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Abstract

Deep learning is a promising tool that uses nonlinear transformations to extract features from high-dimensional data. Deep learning
is challenging in genome-wide association studies (GWAS) with high-dimensional genomic data. Here we propose a novel three-
step approach (SWAT-CNN) for identification of genetic variants using deep learning to identify phenotype-related single nucleotide
polymorphisms (SNPs) that can be applied to develop accurate disease classification models. In the first step, we divided the whole
genome into nonoverlapping fragments of an optimal size and then ran convolutional neural network (CNN) on each fragment to select
phenotype-associated fragments. In the second step, using a Sliding Window Association Test (SWAT), we ran CNN on the selected
fragments to calculate phenotype influence scores (PIS) and identify phenotype-associated SNPs based on PIS. In the third step, we
ran CNN on all identified SNPs to develop a classification model. We tested our approach using GWAS data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) including (N = 981; cognitively normal older adults (CN) = 650 and AD = 331). Our approach
identified the well-known APOE region as the most significant genetic locus for AD. Our classification model achieved an area under
the curve (AUC) of 0.82, which was compatible with traditional machine learning approaches, random forest and XGBoost. SWAT-CNN,
a novel deep learning–based genome-wide approach, identified AD-associated SNPs and a classification model for AD and may hold
promise for a range of biomedical applications.
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Introduction
Deep learning is a representative machine learning algo-
rithm that enables nonlinear transformations to extract
features of high-dimensional data [1], unlike traditional
machine learning models that predict a linear combina-
tion of weights by assuming a linear relationship between
input features and a phenotype of interest. Deep learning
has been used to predict disease outputs by handling
original high-dimensional medical imaging data without
feature selection procedures [2, 3]. In genetic research,
deep learning frameworks have been used to investi-
gate molecular phenotypes that predict the effects of
noncoding variants [4–10], differential gene expression
[11] and potential transcription factor binding sites [12].

These tools use CHIP-Seq or DNase-Seq data as train-
ing data to predict chromatin features such as tran-
scription factor binding or DNase hypersensitivity from
DNA sequences. More recently, deep learning has been
employed in the capture of mutations and the analysis
of gene regulations, demonstrating its potential for fur-
thering our understanding of epigenetic regulation [13].
Furthermore, deep learning is being used in gene therapy
to design CRISPR guide RNAs using deep learning–based
gene features [14–19].

Genome-wide association studies (GWAS) use a sta-
tistical approach by considering one single nucleotide
polymorphism (SNP) at a time across the whole genome
to identify population-based genetic risk variation for
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human diseases and traits [20, 21]. However, deep learn-
ing has not yet been used to perform GWAS, as it is chal-
lenging due to the so-called high-dimension low-sample-
size (HDLSS) problem [22], which is known to impact
phenotype prediction using genetic variation. Feature
reduction approaches have been commonly used [23–25]
to resolve this problem, but feature reduction using high-
dimensional genomic data is also challenging due to an
NP-hard problem [26, 27]. Therefore, it is necessary to
develop a deep learning framework to identify genetic
variants using whole genome data.

Here we proposed a novel three-step deep learning–
based approach to select informative SNPs and develop
classification models for a phenotype of interest. In the
first step, we divided the whole genome into nonover-
lapping fragments of an optimal size and then used
deep learning algorithms to select phenotype-associated
fragments containing phenotype-related SNPs. Different
sized fragments and several deep learning algorithms
were tested to select the optimal size for fragments and
the optimal algorithm. In the second step, we ran the
optimal deep learning algorithm using an overlapping
Sliding Window Association Test (SWAT) within selected
fragments to calculate phenotype influence scores (PIS)
using SNPs and the phenotype of interest to identify
informative SNPs. In the third step, we ran the optimal
algorithm again on all identified informative SNPs to
develop a classification model.

Alzheimer’s disease (AD), the most common form of
dementia, is a neurodegenerative disorder that causes
progressive deterioration of memory and cognitive func-
tion. The pathological hallmarks of the disease are toxic
amyloid-β plaques and neurofibrillary tau tangles in
the brain [28, 29], with the strongest genetic risk factor
being the ε4 allele of apolipoprotein E (APOE). APOE ε4
allele carriers are more prone to amyloid deposition and
have a 3- to 4-fold increased risk of AD [30–32]. In addi-
tion to amyloid, tau and APOE, many other aging- and
neurodegeneration-associated biological pathways are
being actively investigated for their role in AD pathogene-
sis and for their potential as targets for therapeutic devel-
opment. Examples include inflammation, cellular senes-
cence, telomere shortening, altered neurogenesis, dys-
regulated lipid metabolism, altered mitochondrial func-
tion and brain energetics, and other age-associated fac-
tors [33–39]. In addition, processes related to clearance
of misfolded proteins are important including autophagy,
the primary mechanism that removes protein aggregates
[40] [41]. Relatedly, mitophagy plays an essential role
in maintaining mitochondrial homeostasis and when
impaired may contribute to AD-related pathophysiology
[42, 43]. As amyloid-β is clearly linked to the initiation
and progression of AD, it has been targeted for drug treat-
ment. Despite longstanding global efforts and numer-
ous failed trials, the FDA recently granted accelerated
approval of aducanumab, the first potentially disease-
modifying antiamyloid treatment [44]. In addition, it is
of fundamental importance to identify biomarkers for

the detection of AD at presymptomatic stages to slow or
prevent disease progression [45–47]. In the past few years,
artificial intelligence (AI) approaches have been used to
identify AD biomarkers through brain image analysis [2,
3, 48], cerebrospinal fluid (CSF) AD biomarkers [49] and
plasma metabolites [50]. Using high-throughput bioas-
says, AI technology has been used to repurpose known
drugs to treat Alzheimer’s disease [51, 52]. Though these
AI applications are growing rapidly, only a few have
reached the clinical stage.

We tested our approach using only whole genome
data for AD (N = 981; cognitively normal older adults
(CN) = 650 and AD = 331). Our approach identified the
known APOE region as the most significant genetic
locus for AD. Using the identified region, we made a
classification model with CNN. To determine if the
algorithm is comparable to traditional machine learning
algorithms, we also applied XGBoost and random forest.
Our classification model yielded 75.2% accuracy, which
was generally compatible with a modest gain in accuracy
of 3.8% and 9.6% relative to XGBoost and random forest,
respectively. Our classification model yielded 75.2%
accuracy over traditional machine learning methods,
being 3.8% and 9.6% higher than XGBoost and random
forest, respectively. Our novel deep learning–based
approach can identify informative SNPs and develop a
classification model for AD by combining nearby SNPs
and testing their aggregation.

Materials and methods
Study participants
All individuals used in the analysis were participants
of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort [53, 54]. The ADNI initial phase (ADNI-
1) was launched in 2003 to test whether serial magnetic
resonance imaging (MRI), position emission tomogra-
phy (PET), other biological markers, and clinical and
neuropsychological assessment could be combined to
measure the progression of mild cognitive impairment
(MCI) and early AD. ADNI-1 has been extended in
subsequent phases (ADNI-GO, ADNI-2 and ADNI-3) for
follow-up of existing participants and additional new
enrollments. Demographic information, APOE and whole
genome genotyping data, and clinical information are
publicly available from the ADNI data repository (www.
loni.usc.edu/ADNI/). Informed consent was obtained for
all subjects, and the study was approved by the relevant
institutional review board at each data acquisition site.

Genotyping and imputation
ADNI participants were genotyped using several Illumina
genotyping platforms including Illumina Human610-
Quad BeadChip, Illumina HumanOmni Express BeadChip
and Illumina HumanOmni 2.5M BeadChip [54]. As ADNI
used different genotyping platforms, we performed
quality control procedures (QC) on each genotyping plat-
form data separately and then imputed un-genotyped
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single nucleotide polymorphisms (SNPs) separately using
MACH and the Haplotype Reference Consortium (HRC)
data as a reference panel [55]. Before imputation, we
performed QC for samples and SNPs as described previ-
ously: (1) for SNP, SNP call rate < 95%, Hardy–Weinberg P
value < 1 × 10−6, and minor allele frequency (MAF) < 1%
and (2) for sample, sex inconsistencies, and sample call
rate < 95% [56]. Furthermore, in order to prevent spurious
associations due to population stratification, we selected
only non-Hispanic participants of European ancestry
that clustered with HapMap CEU (Utah residents with
Northern and Western European ancestry from the
CEPH collection) or TSI (Toscani in Italia) populations
using multidimensional scaling (MDS) analysis and the
HapMap genotype data [56, 57]. After imputation, we
performed standard QC on imputed genotype data as
described previously [58]. Specifically, we imposed an
r2 value equal to 0.30 as the threshold to accept the
imputed genotypes. In the study, imputed genome-
wide genotyping data from 981 ADNI non-Hispanic
participants (650 cognitive normal older adults (CN) and
331 AD patients) were used with a total of 5,398,183 SNPs
(minor allele frequency (MAF) > 5%).

Genome-wide association study (GWAS)
Using imputed genotypes, a GWAS for AD was conducted.
For the GWAS, logistic regression with age and sex as
covariates was performed using PLINK [59] to determine
the association of each SNP with AD. To adjust for mul-
tiple testing, a conservative threshold for genome-wide
significant association (P < 5 × 10−8) was employed based
on a Bonferroni correction.

Fragmentation of whole genome data
Whole genome data for 981 participants were divided
into nonoverlapping fragments of varying sizes from 10
SNPs to 200 SNPs to determine the optimal fragmen-
tation size. The subdatasets consisting of fragments of
the same size were divided into train–test–validation
sets (60:20:20), and convolutional neural network (CNN)
[60], long short-term memory (LSTM) [61], LSTM-CNN
[62] and attention [63] algorithms were applied to each.
Early stopping using a validation set was applied to pre-
vent overfitting, followed by the measurement of training
time and accuracy (ACC).

Deep learning on fragments
Deep learning is the result of continuous development
such as perceptron [64, 65], which adds the concept of
weight adjustment to the theory that it can behave like
a human brain when neurons with on–off functions are
connected in a network form [66], and Adaline [67], which
uses gradient descent to update weights. These early
neural nets were advanced to a multilayer perceptron,
which includes hidden layers to solve the famous XOR
problem [68], marking a theoretical turning point with
the concept of backpropagation to update the weight of

the hidden layer [69–72]. The inherent problem of back-
propagation, in which vanishing gradients occur when
there are many layers [73], has been alleviated through
activation functions, such as sigmoid function and ReLU
[74, 75], as well as optimization methods for better gra-
dient descent methods, such as Ada-Grad [76], RMSprop
[77] and Adam [78]. These developments, along with the
advancement of GPU hardware, have created an era of
deep learning as it is now.

Deep learning has laid the theoretical foundation for
backpropagation, the application of activation functions
and the development of optimizers for better gradient
descent. Common deep learning algorithms, such as
CNN, LSTM and attention, have a hierarchical structure
that implements an enhanced version of the basic
principles of deep learning. The detailed technical
description of each algorithm is described extensively
in the relevant paper, so here we focus on the core of
the deep learning technology commonly applied to the
algorithm used in the experiment.

We used ReLU as an activation function that under-
lies the deep learning algorithms used in our experi-
ments. ReLU, the most used activation function in the
deep learning community, replaces the given value with
zero if the value is <0 and uses the given value if it
is >0. Thus, if the given value is greater than zero, the
derivative becomes one, and the weight can be adjusted
without vanishing the gradient to the first layer through
the hidden layer. We used Adam as the optimization
method. Adam is currently the most popular optimiza-
tion method for deep learning, as it takes advantage of
momentum SGD [79] and RMSprop, which are expressed
as follows: Gt is the sum of the square of the modified
gradient and ε is a very small constant that prevents the
equation from being divided by zero.

Vt = γ G(t−1) + (1 − γ1)
∂Error
∂Wt

Gt = γ G(t−1) + (1 − γ2)

(
∂Error
∂Wt

)2

V̂t = Vt

1 − γ t
1

Ĝt = Gt

1 − γ t
2

W(t+1) = Wt − η
Ĝt√

V̂t + ε

Backpropagation is used to calculate the initial error
value from a given random weight using the least squares
method and then to update the weight using a chain
rule until the differential value becomes zero. Here, the
differential value of zero means that the weight does
not change when the gradient is subtracted from the
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previous weight.

Wo (t + 1) = Wot − ∂ErrorYo

∂Wo

ErrorYo = 1
2

(
yt1 − yo1

)2 + 1
2

(
yt2 − yo2

)2

If yo1 and yo2 are the output values of the output layer
coming through the hidden layer and the actual values
of the given data are yt1 and yt2, the partial derivative of
the error ErrorYo to the weight of the output layer can be
calculated using the chain rule as follows:

∂ErrorYo

∂wo
= ∂ErrorYo

∂yo1
· ∂yo1

∂net3
· ∂net3

∂wo

The partial derivative of the error ErrorYo to the weight
of the hidden layer can be calculated as follows:

∂ErrorYo

∂h1
= ∂

(
Erroryo1 + Erroryo2

)
∂yh1

= ∂Erroryo1

∂yh1

(a)
+

∂Erroryo2

∂yh1(
b
)

(a) ∂Erroryo1

∂yh1
= ∂Erroryo1

∂net3
· ∂net3

∂yh1

= (
yo1 − yt1

)
yo1

(
1 − yo1

)
yo1

(b) ∂Erroryo2

∂yh1
= ∂Erroryo2

∂net4
· ∂net4

∂yh1

= (
yo2 − yt2

)
yo2

(
1 − yo2

)
yo2

Accordingly, the weight wh of the hidden layer is
updated as follows:

∂ErrorYo

∂wh
= ∂ErrorYo

∂yh1
· ∂yh1

∂net1y
· ∂net1

∂wh

= (
δyo1yo1 − δyo2yo2

)
yh1

(
1 − yh1

)
x1

Calculation of phenotype influence score using
deep learning
Prediction accuracy was calculated from deep learning
applied to each fragment and converted to a z-score.
The z-score follows a normal distribution with μ = 1 and
σ = 0, under the hypothesis that there is no relation-
ship between the variables in the population. Fragments
with a z-score higher than the median were selected. An
overlapping SWAT for the calculation of PIS is applied
to these fragments. When the length of the fragment is
w, the window is positioned w − 1 from the first SNP of
the fragment and moves by one SNP and stops at the
last SNP of the fragment. Each region within the SWAT

is divided into a train–test–validation set (60:20:20), and
early stopping using a validation set is applied to prevent
overfitting. When the kth SNP is Sk, PIS is calculated as
follows.

∑k+w−1

k=k−w+1

sk

k + w − 1

This SWAT is applied to all selected fragments, result-
ing in a PIS for all SNPs.

Phenotype classification using deep learning
We selected the top 100 to 10,000 SNPs based on the PIS.
For the AD-CN classification, we used a CNN consisting
of convolution layers with a kernel size of 5, pooling the
layer with a max-pool size of 2, a fully connected layer of
64 nodes, and an output layer with a softmax activation
function. Due to gradient vanishing and explosion issues
caused by the repeated multiplication of the recurrent
weight matrix, RNN or its variants had difficulty training.
In order to compare the performance, we also applied
random forest and XGBoost, which are traditionally used
for tabular data classification. XGBoost is a tree-based
ensemble algorithm, one of popular implementations of
gradient boosting. We trained XGBoost using an ‘xgboost’
package for python (https://xgboost.readthedocs.io/).
Random forest is another ensemble learning method
that uses many decision trees as its classifiers [80, 81].
We trained random forest using the scikit-learn package
for python by setting the number of trees as 10 and the
maximum depth of each tree as 3.

Results
Our deep learning–based approach consists of three steps
to select informative SNPs and develop an accurate clas-
sification model. In the first step, we divided the whole
genome into nonoverlapping fragments of an optimal
size. To choose an optimal fragment size and an opti-
mal deep learning algorithm, we calculated the mean
accuracy and computation time for classification of AD
using various fragment sizes containing 10 to 200 SNPs
and several deep learning algorithms (CNN, LSTM, LSTM-
CNN, Attention). In this analysis, we used 10–200 SNPs
located within a region surrounding the APOE gene, the
strongest and most robust AD genetic risk locus. Figure 1
shows the average accuracy and computation time for
CNN, LSTM, LSTM-CNN and attention as a function of
the fragment size. As shown in Figure 1A, the analysis
yielded the highest accuracy for classification of AD for a
fragment size with 40 SNPs (Figure 1A). Figure 1B shows
the average accuracy and time as a function of the deep
learning algorithm on window size of 40 within a region
surrounding the APOE gene. CNN and LSTM-CNN models
had the highest accuracy for classification of AD, fol-
lowed by LSTM. However, the computation time of CNN
and LSTM models were 5.9 and 40.4 s, respectively. The
computation time of LSTM, LSTM-CNN and attention
models sharply increased compared to CNN because the
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Figure 1. Selection of an optimal fragment size and an optimal deep learning algorithm. In order to choose an optimal fragment size and an optimal
deep learning algorithm, the mean accuracy and computation time was calculated for the classification of AD using various fragment sizes containing
10 to 200 SNPs in the APOE region and several deep learning algorithms (CNN, LSTM, LSTM-CNN and attention). (A) Average accuracy and time as a
function of the fragment size. The highest accuracy for classification of AD was obtained with a fragment having 40 SNPs in CNN, LSTM-CNN and LSTM
models. The accuracy difference was not large according to window size, but the processing time increased with window size. (B) Average accuracy and
time as a function of the deep learning algorithm using a widow size of 40. The computation time of LSTM, LSTM-CNN and attention models increases
sharply compared to CNN as they include more SNPs in their fragments.

fragment contains more SNPs; therefore, we chose a frag-
ment with 40 SNPs as the optimal fragment size for the
CNN and optimal deep learning algorithm, respectively.
The whole genome was divided into 134,955 fragments,
each with 40 SNPs. We ran CNN on each fragment to
calculate z-scores based on classification accuracy and
selected phenotype-associated fragments. We selected
1802 fragments with z-scores higher than a median z-
score.

In the second step, using a SWAT, we ran CNN on the
selected fragments to calculate the PIS of each SNP in the
selected fragments and identify phenotype-associated
SNPs based on the PIS, as shown in Figure 2. For each
SNP, we calculated a mean accuracy of 40 windows,
which is the PIS of the SNP. Using PIS values, we cal-
culated the z-scores and one-tailed P-values. Figure 3
shows a Manhattan plot with the −log10 P-values on the
y-axis against the SNP position in the genome on the
x-axis. The SNP with the smallest P-value was rs5117
in the APOC1 gene (P-value = 1.04E−22) and rs429358 in
the APOE gene (P-value of 1.41E-16). The genetic region
including APOE/APOC1/TOMM40 genes is known as the
strongest genetic risk locus for AD [30, 82–84]. The next
highest genetic loci were located at SNX14, SNX16, BICD1,
WDR72 and GLT1D1 genes.

In the third step, we ran CNN on the identified SNPs
to develop an AD classification model. Table 1 shows
the classification results of AD versus CN using subsets
containing the top 100 to 10,000 SNPs based on PIS. For
comparison with traditional machine learning methods,
we used two popular algorithms as classifiers, XGBoost
and random forest. The highest mean accuracy of 10
cross-validation in classifying AD from CN by CNN was

75.02% (area under the curve [AUC] of 0.8157) for a subset
containing 4000 SNPs, which had a 6.3% higher accu-
racy than random forest for a subset containing 2000
SNPs and a 1.94% higher accuracy than XGBoost for a
subset containing 1000 SNPs. When we calculated the
classification accuracy of AD using only the number of
APOE ε4 alleles, the classification accuracy was 66.7%,
which was 8.3% lower than our method. Our CNN models
outperformed two traditional machine learning models,
random forest and XGBoost, in all cases as shown in
Figure 4.

Figure 5 shows LocusZoom plots [85] for SNPs located
at 300 kb upstream and downstream regions from the
boundary of the APOE gene. The horizontal axis is the
location of SNPs, and the vertical axis is −log10 of the
P-values. Each dot represents a SNP, and the color rep-
resents the squared correlation coefficient (r2) with the
most significant SNP. Figure 5A shows P-values calcu-
lated using PLINK, and the most significant SNP was
rs429358 in APOE. Figure 5B shows P-values calculated
using our deep learning approach, and the most signif-
icant SNP was rs5117 in APOC1. Figure 5B shows a linear
increase on the left side of rs5117 and a linear decrease
on the right side of rs5117, which was different from
PLINK results (Figure 5A), which have no linear patterns.
In addition, Figure 5B shows three strongly correlated
SNPs (r2 > 0.8), with rs5117 on the left side of rs5117 but
no SNPs on the right side of rs5117.

Discussion
Although deep learning has solved many real-world
problems, few deep learning approaches have been used
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Figure 2. Sliding Window Association Test (SWAT) for genetic variants. (A) Inside view of a sliding window that traverses the entire genome sequence
to find a location that is associated with a specific phenotype. A CNN consisting of a convolutional layer with a kernel size of 10, a pooling layer with
a maximum pool size of 2, a fully connected layer of 64 nodes, and an output layer with softmax activation was used. (B) Framework to calculate
phenotype influence scores of SNPs. We divided the whole genome into 134 955 fragments, each with 40 SNPs. To calculate a phenotype influence score
for each of the 40 SNPs included in one fragment, we used an overlapping window approach and CNN. w is the number of SNPs in the fragment and Sk
is the kth SNP in the fragment.

in GWAS or sequence data to identify genetic variants
and for disease/risk classification due to the high
dimensionality of the genomic data [22]. In this study,
we propose a novel deep learning–based sliding window
approach to identify and select disease-associated SNPs
and develop an accurate classification model using high
dimensional genomic data that we tested using the
ADNI cohort (N = 981). The proposed method successfully
identified significant genetic loci for AD that included the
well-known APOE genetic locus and highlighted several
other risk loci. Our deep learning–based approach was
compatible to traditional machine learning methods for
classification of AD.

The deep learning–based approach for identification of
genetic variants consists of three steps. In the first step,
we divided the whole genome into nonoverlapping frag-
ments of an optimal size, creating a fragmentation and
windowing approach that, to the best of our knowledge,
is the first deep learning–based method for identifying
genetic variants.

In the second step, we calculated a PIS of each SNP
within the selected fragments by using an overlapping
window and CNN algorithm. Our method calculates PIS,
a novel index that is used to find disease-related variants
and predict disease. Furthermore, we calculated the z-
scores and one-tailed P-values using PIS, which yielded
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Table 1. Results of classification of AD from CN

Top Random forest XGBoost CNN

Accuracy STD(±) AUC STD(±) Accuracy STD(±) AUC STD(±) Accuracy STD(±) AUC STD(±)

100 66.46 7.79 0.7137 0.0576 70.24 2.80 0.7266 0.0281 68.29 2.87 0.7216 0.0603
200 67.18 3.88 0.7175 0.0386 67.99 1.52 0.7166 0.0245 69.52 5.08 0.7182 0.0494
300 66.26 3.80 0.7098 0.0377 68.20 3.32 0.7029 0.0272 70.64 2.20 0.7250 0.0585
400 67.58 4.67 0.7074 0.0428 69.42 3.43 0.7177 0.0234 67.99 4.65 0.7167 0.0412
500 67.59 7.79 0.7111 0.0457 71.05 2.56 0.7381 0.0325 71.56 6.58 0.7411 0.0614
1000 68.31 5.22 0.7178 0.0445 73.08 2.89 0.7407 0.0372 73.91 3.87 0.7741 0.0444
2000 68.70 3.13 0.7372 0.0424 72.48 2.61 0.7509 0.0365 73.29 2.77 0.7782 0.0409
3000 67.78 3.59 0.7282 0.0351 69.62 4.27 0.7376 0.0328 73.80 2.40 0.7862 0.0282
4000 68.19 4.69 0.7263 0.0469 71.15 4.07 0.7412 0.0368 75.02 3.17 0.8157 0.0261
5000 66.25 5.41 0.7105 0.0399 70.74 3.14 0.7330 0.0305 73.19 4.72 0.8003 0.0506
10 000 66.26 5.59 0.6919 0.0528 69.63 3.27 0.7248 0.0211 71.05 6.57 0.7083 0.1424

Notes: The table shows the number of top SNPs selected based on phenotype influence score for AD classification and the accuracy and AUC of 10-fold cross-
validation. Our CNN-based approach yielded the highest accuracy and AUC of 75.02% and 0.8157, respectively, for 4000 SNPs. In all cases, our CNN models
outperformed two traditional machine learning models, random forest and XGBoost

Figure 3. Manhattan plot of P-values of SNPs by our deep learning-based
approach in AD. The X-axis shows SNP positions in the genome. The Y-
axis shows −log10 of P-values. The genetic region including APOE, APOC1
and TOMM40 genes is known as the strongest genetic risk locus for
Alzheimer’s disease. The SNP with the smallest P-value was rs5117 in
APOC1 gene (P = 1.04E−22). rs429358 in APOE has a P-value of 1.41E−16.
Next identified genetic loci were located at SNX14, SNX16, BICD1, WDR72
and GLT1D1 genes.

a Manhattan plot showing the most significant genetic
loci in APOE/APOC1/TOMM40 genes that are known as
the strongest genetic risk factors for AD. Our method also
identified several novel candidate genetic loci, including
sorting nexin (SNX) 14 and SNX16, located on chromo-
somes 6 and 8, respectively, that have not been previously
identified to be associated with AD, though there may be
special relevance for neurodegeneration as SNX12 [86],
SNX17 [87], SNX27 [88] and SNX33 [89] are involved in
neuronal survival. Bicaudal D1 (BICD1) on chromosome
12 is a susceptibility gene in chronic obstructive pul-
monary disease [90] and lissencephaly [91], but there are
no reports of it being associated with AD.

In the third step, we selected top SNPs based on PIS
to develop classification models for AD. We selected sets
of highly AD-related SNPs and classified AD from CN
using CNN, as well as two popular traditional machine
learning algorithms, XGBoost and random forest. We
found the accuracy of classification was changed with

the number of the selected SNPs and the classification
algorithms. The highest mean accuracy of the classifica-
tion was 75.0% when CNN was used on the top 4000 SNPs,
which was comparable to two traditional machine learn-
ing algorithms. It was also 8.3% higher than the accuracy
of the classification using only the number of APOE ε4
alleles. Classification is the first step toward achieving a
better understanding of the genetic architecture of AD.
The proposed method will benefit from future studies
that use deep learning with quantitative phenotypes and
baseline values to predict future disease trajectories.

We plotted the SNPs selected by PIS and PLINK for
comparison using LocusZoom. We found that there were
no SNPs with r2 greater than 0.8 in the PLINK results,
but three strongly associated SNPs were identified using
our method. This is because the PLINK method finds
statistical significance SNP by SNP, whereas the deep
learning approach uses multiple inputs to adjust weights
through the training process. Deep learning uses adja-
cent SNPs to compute gradients at every epoch and
uses a loss function to adjust the weights in the back-
propagation process. Unlike PLINK, our method shows
that SNPs related to a phenotype can be extracted by
considering surrounding SNPs, which means that both
methods might be complementary because they identify
different variants, though notably in the same region
around APOE.

In summary, our novel deep learning–based approach
can identify AD-related SNPs by using genome-wide data
to develop a classification model for AD. The heritabil-
ity of AD is estimated to be up to 80%. Accordingly,
it is important to identify novel genetic loci related to
the disease. Using a modest sample size, we found a
significant genetic locus and a classification accuracy
of 75%. In future work, we plan to apply our method
to large-scale whole genome sequencing datasets that
are expected to become available soon to identify novel
AD-related SNPs and develop more accurate classifica-
tion models. We also plan to study early stages of dis-
ease including mild cognitive impairment and subjective
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Figure 4. Results of classification of AD from CN. The X-axis shows the number of top SNPs selected based on phenotype influence score for AD
classification. The Y-axis shows the accuracy (A) and AUC (B) of 10-fold cross-validation. Our CNN-based approach yielded the highest accuracy and
AUC of 75.02% and 0.8157, respectively, for 4000 SNPs. In all cases, our CNN models outperformed two traditional machine learning models, random
forest and XGBoost.

Figure 5. LocusZoom plots for SNPs located at the 300 kb upstream and downstream region from the boundary APOE gene. The horizontal axis is the
location of SNPs and the vertical axis is −log10 of P-values. Each dot represents an SNP and the color represents the squared correlation coefficient
(r2) with the most significant SNP. (A) shows P-values calculated using PLINK and the most significant SNP was rs429358 in APOE. (B) shows P-values
calculated using our deep learning approach and the most significant SNP was rs5117 in APOC1. In (B), we can see linear increase on the left side of
rs5117 and linear decrease on the right side of rs5117, which was different from PLINK results (A), which has no linear patterns. In addition, in (B), we
can see three strongly correlated SNPs (r2 > 0.8) with rs5117 on the left side of rs5117 but no SNPs on the right side of rs5117.

cognitive decline, where there is considerable hetero-
geneity, and more refined classification of risk for pro-
gression to AD would be valuable. In addition, future
studies will investigate use of quantitative endopheno-
types that may be more informative than binary clas-
sification given their potential to elucidate genetic risk
related to specific disease pathways and mechanisms.

Key Points

• Although deep learning has been successfully applied to
many scientific fields, deep learning has not been used

in genome-wide association studies (GWAS) in practice
due to the high dimensionality of genomic data.

• To overcome this challenge, we propose a novel three-
step approach (SWAT-CNN) for identification of genetic
variants using deep learning to identify phenotype-
related single nucleotide polymorphisms (SNPs) that can
be applied to develop accurate disease classification
models.

• To accomplish this, we divided the whole genome into
nonoverlapping fragments of an optimal size and ran
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a deep learning algorithm on each fragment to select
disease-associated fragments.

• We calculated phenotype influence scores (PIS) of each
SNP within selected fragments to identify disease-
associated significant SNPs and developed a disease clas-
sification model by using overlapping window and deep
learning algorithms.

• In the application of our method to Alzheimer’s disease
(AD), we identified well-known significant genetic loci for
AD and achieved higher classification accuracies than
traditional machine learning methods.
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