albert, Y. Zhu, A. Moghekar, S. Mori, M. I. Miller, A. Soldan, C.
Pettigrew, O. Selnes, S. Li, M. C. Wang, Brain 2018, 141, 877.

[9] C. Davatzikos, Y. Fan, X. Wu, D. Shen, S. M. Resnick, Neurobiol. Aging
2008, 29, 514.

[10] S. F. Eskildsen, P. Coupe, V. S. Fonov, J. C. Pruessner, D. L. Collins,
Neurobiol. Aging 2015, 36, S23.

[11] C. Lian, M. Liu, J. Zhang, D. Shen, IEEE Transact. Pattern Anal. Ma-
chine Intellig. 2020, 42, 880.

[12] C. Davatzikos, NeuroImage 2019, 197, 652.
[13] H. Li, M. Habes, D. A. Wolk, Y. Fan, I. Alzheimer’s Disease Neu-

roimaging, B. the Australian Imaging, Alzheimers Dement 2019, 15,
15.

[14] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoo-
rian, J. van der Laak, B. van Ginneken, C. I. Sanchez, Medical Image
Analysis 2017, 42, 60.

[15] S. Vieira, W. H. Pinaya, A. Mechelli, Neurosci. Biobehav. Rev. 2017, 74,
58.

[16] Z. Tang, K. V. Chuang, C. DeCarli, L. W. Jin, L. Beckett, M. J. Keiser, B.
N. Dugger, Nat. Commun. 2019, 10, 10.

[17] H. C. Hazlett, H. Gu, B. C. Munsell, S. H. Kim, M. Styner, J. J. Wolff,
J. T. Elison, M. R. Swanson, H. Zhu, K. N. Botteron, D. L. Collins, J.
N. Constantino, S. R. Dager, A. M. Estes, A. C. Evans, V. S. Fonov, G.
Gerig, P. Kostopoulos, R. C. McKinstry, J. Pandey, S. Paterson, J. R.
Pruett, R. T. Schultz, D. W. Shaw, L. Zwaigenbaum, J. Piven, I. Net-
work, S. Clinical, C. Data Coordinating, C. Image Processing, A. Sta-
tistical, Nature 2017, 542, 348.

[18] T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, Z. Zhang, 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015,
pp. 842–850.

[19] L. Chen, H. Zhang, J. Xiao, L. Nie, J. Shao, W. Liu, T. - S. Chua, 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017, pp. 6298–6306.

[20] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, X.
Tang, 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), IEEE, 2017, pp. 6450–6458.

[21] J. Hu, L. Shen, S. Albanie, G. Sun, E. Wu, IEEE Transact. Pattern Anal-
ysis Machine Intelligence 2019, 1, https://doi.org/10.1109/TPAMI.
2019.2913372.

[22] S. Woo, J. Park, J. - Y. Lee, I. S. Kweon, Proc. of European Conf. on
Computer Vision (ECCV), 2018.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, I. Polosukhin, Advances in Neural Information Pro-
cessing Systems, 2017, pp. 5998–6008.

[24] H. Braak, E. Braak, Acta Neuropathol. 1991, 82, 239.
[25] G. B. Frisoni, M. Boccardi, F. Barkhof, K. Blennow, S. Cappa, K. Chio-

tis, J. F. Demonet, V. Garibotto, P. Giannakopoulos, A. Gietl, O. Hans-
son, K. Herholz, C. R. Jack Jr., F. Nobili, A. Nordberg, H. M. Snyder,
M. Ten Kate, A. Varrone, E. Albanese, S. Becker, P. Bossuyt, M. C. Car-
rillo, C. Cerami, B. Dubois, V. Gallo, E. Giacobini, G. Gold, S. Hurst,
A. Lonneborg, et al., Lancet Neurol. 2017, 16, 661.

[26] P. M. Thompson, K. M. Hayashi, R. A. Dutton, M. C. Chiang, A. D.
Leow, E. R. Sowell, G. De Zubicaray, J. T. Becker, O. L. Lopez, H. J.
Aizenstein, A. W. Toga, Ann. N. Y. Acad. Sci. 2007, 1097, 183.

[27] Y. Ding, J. H. Sohn, M. G. Kawczynski, H. Trivedi, R. Harnish, N. W.
Jenkins, D. Lituiev, T. P. Copeland, M. S. Aboian, C. Mari Aparici, S. C.
Behr, R. R. Flavell, S. Y. Huang, K. A. Zalocusky, L. Nardo, Y. Seo, R. A.
Hawkins, M. Hernandez Pampaloni, D. Hadley, B. L. Franc, Radiology
2019, 290, 456.

[28] M. Liu, J. Zhang, E. Adeli, D. Shen, Med. Image Anal. 2018, 43,
157.

[29] K. Aderghal, J. Benois-Pineau, K. Afdel, Proceedings of the 2017 ACM
on International Conference on Multimedia Retrieval, ACM, 2017,
pp. 494–498.

[30] C. Ge, Q. Qu, I. Y.-H. Gu, A. S. Jakola, Neurocomputing 2019, 350, 60.
[31] M. N. I. Qureshi, S. Ryu, J. Song, K. H. Lee, B. Lee, Front. Aging Neu-

rosci. 2019, 11, 11.
[32] H. Wang, Y. Shen, S. Wang, T. Xiao, L. Deng, X. Wang, X. Zhao, Neu-

rocomputing 2019, 333, 333.
[33] D. P. Devanand, G. Pradhaban, X. Liu, A. Khandji, S. De Santi, S. Se-

gal, H. Rusinek, G. H. Pelton, L. S. Honig, R. Mayeux, Y. Stern, M. H.
Tabert, M. J. de Leon, Neurology 2007, 68, 828.

[34] B. F. Jones, J. Barnes, H. B. Uylings, N. C. Fox, C. Frost, M. P. Witter,
P. Scheltens, Cereb Cortex 2006, 16, 16.

[35] R. J. Killiany, B. T. Hyman, T. Gomez-Isla, M. B. Moss, R. Kiki-
nis, F. Jolesz, R. Tanzi, K. Jones, M. S. Albert, Neurology 2002, 58,
1188.

[36] S. Adaszewski, J. Dukart, F. Kherif, R. Frackowiak, B. Draganski, Neu-
robiol. Aging 2013, 34, 2815.

[37] C. Hinrichs, V. Singh, L. Mukherjee, G. Xu, M. K. Chung, S. C. John-
son, NeuroImage 2009, 48, 138.

[38] M. Liu, D. Zhang, D. Shen, Hum. Brain Mapp. 2015, 36, 36.
[39] Y. Zhan, H. Yao, P. Wang, B. Zhou, Z. Zhang, Y. Guo, N. An, J.

Ma, X. Zhang, Y. Liu, IEEE J. Select. Topics Signal Proces. 2016, 10,
1182.

[40] G. Varoquaux, NeuroImage 2018, 180, 68.
[41] M. Rozycki, T. D. Satterthwaite, N. Koutsouleris, G. Erus, J. Doshi, D.

H. Wolf, Y. Fan, R. E. Gur, R. C. Gur, E. M. Meisenzahl, C. Zhuo, H.
Yin, H. Yan, W. Yue, D. Zhang, C. Davatzikos, Schizophrenia Bulletin
2018, 44, 1035.

[42] Q. Ma, T. Zhang, M. V. Zanetti, H. Shen, T. D. Satterthwaite, D. H.
Wolf, R. E. Gur, Y. Fan, D. Hu, G. F. Busatto, C. Davatzikos, NeuroIm-
age: Clin. 2018, 19, 476.

[43] C. W. Woo, L. J. Chang, M. A. Lindquist, T. D. Wager, Nat. Neurosci.
2017, 20, 365.

[44] S. J. Teipel, A. Wohlert, C. Metzger, T. Grimmer, C. Sorg, M. Ewers,
E. Meisenzahl, S. Kloppel, V. Borchardt, M. J. Grothe, M. Walter, M.
Dyrba, NeuroImage: Clin. 2017, 14, 183.

[45] M. Xia, T. Si, X. Sun, Q. Ma, B. Liu, L. Wang, J. Meng, M. Chang, X.
Huang, Z. Chen, Y. Tang, K. Xu, Q. Gong, F. Wang, J. Qiu, P. Xie, L. Li,
Y. He, D. I.-M. D. D. W. Group, NeuroImage 2019, 189, 700.

[46] E. Feczko, O. Miranda-Dominguez, M. Marr, A. M. Graham, J. T.
Nigg, D. A. Fair, Trends Cognit. Sci. 2019, 23, 584.

[47] C. Dansereau, Y. Benhajali, C. Risterucci, E. M. Pich, P. Orban, D.
Arnold, P. Bellec, NeuroImage 2017, 149, 220.

[48] J. Sepulcre, M. J. Grothe, F. d’Oleire Uquillas, L. Ortiz-Teran, I. Diez,
H. S. Yang, H. I. L. Jacobs, B. J. Hanseeuw, Q. Li, G. El-Fakhri, R. A.
Sperling, K. A. Johnson, Nat. Med. 2018, 24, 1910.

[49] A. Torkamani, N. E. Wineinger, E. J. Topol, Nat. Rev. Genet. 2018, 19,
581.

[50] C. Gaiteri, S. Mostafavi, C. J. Honey, P. L. De Jager, D. A. Bennett,
Nat. Rev. Neurol. 2016, 12, 413.

[51] C. H. Tan, L. W. Bonham, C. C. Fan, E. C. Mormino, L. P. Sugrue, I.
J. Broce, C. P. Hess, J. S. Yokoyama, G. D. Rabinovici, B. L. Miller,
K. Yaffe, G. D. Schellenberg, K. Kauppi, D. Holland, L. K. McEvoy, W.
A. Kukull, D. Tosun, M. W. Weiner, R. A. Sperling, D. A. Bennett, B.
T. Hyman, O. A. Andreassen, A. M. Dale, R. S. Desikan, Brain 2019,
142, 142.

[52] L. K. Axelrud, M. L. Santoro, D. S. Pine, F. Talarico, A. Gadelha, G.
G. Manfro, P. M. Pan, A. Jackowski, F. Picon, E. Brietzke, R. Grassi-
Oliveira, R. A. Bressan, E. C. Miguel, L. A. Rohde, H. Hakonarson, Z.
Pausova, S. Belangero, T. Paus, G. A. Salum, Am. J. Psychiatry 2018,
175, 555.

[53] E. C. Mormino, R. A. Sperling, A. J. Holmes, R. L. Buckner, P. L. De
Jager, J. W. Smoller, M. R. Sabuncu, Neurology 2016, 87, 481.

Adv. Sci. 2020, 7, 2000675 2000675 (11 of 12) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

[54] B. W. Kunkle, B. Grenier-Boley, R. Sims, J. C. Bis, V. Damotte, A. C.
Naj, A. Boland, M. Vronskaya, S. J. van der Lee, A. Amlie-Wolf, C. Bel-
lenguez, A. Frizatti, V. Chouraki, E. R. Martin, K. Sleegers, N. Badari-
narayan, J. Jakobsdottir, K. L. Hamilton-Nelson, S. Moreno-Grau, R.
Olaso, R. Raybould, Y. Chen, A. B. Kuzma, M. Hiltunen, T. Morgan,
S. Ahmad, B. N. Vardarajan, J. Epelbaum, P. Hoffmann, M. Boada,
et al., Nat. Genet. 2019, 51, 51.

[55] B. Dubois, S. Epelbaum, F. Nyasse, H. Bakardjian, G. Gagliardi,
O. Uspenskaya, M. Houot, S. Lista, F. Cacciamani, M.-C. Potier, A.
Bertrand, F. Lamari, H. Benali, J.-F. Mangin, O. Colliot, R. Genthon,
M.-O. Habert, H. Hampel, C. Audrain, A. Auffret, F. Baldacci, I. Be-
nakki, H. Bertin, L. Boukadida, E. Cavedo, P. Chiesa, L. Dauphinot, A.
Dos Santos, M. Dubois, S. Durrleman, et al., Lancet Neurol. 2018, 17,
17.

[56] J. M. Schott, S. J. Crutch, M. M. Carrasquillo, J. Uphill, T. J. Shake-
speare, N. S. Ryan, K. X. Yong, M. Lehmann, N. Ertekin-Taner, N. R.
Graff-Radford, B. F. Boeve, M. E. Murray, Q. U. Khan, R. C. Petersen,
D. W. Dickson, D. S. Knopman, G. D. Rabinovici, B. L. Miller, A. S.
Gonzalez, E. Gil-Neciga, J. S. Snowden, J. Harris, S. M. Pickering-
Brown, E. Louwersheimer, W. M. van der Flier, P. Scheltens, Y. A. Pi-
jnenburg, D. Galasko, M. Sarazin, B. Dubois, et al., Alzheimer’s De-
mentia 2016, 12, 862.

[57] M. R. Brier, B. Gordon, K. Friedrichsen, J. McCarthy, A. Stern, J. Chris-
tensen, C. Owen, P. Aldea, Y. Su, J. Hassenstab, N. J. Cairns, D. M.
Holtzman, A. M. Fagan, J. C. Morris, T. L. Benzinger, B. M. Ances, Sci.
Transl. Med. 2016, 8, 338ra66.

[58] D. M. Holtzman, A. Goate, J. Kelly, R. Sperling, Sci. Transl. Med. 2011,
3, 3ps148.

[59] E. Pellegrini, L. Ballerini, M. Hernandez, F. M. Chappell, V. Gonzalez-
Castro, D. Anblagan, S. Danso, S. Munoz-Maniega, D. Job, C. Per-
net, G. Mair, T. J. MacGillivray, E. Trucco, J. M. Wardlaw, Alzheimers
Dement (Amst) 2018, 10, 10.

[60] A. Aoyagi, C. Condello, J. Stohr, W. Yue, B. M. Rivera, J. C. Lee, A.
L. Woerman, G. Halliday, S. van Duinen, M. Ingelsson, L. Lannfelt,
C. Graff, T. D. Bird, C. D. Keene, W. W. Seeley, W. F. DeGrado, S. B.
Prusiner, Sci. Transl. Med. 2019, 11, 490.

[61] C. R. Jack Jr., D. A. Bennett, K. Blennow, M. C. Carrillo, B. Dunn, S.
B. Haeberlein, D. M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E.
Liu, J. L. Molinuevo, T. Montine, C. Phelps, K. P. Rankin, C. C. Rowe,
P. Scheltens, E. Siemers, H. M. Snyder, R. Sperling, Alzheimer’s De-
mentia 2018, 14, 535.

[62] S. Spasov, L. Passamonti, A. Duggento, P. Lio, N. Toschi, NeuroImage
2019, 189, 276.

[63] B. A. Gordon, T. M. Blazey, Y. Su, A. Hari-Raj, A. Dincer, S. Flores, J.
Christensen, E. McDade, G. Wang, C. Xiong, N. J. Cairns, J. Hassen-
stab, D. S. Marcus, A. M. Fagan, C. R. Jack Jr., R. C. Hornbeck, K. L.
Paumier, B. M. Ances, S. B. Berman, A. M. Brickman, D. M. Cash, J.
P. Chhatwal, S. Correia, S. Forster, N. C. Fox, N. R. Graff-Radford, C.
la Fougere, J. Levin, C. L. Masters, M. N. Rossor, Lancet Neurol. 2018,
17, 241.

[64] A. Abi-Dargham, G. Horga, Nat. Med. 2016, 22, 1248.
[65] E. Duzel, J. Acosta-Cabronero, D. Berron, G. J. Biessels, I. Bjorkman-

Burtscher, M. Bottlaender, R. Bowtell, M. V. Buchem, A. Cardenas-
Blanco, F. Boumezbeur, D. Chan, S. Clare, M. Costagli, L. de
Rochefort, A. Fillmer, P. Gowland, O. Hansson, J. Hendrikse, O. Kraff,
M. E. Ladd, I. Ronen, E. Petersen, J. B. Rowe, H. Siebner, T. Stoecker,
S. Straub, M. Tosetti, K. Uludag, A. Vignaud, J. Zwanenburg, O. Speck,
Alzheimers Dement (Amst) 2019, 11, 11.

[66] X. He, W. Qin, Y. Liu, X. Zhang, Y. Duan, J. Song, K. Li, T. Jiang, C. Yu,
Human Brain Mapping 2014, 35, 3446.

[67] Z. Zhang, Y. Liu, T. Jiang, B. Zhou, N. An, H. Dai, P. Wang, Y. Niu, L.
Wang, X. Zhang, Neuroimage 2012, 59, 59.

[68] J. Li, D. Jin, A. Li, B. Liu, C. Song, P. Wang, D. Wang, K. Xu, H. Yang,
H. Yao, B. Zhou, A. Bejanin, G. Chetelat, T. Han, J. Lu, Q. Wang, C. Yu,
X. Zhang, Y. Zhou, X. Zhang, T. Jiang, Y. Liu, Y. Han, Sci. Bull. 2019,
64, 64.

[69] K. Zhao, Y. Ding, Y. Han, Y. Fan, A. F. Alexander-Bloch, T. Han, D. Jin,
B. Liu, J. Lu, C. Song, P. Wang, D. Wang, Q. Wang, K. Xu, H. Yang, H.
Yao, Y. Zheng, C. Yu, B. Zhou, X. Zhang, Y. Zhou, T. Jiang, X. Zhang,
Y. Liu, Sci. Bull. 2020, https://doi.org/10.1016/j.scib.2020.04.003.

[70] D. Jin, P. Wang, A. Zalesky, B. Liu, C. Song, D. Wang, K. Xu, H. Yang,
Z. Zhang, H. Yao, B. Zhou, T. Han, N. Zuo, Y. Han, J. Lu, Q. Wang, C.
Yu, X. Zhang, X. Zhang, T. Jiang, Y. Zhou, Y. Liu, Hum. Brain Mapp.
2020.

[71] D. Jin, J. Xu, K. Zhao, F. Hu, Z. Yang, B. Liu, T. Jiang, Y. Liu, 2019 IEEE
16th International Symposium on Biomedical Imaging (ISBI), 2019,
pp. 1047–1051.

[72] K. He, X. Zhang, S. Ren, J. Sun, 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), IEEE, 2016, pp. 770–
778.

[73] V. Nair, G. E. Hinton, Proceedings of the 27th International Conference
on Machine Learning (ICML-10), 2010, pp. 807–814.

Adv. Sci. 2020, 7, 2000675 2000675 (12 of 12) © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


