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Searching for optimal machine 
learning model to classify mild 
cognitive impairment (MCI) 
subtypes using multimodal MRI 
data
Tatsuya Jitsuishi & Atsushi Yamaguchi*

The intervention at the stage of mild cognitive impairment (MCI) is promising for preventing 
Alzheimer’s disease (AD). This study aims to search for the optimal machine learning (ML) model to 
classify early and late MCI (EMCI and LMCI) subtypes using multimodal MRI data. First, the tract-based 
spatial statistics (TBSS) analyses showed LMCI-related white matter changes in the Corpus Callosum. 
The ROI-based tractography addressed the connected cortical areas by affected callosal fibers. We 
then prepared two feature subsets for ML by measuring resting-state functional connectivity (TBSS-
RSFC method) and graph theory metrics (TBSS-Graph method) in these cortical areas, respectively. 
We also prepared feature subsets of diffusion parameters in the regions of LMCI-related white matter 
alterations detected by TBSS analyses. Using these feature subsets, we trained and tested multiple 
ML models for EMCI/LMCI classification with cross-validation. Our results showed the ensemble ML 
model (AdaBoost) with feature subset of diffusion parameters achieved better performance of mean 
accuracy 70%. The useful brain regions for classification were those, including frontal, parietal lobe, 
Corpus Callosum, cingulate regions, insula, and thalamus regions. Our findings indicated the optimal 
ML model using diffusion parameters might be effective to distinguish LMCI from EMCI subjects at the 
prodromal stage of AD.

Abbreviations
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ADNI  Alzheimer’s disease neuroimaging initiative
EEG  Electroencephalogram
MCI  Mild cognitive impairment
EMCI  Early MCI
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MMSE  Mini-mental state examination
MRI  Magnetic resonance imagination
fMRI  Functional MRI
rs-fMRI  Resting-state fMRI
RSFC  Resting-state functional connectivity
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ROI  Range of interest
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KNN  K-nearest neighbor algorithm
LR  Logistic Regression
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GBC  Gradient boosting classifier
AdaBoost  Adaptive Boosting
CC  Corpus Callosum
HCP  Human connectome project
HCP-MMP  Human Connectome Project multimodal parcellation
MNI  Montreal Neurological Institute
FA  Fractional anisotropy
gFA  Generalized FA
MD  Mean diffusivity
DMN  Default mode network
RSN  Resting-state network
ACC   Accuracy
ROC  Receiver operating characteristic
AUC   Area under the curve
WM  White matter
GM  Grey matter

Alzheimer’s disease (AD) is the most common cause of dementia developing over a period of years, character-
ized by cognitive and behavioral problems (NIH,https:// www. ninds. nih. gov/). The mild cognitive impairment 
(MCI) is considered as a transitional stage between aging and  AD1. There is no definitive cure available to date 
when subject is once diagnosed AD, which is in the later disease stage. The early detection and therapeutic 
intervention at the preclinical or prodromal stage is promising to prevent dementia. The pathophysiological 
process of AD reportedly starts two decades or more before symptoms. One-third of MCI develop AD within 
five years’ follow-up. Therefore, this preclinical or prodromal phase, especially at the MCI stage, provides an 
opportunity for preventive  intervention2,3. Alzheimer’s disease neuroimaging initiative (ADNI) is the multisite 
observational study of normal aging, MCI, and AD. MCI subjects are sub-classed in two subtypes, early MCI 
(EMCI) and late MCI (LMCI) in ADNI, based on the WMS-R Logical Memory II Story A score. The EMCI is 
considered to reflect those at the earlier point in the clinical spectrum, while LMCI is at the later point to pro-
gress to  AD4–6. Since EMCI and LMCI subtypes were classified by the severity of amnestic impairment through 
a single memory score, it could account for low specificity and even misclassifications. To find potentially high-
sensitive biomarkers that change with disease progression might assist the more precise disease staging, which 
can reduce the number of AD patients through early intervention. Especially, the stage of EMCI might be optimal 
for disease-modification interventions. Thus, there is an increasing amount of attention to identify the subtle 
alterations among MCI  subjects4–10.

The integrity of white matter microstructure is commonly assessed with fractional anisotropy (FA) and mean 
diffusivity (MD) owing to anisotropic proton diffusion. The directional dependence of proton diffusion is quanti-
fied as FA, while the magnitude of diffusivity is quantified as MD. The reduced FA and elevated MD would reflect 
the neuronal loss and disruption of myelin sheaths in degenerative  brains11–13. The tract-based spatial statistics 
(TBSS) was developed as a voxel-wise analysis to improve the sensitivity, objectivity, and interpretability of multi-
subject diffusion imaging data by the statistics with FA  skeleton14. On the other hand, the functional MRI is based 
on the blood oxygenation level-dependent (BOLD) signals to assess the neural activity in different parts of the 
 brain15,16. The functional connectivity of default mode network (DMN) was selectively altered in AD patients as 
well as MCI subjects by resting-state functional MRI (rs-fMRI)  analyses17–19. Several graph-theoretical parameters 
(e.g. global or local efficiency, small-worldness) have been used to measure characteristics of functional brain 
networks. Although conclusions are inconsistent, AD patients showed alterations in the functional segregation, 
hub connectivity, modular integrity, and/or the small-world  network20–22.

Several studies with machine learning (ML) approach have applied single- or multi-modal neuroimaging 
data for classification of MCI subtypes. Gray et al. used the information of FDG-PET (18F-fluorodeoxyglucose-
positron emission tomography)23. Nozadi et al. also used PET images for classification, comparing FDG and 
Amyloid (AV-45) PET  biomarkers24. Shi and Liu extracted features from rs-fMRI  signals25, and Sheng et al. 
processed thousands of brain network features by graph theory for  classification26. Wee et al. have indicated the 
multi-modal neuroimaging approach with structural and functional connectivity analyses significantly improves 
the identification accuracy of  MCI27. Goryawala et al. combined MRI volumetric measures with neuropsycho-
logical scores to classify MCI  subtypes28. In general, the white matter damage, measured by diffusion MRI, is 
considered to precede grey matter atrophy in AD  patients29,30. However, the number of ML models using diffusion 
MRI is limited to classify MCI subtypes.

In the present study, we hypothesized the subtle brain alterations could be detected earlier in the white matter 
microstructures of MCI subjects, which prompted us to search for optimal diffusion MRI-based ML models for 
EMCI/LMCI classification. We first investigated the alterations in the white matter integrity by TBSS in MCI 
subjects. Next, we addressed the connected cortical areas by ROI-based tractography. Then to obtain features 
for classification, we analyzed the resting-state functional connectivity (RSFC) and graph-theoretical metrics by 
rs-fMRI. We also prepared two feature subsets of diffusion parameters (FA, MD) in the regions of LMCI-related 
white matter changes detected by TBSS. Using these four feature subsets, we employed multiple ML models for 
EMCI/LMCI classification and assessed the performance with cross-validation.

https://www.ninds.nih.gov/
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Material and methods
Ethical statement. All individual imaging data, shared publicly with general scientific community, was 
obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) based on DATA USE AGREEMENT 
(http:// adni. loni. usc. edu/). All methods and protocols were approved by the Research Ethics Committee of 
Chiba University School of Medicine.

All the methods were performed in accordance with relevant guidelines and regulations.

ADNI participants. Data used in the present article was obtained from the ADNI database (adni.loni.usc.
edu). The ADNI was launched in 2003 as a public–private partnership, led by Principal Investigator Michael W. 
Weiner, MD. For up-to-date information, see www. adni- info. org. ADNI-3 began in 2016 and includes scientists 
at 59 research centers in the United States and Canada. To ensure sufficient statistical power to assess differences 
in data collected with different protocols in each scanning site, we used the available data only in ADNI-3 at 
the time of download. This study reflects the data available on December 2020. In ADNI, MCI subject is diag-
nosed on the criteria; (1) subjective memory concern reported by the participant, study partner, or clinician; 
(2) abnormal memory function documented by scoring within the education adjusted ranges on the Logical 
Memory II subscale (Delayed Paragraph Recall, Paragraph A only) from the Wechsler Memory Scale-Revised 
(the maximum score of 25); (3) Mini-Mental State Examination (MMSE) score between 24 and 30; (4) global 
Clinical Dementia Rating (CDR) score of 0.5, with a Memory Box score of at least 0.5; and (5) general cognition 
and functional performance sufficiently preserved such that a diagnosis of AD could not be made. Participants 
used in the present study were 34 and 32 individuals diagnosed with early MCI (EMCI) and late MCI (LMCI) 
respectively, based on the WMS-R Logical Memory II Story A score. The EMCI subjects were recruited with 
memory function approximately 1.0 SD below, while those of LMCI were approximately 1.5 SD below expected 
education adjusted  norms2,4,5,7. The specific cutoff scores were as follows (a maximum score of 25): EMCI was 
diagnosed for a score of 9–11 for 16 or more years of education; a score of 5–9 for 8–15 years of education; or a 
score of 3–6 for 0–7 years of education. LMCI was diagnosed for a score of 8 for 16 or more years of education; 
a score of 4 for 8–15 years of education; or a score of 2 for 0–7 years of education. Demographic and neuropsy-
chological information in this study were shown in Table 1 and Supplementary Figs. S1, S2.

MRI acquisition protocols in ADNI. ADNI-3 imaging is done exclusively on 3  T scanners. The MRI 
acquisition of ADNI-3 consists of Participant Scan (3 Plane Localizer, Accelerated Sagittal MPRAGE, Sagittal 3D 
FLAIR, Axial T2 STAR, Axial 3D PASL, Axial DTI, Field Mapping, Axial rs-fMRI, HighResHippocampus) and 
Phantom Scan (3 Plane Localizer, QC Phantom MPRAGE). The scanning protocols of T1-weighted MRI (voxel 
size = 1  mm3), diffusion-weighted image (DWI) (voxel size = 2  mm3), functional MRI are described in detail on 
the ADNI website (http:// adni. loni. usc. edu/ metho ds/ mri- tool/ mri- analy sis/). ADNI-3 utilized diffusion MRI 
protocols for 3 T Siemens, Philips, and GE scanners, using 2.0 mm isotropic voxels with b = 0 and 1000 s/mm2 
weighted volumes. The DICOM images, acquired from ADNI-3 database, were converted to NIFTI format with 
the dcm2nii part of MRIcroGL (https:// www. nitrc. org/ proje cts/ dcm2n ii/).

Diffusion MRI preprocessing. Diffusion MRI data were preprocessed using MRtrix3.031, FSL 6.0 (www. 
fsl. fmrib. ox. ac. uk)32, and advanced normalization tools (ANTs). We conducted the preprocessing process based 
on the recommendations by Maximov et al.33. The following steps were conducted: (1) noise correction using 
Marchenko-Pastur principal component analysis (MPPCA) (’dwidenoise’; MRtrix3.0 command), (2) correction 
for Gibbs ringing artifacts (’mrdegibbs’; MRtrix3.0 command), (3) motion correction, eddy current, and sus-
ceptibility distortion correction (’dwifslpreproc’; MRtrix3.0 command), (4) bias field correction calculated by 
advanced normalization tools (ANTs), (5) DTIFIT in FSL fits a diffusion tensor model at each voxel on the pre-
processed diffusion image.

Diffusion MRI tractography. Deterministic fiber tracking was conducted as previously  described34,35. 
Briefly, the reconstruction of tractography was performed by ROI (region of interest)-based approach with DSI 
Studio (http:// dsi- studio. labso lver. org). After fiber tracts were generated by whole-brain seeding, the tracts run-
ning through ROIs were selected for analysis. The parameters for fiber tracking included a step size of 0.2 mm, a 
minimum and maximum fiber length of 20 mm and 800 mm respectively, and a turning angle threshold of 60°. 
This progression was repeated until the quantitative anisotropy (QA) of the fiber orientation dropped below the 
default threshold, until fiber tract continuity no longer met the progression criteria, or until tracking reached to 
10,000,000  seeds34–36.

Table 1.  Demographic and neuropsychological Information from ADNI-3 dataset. MMSE Mini-mental State 
Examination, MoCA Montreal Cognitive Assessment, ADAS-Cog AD Assesment Scale-Cognitive Scale, SD 
standard deviation [min–max].

Gender (M/F) Age (mean ± SD) MMSE (mean ± SD) MoCA (mean ± SD) ADAS-Cog (mean ± SD)

EMCI (n = 34) 24/10 75.2 ± 7.1 [62–91] 27.85 ± 2.95 [18–30] 22.97 ± 3.97 [14–29] 13.79 ± 10.34 [0.33–48]

LMCI (n = 32) 16/16 75.8 ± 6.5 [61–85] 24.72 ± 6.34 [9–30] 21.29 ± 6.86 [2–29] 19.24 ± 13.39 [1.6–54.6]

http://adni.loni.usc.edu/
http://www.adni-info.org
http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
https://www.nitrc.org/projects/dcm2nii/
http://www.fsl.fmrib.ox.ac.uk
http://www.fsl.fmrib.ox.ac.uk
http://dsi-studio.labsolver.org
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The HCP-MMP1.0 was used for the parcellation of cerebrum, which is a surface-based coordinate system 
(“greyordinates”) created in the CIFTI  format37. In this study, the built-in HCP MMP1.0 atlas of DSI Studio was 
used to convert all 180 areas from a surface-based coordinate system to volumetric coordinates.

The quantitative tractography analysis was conducted, in which the ‘connectivity matrix’ function in DSI 
Studio was used to generate matrices representing the number of fibers ending in regions of a per-subject aligned 
HCP MMP1.0 atlas. After the bilateral connectivity matrices were generated, the number of streamlines cor-
responding to each connection was divided by the total number of each  tract34,35.

HCP1065 template. The HCP 1065 template was constructed from a total of 1065 subjects’ diffusion MRI 
data from the Human Connectome Project (2017 Q4, 1200-subject release). The HCP1065 data are shared under 
the WU-Minn HCP open access data use term. The HCP1065 registration is based on the nonlinear ICBM152 
2009a space. A multishell diffusion scheme was used, and the b-values were 1000, 2000, 3000 s/mm2. The num-
ber of diffusion sampling directions was 90, 90, and 90, respectively. The in-plane resolution was 1.25 mm, with 
the slice thickness was 1.25 mm. The diffusion data were reconstructed in the MNI space using q-space diffeo-
morphic reconstruction to obtain the spin distribution  function36. A diffusion sampling length ratio of 1.7 was 
used, and the output resolution was 1 mm. The analysis was conducted using DSI Studio (http:// dsi- studio. labso 
lver. org).

Tract-based spatial statistics (TBSS). The preprocessed diffusion MRI imaging data from ADNI-3 were 
further processed with the DSI Studio (http:// dsi- studio. labso lver. org). The diffusion data were reconstructed in 
the MNI space using q-space diffeomorphic reconstruction (QSDR), an extension of the generalized q-sampling 
imaging (GQI), to obtain the spin distribution function (SDF)36. GQI obtain the SDF from the shell sampling 
scheme used in q-ball imaging (QBI), which is more sensitive to intravoxel orientational heterogeneity than clas-
sical diffusion tensor imaging (DTI) algorithm. Generalized fractional anisotropy (gFA) is considered as the QBI 
analog of DTI-derived  FA38, which is the most widely used QBI measure. Since Corbo et al. (2014) showed the 
advantage of gFA-based TBSS compared to FA-based TBSS, we conducted gFA-based TBSS using gFA instead of 
FA as described  previously39. In this study, ‘gFA’ means generalized FA, while ‘FA’ means DTI-FA.

After obtaining the gFA or MD (mean diffusivity) image from reconstructed diffusion data by DSI studio, 
we conducted the voxel-wise statistical analysis of gFA or MD data using TBSS (Tract-Based Spatial Statistics) 
of FSL,  respectively14,32. TBSS projects all subjects’ gFA or MD data onto the mean gFA or MD tract skeleton 
respectively, before applying voxelwise cross-subject statistics. TBSS aims to improve the sensitivity, objectiv-
ity, and interpretability of analysis of multi-subject diffusion imaging studies (https:// fsl. fmrib. ox. ac. uk). For 
all TBSS analyses, p < 0.05 was considered significant. Since the null distribution is not known, nonparametric 
permutation tests were used for thresholding on statistic maps to detect differences in FA between EMCI and 
LMCI subjects. Threshold-free cluster enhancement (TFCE) was applied to find significant clusters of voxels 
(p < 0.05) and correct multiple comparisons for family-wise error (FWE).

Resting-state functional MRI (rs-fMRI). Functional connectivity (FC) was analyzed with CONN-fMRI 
toolbox for the Statistical Parametric Mapping (SPM12), which is a MATLAB-based cross-platform software 
(http:// www. conn- toolb ox. org). Briefly, the resting-state data, band-pass filtered (0.008–0.09  Hz), were pro-
cessed by CONN, including slice-timing correction, realignment, individual structural–functional image co-
registration, MNI template normalization, and spatial smoothing. White matter, CSF (cerebrospinal fluid), and 
physiological noise source reduction were taken as confounders with the implemented CompCor  strategy40.

The ROI-to-ROI fMRI analysis basically computes the temporal correlation of BOLD activity between distinct 
regions from a given area to all other areas using a General Linear Model (GLM) approach. For the segmentation 
of cortical areas, DSI studio-built in HCP MMP1.0 atlas (http:// dsi- studio. labso lver. org) was incorporated to 
CONN for FC analyses. All FC measures were available in CONN for each subject and each condition (first-
level analyses). Subject-specific contrast images reflecting standardized correlation coefficients were obtained 
for further analyses. The correlation coefficient (r) was converted to the normally distributed variable (z) by 
Fisher’s z-transformation.

Graph measures (ROI-level). With the graph theory analysis in CONN-toolbox (https:// web. conn- toolb 
ox. org/ fmri- metho ds/ conne ctivi ty- measu res/ graphs- roi- level), we explored resting-state functional connectiv-
ity (RSFC) between brain areas by the ROI-to-ROI approach. All ROI-level graph measures are based on nondi-
rectional graphs with nodes (ROIs) and edges (suprathreshold connections). For each subject, a graph adjacency 
matrix A is computed by thresholding the associated ROI-to-ROI Correlation (RRC) matrix r by an absolute 
or relative threshold. Then, based on the resulting graphs, a number of measures can be computed addressing 
topological properties of each ROI within the graph as well as of the entire network of  ROIs41,42.

Machine learning (ML)–based classifications. We utilized the scikit-learn (https:// scikit- learn. org/), a 
library for machine learning (ML) in Python 3, to conduct multiple ML classification  algorithms43. Based on the 
selected feature subsets, ML models were adopted by using several classifiers, including support vector machine 
(SVM), K-nearest neighbor (KNN), logistic regression (LR), random forest (RF), gradient boosting classifier 
(GBC), and Adaptive boosting (AdaBoost)27,44,45. SVM, a supervised learning method, searches for an optimal 
separating hyperplane between classes, which maximizes the margin. LR is the statistical technique used to 
predict the relationship between the dependent and the independent variable, where the dependent variable is 
binary in nature. K-nearest neighbors (KNN), a type of supervised learning algorithm, tries to predict the cor-
rect class for the test data by calculating the distance between the test data and all the training points. RF, GBC, 

http://dsi-studio.labsolver.org
http://dsi-studio.labsolver.org
http://dsi-studio.labsolver.org
https://fsl.fmrib.ox.ac.uk
http://www.conn-toolbox.org
http://dsi-studio.labsolver.org
https://web.conn-toolbox.org/fmri-methods/connectivity-measures/graphs-roi-level
https://web.conn-toolbox.org/fmri-methods/connectivity-measures/graphs-roi-level
https://scikit-learn.org/
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and AdaBoost are ensemble ML algorithms, based on the idea of creating a highly accurate prediction rule by 
boosting or bagging many relatively weak and inaccurate rule to improve generalizability/robustness over a 
single  estimator44,45.

Ten-fold cross-validation (CV) was used for the evaluation of each ML  model27. We used the stratified cross-
validator ‘StratifiedKFold (n_splits = 10, random_state = 0)’ of scikit-learn tool (https:// scikit- learn. org/) in all the 
evaluations, which enabled us to compare the classification performance based on the same conditions. The test 
portion was hold out exclusively for testing (evaluation). Briefly the data were split into ‘training’ and ‘test’ sets. 
Models were trained using only the ‘training’ set, and model performance was assessed using the only ‘test’ set. 
The classification performance of different classifiers was evaluated using accuracy (ACC), precision, recall, F1 
score, which were calculated based on the confusion matrix of classification results. The area under the receiver 
operating characteristic curve (AUC(ROC)) was calculated using ‘roc_ auc’ in the scikit-learn tool (https:// 
scikit- learn. org/). We took the mean of each metric to evaluate classification performance. The definitions of 
ACC, precision, recall, and F1 score are given as follows: ACC = (TP + TN)/(TP + TN + FP + FN), precision = TP/
(TP + FP), Recall = TP/(TP + FN), F1 score = 2 * TP/(2 * TP + FP + FN), where TP, TN, FP, and FN represent the 
numbers of true positive, true negative, false positive, and false negative,  respectively27,45.

Feature extraction. Total four feature subsets were prepared for ML-based classifiers per subject. Each 
subject’s feature subset contained 12–36 feature columns and the last column of class labels (i.e. EMCI; label 0, 
LMCI; label 1). FA-based TBSS, MD-based TBSS method; We measured FA and MD values in the cortical areas of 
LMCI-related white matter changes, detected by gFA-based TBSS (a feature vector of 14 elements; 14 = 7 regions 
x (mean FA + MD)) and MD-based TBSS (a feature vector of 24 elements; 24 = 12 regions x (mean FA + MD)), 
respectively. TBSS-RSFC, TBSS-Graph method; We first addressed the cortical areas that were connected by 
affected callosum fibers, and then we conducted rs-fMRI analyses to calculate the resting-state functional con-
nectivity (RSFC) and graph-theoretical metrics in those cortical areas, respectively. Using ROI-to-ROI binary 
correlation matrix (360-by-360 matrix based on HCP-MMP1.0 atlas) in each subject, we obtained the functional 
correlation coefficient (r) between connected cortical areas, which was transformed to z value with Fisher r-to-z 
transformation (i.e. TBSS-RSFC method). The TBSS-RSFC method resulted in a feature vector with 12 elements/
subject (12 = correlation coefficient (z) × 12 connected areas). We also measured the 2 graph-theory metrics of 
representative functional segregation (i.e. clustering coefficient, local efficiency) in the cortical areas by apply-
ing graph theory on rs-fMRI analyses (i.e. TBSS-Graph method) with CONN-fMRI toolbox for SPM12. The 
TBSS-Graph method resulted in a feature vector with 36 elements/subject (36 = 2 graph-theory metrics × 18 
HCP-MMP1.0 areas).

Results
The LMCI-related white matter (WM) alterations by gFA-based TBSS. To search for the optimal 
ML model for EMCI/LMCI classification, we first used diffusion MRI dataset in ADNI database (as flowchart 
in Fig. 1). The gFA-based TBSS indicated the LMCI-related white matter (WM) changes in the Corpus Cal-
losum (CC), the largest bundles of commissural fibers (Fig.  2A). The LMCI-related WM changes, shown in 
Fig. 2A, were sub-classed into the anterior ROIs (α, a), middle ROIs (β, b), and posterior ROIs (γ, c, and δ) in 
the CC (Fig. 2B). Then to address which cortical areas are possibly connected by the callosal fibers inter-hemi-
spherically, we conducted fiber tracking using the areas of LMCI-related WM changes as ROIs in the template 
brain (HCP1065) (Fig. 2C). We then quantified the cortical areas in which each bundle of streamlines project 
by cortical endpoint analyses. The tables in Fig. 2D listed the top 3 of cortical areas connected by streamlines 
running through each pair of ROIs, which were represented overlaid on the template brain (Fig. 2E). The corti-
cal endpoint analyses showed the streamlines, passing through the ROIs (α-a), connect the frontal superior and 
middle gyri (10d, p10p, 9p, 9a) in the frontal lobes (Fig. 2C,E). Those, passing through the ROIs (β, b), connected 
superior motor and precentral areas (SFL, SCEF, 6mp) (Fig. 2C,E). Those, passing through the ROIs (γ-c) and 
(δ), connect the cortical regions, including paracentral, postcentral cortices (3b, 5mv), precuneus (7Am), supe-
rior parietal lobes (5L, 7AL, 7PC), and occipital visual areas (V3, V3A), respectively (Fig. 2C,E). The table in 
Fig. 2F indicates the mean diffusion parameter (mean FA and MD) in each ROI of LMCI-related WM changes. 
Although individual variation exists between each region, reduced FA value was observed in ROI α in LMCI 
subjects, compared with EMCI subjects (p < 0.05, t-test). Statistical data of Fig. 2F is in Supplementary Fig.S3.

Feature extraction by ROI-based and Graph theory-based RSFC. Then to extract features to clas-
sify EMCI/LMCI subjects by machine learning (ML), we conducted rs-fMRI analyses to calculate the resting-
state functional connectivity (RSFC) and graph theory metrics in the above cortical areas (Fig. 2E), respectively. 
At first, using ROI-to-ROI binary correlation matrix in each subject, we obtained the functional correlation 
coefficient (z) between connected cortical areas (i.e. TBSS-RSFC method) (12 elements = 1 coefficient (z) × 12 
connected areas in Fig. 2D). On the other hand, previous graph theory-based studies showed the functional 
segregation is impaired in AD  patients21. We then measured the graph-theoretical metrics of representative 
functional segregation, including clustering coefficient and local efficiency, in the cortical areas above by apply-
ing graph theory on rs-fMRI analyses (36 elements = 2 metrics × 18 cortical areas in Fig. 2E), namely the TBSS-
Graph method.

The LMCI-related white matter alterations by MD-based TBSS. We also conducted mean diffusiv-
ity (MD)-based TBSS to investigate LMCI-related WM alterations (Fig. 3A). The LMCI-related WM changes 
were shown in Fig. 3B, which were sub-classed into the frontal, parietal, temporal, occipital lobes, and Corpus 
Callosum (CC) and cingulum, and insula and thalamus regions. We measured the volume  (mm3) of significant 

https://scikit-learn.org/
https://scikit-learn.org/
https://scikit-learn.org/
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clusters of voxels by MD-based TBSS (p < 0.05, TFCE-corrected) in each region of bilateral LMCI-related WM 
changes (Fig. 3C). This result showed the left-hemispheric dominant LMCI-related WM alterations in volume 
(left; 9286, right; 7161  mm3 in total), especially in the frontal lobes (left; 2511, right; 1487), CC and cingulum 
(left; 900, right; 284). We also investigated the mean diffusion parameters (mean FA and MD) in each region of 
LMCI-related changes by MD-based TBSS (Fig. 3D). Although individual variation exists between each region, 
we found higher MD value in the right parietal lobe in LMCI subjects, compared with EMCI subjects. Statistical 
data of Fig. 3D is in Supplementary Fig.S3.

Then we prepared two additional feature subsets of diffusion parameters (FA, MD) in altered WM regions by 
gFA-based TBSS and MD-based TBSS (24 elements = 6 regions/hemisphere × 2 × (mean FA, MD)), respectively.

Machine learning approach and performance for EMCI/LMCI classification. In this study, the 
main purpose was to search for the optimal ML model for EMCI/LMCI classification. Using the four feature 
subsets above, we then adopted multiple ML classifiers to distinguish LMCI from EMCI subjects, including 
support vector machine (SVM), k-nearing neighbors (KNN), decision tree classifier (DTC), Logistic Regression 
(LR), Random Forest (RF), Gradient Boosting Classifier (GBC), and Adaptive Boosting Classifier (AdaBoost). 
We compared the classification performance of these multiple ML classifiers by calculating accuracy (ACC), 
Recall, Precision, F1 score, and area under the curve (AUC) of receiver operation curve (ROC), with tenfold 
cross-validation (CV). We took the mean of each metric to evaluate classification performance. The table showed 
AdaBoost classifier (in gray hatching of Fig. 4A), an ensemble ML algorithm, provides better performance of 
70% accuracy and 79% AUC (of ROC), using features of diffusion parameters by MD-based TBSS.

We investigated which brain regions are useful for EMCI/LMCI classification. The altered WM areas by MD-
based TBSS were sub-classed into six regions, including frontal, parietal, temporal, occipital lobes, Corpus Cal-
losum (CC) and cingulum, and insula and thalamus. In Fig. 4B, then we addressed which combination of these 
regions provide better performance by AdaBoost classifier (i.e., #1 Frontal-Parietal lobe, #2 Temporal-Parietal 
lobe, #3 Temporal-Occipital lobe, #4 Frontal–Temporal lobe, #5 Temporal-Occipital lobe, #6 Corpus Callosum 
(CC)-Cingulum (Cing)-Insula-Thalamus, #7 Frontal-Parietal lobe-Insula-Thalamus, #8 Temporal-Occipital lobe-
CC-Cing-Insula-Thalamus). The table in Fig. 4B showed the EMCI/LMCI classification performance of AdaBoost 
classifier using features from the combination of each region. The features from the #7 regions, including frontal, 
parietal lobes, CC and cingulum, and insula and thalamus, lead to better performance with 71% accuracy and 
73% AUC (in gray hatching of Fig. 4B). In addition, features from the left hemisphere resulted in slightly higher 
performance with 71% AUC (Fig. 4C).

Figure 1.  Flow chart representing Machine learning (ML) approach for EMCI/LMCI classification. The flow 
chart represents the framework of machine learning (ML) algorithm for EMCI/LMCI classification. Step1 
consists of feature extraction by multi-modal methods, including TBSS, tractography, RSFC, and graph theory. 
Step 2 consists of ML models (SVM, KNN, LR, DTC, RF, GBC, AdaBoost) with tenfold cross-validation (CV). 
The dataset was divided into training and test dataset for tenfold CV, calculating the mean ‘accuracy (ACC)’, 
‘recall’, ‘precision’, ‘F1 score’, and ‘AUC(ROC)’. MCI mild cognitive impairment, EMCI early MCI, LMCI late 
MCI, FA fractional anisotropy, MD mean diffusivity, TBSS Tract-based spatial statistics, RSFC resting-state 
functional connectivity, CV cross-validation, ROI range of interest, ML Machine learning, KNN k-nearest 
neighbor algorithm, LR Logistic Regression, DTC Decision Tree Classification, RF Random Forest, SVM 
support vector machine, GBC gradient boosting classifier, AdaBoost Adaptive Boosting, ACC  accuracy, ROC 
Receiver operating characteristic, AUC  Area under the curve.
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Figure 2.  Sequential integration of TBSS and Tractography analyses. (A) The gFA (generalized fractional anisotropy)-based TBSS 
projects all subjects’ gFA data onto a mean gFA tract skeleton before applying voxelwise cross-subject statistics (EMCI vs. LMCI). The 
registered average subjects’ gFA tract skeleton is represented in green, while LMCI-related white matter changes were represented in 
red color. The mean gFA tract skeleton was overlaid on the sagittal, coronal, and axial T1-weighted MRI image (ICBM average brain). 
Left; sagittal view of the left hemisphere, Middle; coronal section, Right; axial view. Significance level was p < 0.05 (EMCI vs. LMCI, 
Threshold Free Cluster Enhancement and Family-Wise Error corrected). (B) The ROIs for fiber tracking, identified as white matter 
alterations by gFA-based TBSS (EMCI vs. LMCI), were shown overlaid on the sagittal, axial, and coronal T1-weighted MRI image 
(ICBM average brain), respectively. The α, β, γ, and δ indicate the ROIs in the Corpus Callosum of the left hemisphere, while the a, b, 
and c indicate those in the right hemisphere. (C) Tractogram, using the altered white matter regions as ROIs, was shown overlaid on 
the sagittal, axial, and coronal T1-weighted MRI image (ICBM average brain), respectively. The streamlines passing through the ROIs 
(α, a), ROIs (β, b), ROIs (γ, c), and ROI (δ), were shown in red, blue, yellow, and green, respectively. (D) The tables show the top 3 of 
cortical areas (%, number of streamlines/total of each tract) identified by endpoint analyses, into which the callosal fibers project inter-
hemispherically. (E) Cortical areas used for TBSS-RSFC and TBSS-Graph method, overlaid on the 3D glass brain (HCP1065). The 
regions in red are cortical areas in the frontal lobe (i.e. 10d, 9a, 9m), those in blue are in the precentral region (i.e. 6mp, SFL, SCEF), 
those in yellow are in the parietal lobe (i.e. 5L, 7AL, 7Am), and those in green are in the occipital lobe (i.e. V3, V3A). (F) The table 
shows mean diffusion parameters (mean FA, MD) in each ROI of LMCI-related white matter changes, which were sub-classed into the 
ROI of α, a, β, b, γ, c, and δ. **p < 0.05 (EMCI vs. LMCI, t-test). Statistical data are in Supplementary Fig. S3. FA fractional anisotropy, 
MD mean diffusivity, TBSS Tract-based spatial statistics, ML machine learning, MCI mild cognitive impairment, EMCI early MCI, 
LMCI late MCI, RSFC resting-state functional connectivity, ROI range of interest, SD standard deviation.
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Figure 3.  MD-based TBSS and Altered white matter regions. (A) The MD-based TBSS projects all subjects’ MD data 
onto a mean MD tract skeleton before applying voxelwise cross-subject statistics (EMCI vs. LMCI). The registered average 
subjects’MD tract skeleton is represented in green, while LMCI-related white matter changes were represented in red color. 
The MD tract skeleton was overlaid on the coronal, sagittal, and axial T1-weighted MRI image (ICBM average brain). Left; 
coronal view, Middle; sagittal view of left and right hemisphere, Right; axial view. Significance level was p < 0.05 (Threshold 
Free Cluster Enhancement and Family-Wise Error corrected). (B) The LMCI-related white matter changes, identified by 
MD-based TBSS (EMCI vs. LMCI), were shown overlaid on the 3D glass average brain (upper images) and T1-weighted MRI 
image (lower images), respectively. The regions in the frontal, parietal, temporal, occipital lobe, Corpus Callosum (CC) and 
cingulum, and insula and thalamus regions were shown in red, yellow, blue, green, purple, and sky blue respectively. (C) The 
table shows the total volume  (mm3) for LMCI-related white matter changes in each hemisphere by MD-based TBSS, which 
were sub-classed into frontal, temporal, parietal, occipital lobe, Corpus Callosum (CC) and cingulum (Cing), and insula and 
thalamus regions. (D) The table show mean diffusion parameters (mean FA and MD) in each ROI for LMCI-related white 
matter changes, which were sub-classed into frontal, temporal, parietal, occipital lobe, Corpus Callosum (CC) and cingulum 
(Cin), and insula and thalamus regions. *p < 0.1, **p < 0.05 (EMCI vs. LMCI, t-test). Statistical data are in Supplementary 
Fig. S3. FA fractional anisotropy, MD mean diffusivity, TBSS Tract-based spatial statistics, CC Corpus Callosum, MCI mild 
cognitive impairment, EMCI early MCI, LMCI late MCI.
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Figure 4.  EMCI/LMCI classification performance in ML models with feature subsets. (A) The table indicates 
the EMCI/LMCI classification performance of ML models (SVM, KNN, DTC, LR, RF, GBC, AdaBoost), 
using four feature subsets by gFA-based TBSS, MD-based TBSS, TBSS-RSFC, and TBSS-Graph method. 
The performance was assessed by measuring mean accuracy (ACC), recall, mean precision, F1 score, and 
AUC (ROC). (B) The useful brain regions for EMCI/LMCI classification. With features extracted from each 
combination of brain regions, the classification performance of AdaBoost was evaluated by measuring mean 
accuracy (ACC), recall, mean precision, F1 score, and AUC (ROC). The brain regions were subclassified into 
each combination of #1. Frontal and Parietal lobe, #2. Temporal and Parietal lobe, #3. Temporal and Occipital 
lobe, #4. Frontal and Temporal lobe, #5. Temporal and Occipital lobe, #6.CC&Cing, Insula& Thalamus regions, 
#7. Frontal and Parietal lobe, Corpus Callosum (CC) and cingulum (Cing), and Insula and Thalamus regions. 
(C) The useful brain hemisphere for EMCI/LMCI classification. With features extracted from the right or left 
hemisphere, the classification performance of AdaBoost was evaluated by measuring mean accuracy (ACC), 
recall, mean precision, F1 score, and AUC (ROC). RSFC resting-state functional connectivity, ROI range of 
interest, ML Machine learning, SVM support vector machine, KNN k-nearest neighbor algorithm, LR Logistic 
Regression, DTC decision tree classifier, RF Random Forest, GBC gradient boosting classifier, ACC  accuracy, 
AUC  Area under the curve, ROC Receiver operating characteristic, CC Corpus Callosum.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:4284  | https://doi.org/10.1038/s41598-022-08231-y

www.nature.com/scientificreports/

Finally, we compared our results to those in previous studies, which used ML classifiers for EMCI/LMCI 
classification (Table 2). Our result of 70% accuracy and 79% AUC by AdaBoost classifier was comparable to those 
in previous reports with 73–87% accuracy and 78–90% AUC 8,24–26,28,46,47.

Discussion
In the current study, we proposed several diffusion MRI-based ML approaches for EMCI/LMCI classification, 
based on the hypothesis that subtle brain changes could be detected earlier in white matter microstructures by 
diffusion MRI. Using four feature subsets extracted from single- or multi-modal MRI data including diffusion-
MRI, we trained and tested multiple ML models and assessed performance with cross-validation. Our results 
indicated the single modal data of diffusion parameters (FA, MD) provide better performance than that of multi-
modal method (TBSS-RSFC, TBSS-Graph method). The diffusion parameters of frontal, parietal lobe, Corpus 
Callosum, cingulum, insula, and thalamus were useful classification factors. In addition, those extracted from left 
hemisphere were slightly more useful for classification than right hemisphere. In general, different neuroimaging 
modalities could provide more essential complementary information than single  modality27. However, our results 
showed the single modal features of diffusion MRI provided higher classification performance.

Our finding of left hemisphere dominant features for classification, which might reflect the more changed 
volumes of white matter in the left hemisphere, is compatible with a previous study. Goryawala et al. showed 
that significant features of brain volumes for EMCI/LMCI classification are from the left  hemisphere28. These 
results suggest asymmetrical white matter alterations could occur during MCI progression. Additionally, our 
results of useful features from frontal, parietal lobe, and cingulum for classification are partially in agreement 
with previous studies. Hojjati et al. identified significantly different networks in MCI subtypes, including those 
in the frontal, temporal, and parietal  gyrus48. Goryawala et al. showed the significant classification factors are 
cortical volumes of temporal, parietal, and cingulum for EMCI/LMCI  classification28. Sheng et al., using graph 
theory metrics, selected features in the temporal or cingulate  cortex26. Further, our findings suggest the associa-
tion of insula and thalamus for classification of MCI subtypes. Numerous studies have revealed the insular gray 
matter  loss49, dysfunction of insular network at the early stage of  AD50, pre-symptomatic changes in  thalamus51. 
These findings could reflect possible white matter alterations in the insula and thalamus during MCI progression.

Over the past decade, several ML approaches have been proposed for classification of AD and MCI. Current 
diagnostic methods for AD mainly depend on neuropsychological tests, neuroimaging, and biofluids, including 
cerebrospinal fluid (CSF) and  serum52. Gurevich et al. and Kang et al. applied neuropsychological scores for dis-
crimination of AD and cognitive impairment by  ML53,54. Some studies used CSF and serum data for classification 
by  ML55,56. A number of neuroimaging approaches have been applied in classification of AD and MCI, including 
positron emission tomography (PET) of Aβ-amyloid and tau deposition, structural MRI to detect brain atrophy, 
diffusion MRI and functional  MRI29,57–61.

Although our results showed single modal features of diffusion MRI provided higher performance, a num-
ber of studies have effectively classified MCI subtypes by multi-modal MRI analyses with optimal feature 
 selection8,24–26,28,47,48. In general, the feature matrix, which is extracted from MRI or PET analyses, contains a huge 
amount of irrelevant or redundant features. To remove irrelevant features and reduce feature dimensions, feature 
selection is typically performed before classification (Table 2). Goryawala et al. introduced a novel framework 
named SLRM (stepwise linear regression model) to combine MRI volumetric measures with neuropsychological 
 scores28. Jie et al. compared the effect of feature selection methods between M2FL and gLASSO-based method, 
using the dynamic connectivity networks (DCNs)47. Nozadi et al. extracted ROIs as features by multimodal 
PET-MRI registration  method24. Sheng et al. processed thousands of brain network features by filter and wrap-
per feature selection  procedures26. Zhang et al. also used multiple brain network features and conducted feature 
selection by three different  algorithms8. Shi and Liu extracted features by calculating the Hilbert weighted fre-
quencies (HWFs) from decomposed rs-fMRI signals, with independent two-sample t-test as feature selection 

Table 2.  Comparison with previous studies for EMCI/LMCI classification. *SLRM stepwise linear regression 
models. *M2FL method Manifold regularized multi- task feature selection. *DCN dynamic connectivity 
network. *LDA linear discriminant analysis. *DNN deep neural network.

Authors Target Approach Feature extraction Feature selection Classifier ACC AUC 

Goryawala et al. (2015) EMCI (114) vs. 
LMCI(91)

MRI (Cortical vol-
ume) + Neuropsycho-
logical scores

*SLRM for MRI and Neuropsychological test *LDA 0.736 N/A

Jie et al. (2018) EMCI (56) vs. 
LMCI(43)

DCN(dynamic connect. 
network) from rs-fMRI

Temporal & spatial Vari-
ability (DCNs) *M2FL method SVM 0.788 0.783

Nozadi et al. (2018) EMCI(164) vs. 
LMCI(189) FDG-PET, AV45-PET Multimodal PET-MRI registration + ROIs-based or 

whole brain select RF 0.725 0.79

Sheng et al. (2019) EMCI(24) vs. LMCI(24) BCT(Brain Connectivity 
Toolbox) from rs-fMRI

Network-based meas-
ures (BCT)

mRMR, Chi-square, 
Gini score,Kruskal–
Wallis test, Fisher 
score(FS), Relief feature 
score

 > 20Classifiers + *DNN 0.875 (SVM) N/A

Zhang et al. (2019) EMCI(33) vs. LMCI(29) Graph theory (rs-fMRI) 3Network features + 3 
freq. bands

mRMR, SS-LR, Fisher 
Score (FS) SVM 0.838 0.905

Shi and Liu (2020) EMCI(77) vs. LMCI(64) rs-fMRI Hilbert-Huang transform (HHT) Hilbert weighted 
frequencies(HWFs) Independent two-sample t-test SVM 0.879 N/A
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method for  SVM25. Collectively, these results suggest the optimal feature selection from multi-modal MRI 
data might be critical to improve classification performance. Thus, previous studies have typically combined 
multi-modal features after extracting each single modal data, which is followed by optimal feature selection. In 
contrast, our method sequentially integrated the multimodality of diffusion MRI and rs-fMRI or graph theory. 
We presumed our sequential integration methods of multi-modalities (TBSS-RSFC and TBSS-Graph method) 
resulted in the over-reduction of features and lost the non-linear mutual relations. This might lead to the poor 
performance for classification.

In general, the white matter (WM) damage is considered to precede GM atrophy and network  dysfunctions29. 
Our TBSS analyses showed LMCI-related white matter (WM) changes in the Corpus Callosum (CC). A number 
of studies using structural and diffusion MRI have revealed WM changes in the CC in neurological diseases, 
including AD, bipolar disorder, schizophrenia, and Huntington’s  disease62–66. WM changes can develop as a 
consequence of a number of factors, including demyelination and decreased number of axons, and/or cortical 
grey matter (GM)  atrophy67,68. It therefore remains unclear whether WM changes in the CC are specific to each 
disease. The two different mechanisms were proposed to cause CC atrophy in AD; the direct myelin damage of 
callosal fibers; and the cell death in the GM, particularly the large pyramidal cells in cortical layer  III69. Assum-
ingly, the WM changes in CC can affect inter-hemispherical communications. Vecchio et al. (2015) showed the FA 
reduction in CC by DTI analysis is associated with a loss of inter-hemispheric functional connectivity by resting-
state EEG in MCI and AD  patients70. Further, reduced FA and increased MD in cognition-related WM tracts 
(e.g. cingulum, superior longitudinal fasciculus) are correlated with MMSE score in AD  patients71. These results 
suggest the WM alterations in MCI subjects could partly lead to the disrupted segregation of neural network in 
 AD21. The pathophysiological process of AD reportedly starts 20 years or more before  symptoms2,3. The deposi-
tion of Aβ-amyloid is one of early signs at preclinical AD stage. Several neuroimaging studies have shown the 
relationship between early white matter alterations and amyloid deposition with amyloid-β  PET72–75. Although 
the results are not completely consistent, those studies have suggested white matter microstructural changes 
(reduced FA and increased MD values) can be correlated with Aβ-amyloid deposition. Taken together, these 
findings might support our hypothesis that subtle brain changes can be detected earlier by diffusion MRI data.

This study was subject to several limitations. Several issues need to be further addressed. First, the sample 
size of MCI subjects, especially that of LMCI, was limited in the ADNI-3 dataset. ADNI imaging was carried out 
at over than 50 imaging centers, using scanners from the three major MR vendors (GE, Siemens and Philips). 
Although ADNI MRI core has established a standard set of protocols and procedures (www. adni- info. org.), the 
different scanners could cause a potential inconsistency on the analyses of imaging data. Since ADNI-3 project 
is under progress, the clinical and neuropsychological information for each subject is limited. During preparing 
this paper, additional information of neuropsychological scores and biomarkers became available. We added 
the additional available information in Table 1 and Supplementary Figs. S1, S2. Based on recent studies, various 
neuropsychological scores and biomarkers could improve classification performance with neuroimaging stud-
ies, including MMSE, RAVLT, CSF protein levels, and Apolipoprotein-E (APOE)  genotype28,76. The abnormal 
memory function in MCI was determined by a single memory  score2,4,5,7, which could lead to misclassifications 
that cause low accuracy and specificity in the present study. Our results have to be verified with larger datasets 
and follow-up longitudinal studies to reduce individual variations and validate the proposed ML model.

In conclusion, the feature set of diffusion parameters in the regions of LMCI-related WM changes was useful 
to distinguish LMCI from EMCI subjects with application of ensemble ML algorithm.
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