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Abstract
Standard survival methods are inappropriate for mismeasured outcomes. Previous 
research has shown that outcome misclassification can bias estimation of the sur-
vival function. We develop methods to accurately estimate the survival function 
when the diagnostic tool used to measure the outcome of disease is not perfectly 
sensitive and specific. Since the diagnostic tool used to measure disease outcome 
is not the gold standard, the true or error-free outcomes are latent, they cannot be 
observed. Our method uses the negative predictive value (NPV) and the positive pre-
dictive values (PPV) of the diagnostic tool to construct a bridge between the error-
prone outcomes and the true outcomes. We formulate an exact relationship between 
the true (latent) survival function and the observed (error-prone) survival function 
as a formulation of time-varying NPV and PPV. We specify models for the NPV and 
PPV that depend only on parameters that can be easily estimated from a fraction of 
the observed data. Furthermore, we conduct an in-depth study to accurately estimate 
the latent survival function based on the assumption that the biology that underlies 
the disease process follows a gamma process. We examine the performance of our 
method by applying it to the Viral Resistance to Antiviral Therapy of Chronic Hepa-
titis C (VIRAHEP-C) data. To show the broader relevance of our research, we apply 
our proposed methodology to a dataset from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI).
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1  Introduction

A centerpiece in the practice of medicine requires accuracy in the diagnosis of 
disease. However, in diagnostic testing patient outcomes could be misclassified 
due to false-negative or false-positive errors. In the diagnosis of Alzheimer’s 
disease(AD), misclassification can occur between imaging results and autopsy 
[1–4]. In the assessment of viral negativity for hepatitis C virus (HCV), false-
negative (or false-positive) results can be observed between assays with differ-
ent limits of detection [5–8]. In oncology, discordance between the investigator 
and independent central review assessments can occur in the determination of 
progression free survival [9–12]. In microbiology, testing for helicobacter pylori 
infection can be performed with an error-prone urea breathe test or by the gold-
standard biopsy examination; the urea breathe test can lead to incorrect conclu-
sions [13–17].

Our work is motivated by two major and distinct clinical studies: (i) the VIRA-
HEP-C clinical trial and (ii) the ADNI. We first discuss the VIRAHEP-C clinical 
trial, this study had participants assessed for viral negativity at preset clinical vis-
its. The gold-standard assay has a limit of detection of 50IU/ml while the error-
prone assay has a limit of detection of 600 IU/ml. Viral negativity is defined as 
the point in time when the viral load falls below the limit of detection. The time 
to viral negativity is intrinsically discrete because it is observed only at prede-
termined clinical visits and there is no information on viral negativity between 
any two clinical visits. In the introductory section of Joeng et  al. [18] a thor-
ough discussion of “intrinsically discrete” survival time is discussed. Both assays 
are accurate in regard to their respective detection limit, however, the clinical 
outcomes of the gold-standard assay are expected to reflect the true underlying 
nature of disease. The discordance between the event times of the gold-standard 
(G-S) assay and the error-prone (E-P) assay is one of the two motivators of this 
research. The methodology we propose will construct a bridge between the G-S 
and E-P outcomes through time-varying PPV.

The other motivator of this research comes to us from the ADNI study. The 
ADNI study aims to improve clinical trials for the prevention and treatment of 
AD. The E-P examination for the detection of Alzheimer’s is performed through 
clinical assessment. The amyloid beta ( A� ) protein biomarker from a cerebral 
spinal fluid (CSF A� 42 or CSF for simplicity) assay has been shown to repre-
sent the pathological aspects of AD well and the abnormality of A� can be used 
as a reliable (true, G-S) endpoint for studying time to pathological diagnosis of 
AD among living participants [19]. CSF assays were performed and A� protein 
concentrations were measured. Participants with an A� biomarker value greater 
than 192 pg/ml were classified as non-AD at baseline and those with an A� value 
less than or equal to 192 pg/ml were classified as AD at baseline. The CSF bio-
marker assay involves a lumbar puncture, so it is often considered too invasive for 
many patients and therefore has limited availability. A subset of participants also 
had longitudinal (annual) CSF assays to measure A� values, from which time to 
CSF diagnoses could be determined. The best single measure for discriminating 
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between AD and control patients was CSF A� 42 [20]. The discordance between 
the event times of the G-S CSF biomarker assay and the E-P clinical assessment 
is the second motivator of this research. Here, (and in contrast to the methodol-
ogy we propose for the VIRAHEP-C data), we construct a bridge between the 
G-S and E-P outcomes through time-varying NPV.

In this paper, we develop two new estimators of the survival function that handle 
misclassified outcomes by incorporating the PPV(NPV) of the diagnostic procedure. 
In the presence of misclassified outcomes, the Kaplan–Meier estimator may lead to 
biased estimates of the survival rate of true outcomes [21–23]. The issue of esti-
mating the survival function from misclassified outcomes has been studied, Racine-
Poon and Hoel [22] derived a non-parametric estimation of the survival function 
for which the cause of death was uncertain. Richardson and Hughes [24] used the 
Expectation Maximization algorithm to obtain unbiased estimates of the conditional 
probability of disease. McKeown and Jewell [25] extended the non-parametric 
maximum likelihood estimator to allow for time-dependent misclassification rates. 
In contrast to other studies which used sensitivity and specificity as inputs in their 
models, we prefer the PPV because it quantifies the value of a test to clinicians.

In Sect. 2, we propose a model that is a bridge between the outcomes of the E-P 
assay and the G-S assay through a time-dependent PPV. The prevalence of dis-
ease can considerably influence PPV; hence, we derive an estimator of the survival 
function within a non-constant PPV framework. The gamma distribution is a com-
mon building block of stochastic epidemiologic models used to study the biology 
of disease stages (latent and infectious) of infectious diseases [26–34]. We there-
fore examine the properties of the proposed model (4) under stochastic processes in 
Sect. 3. First, we assume that viral load of HCV over time follows a gamma process, 
under which we established a novel iterative identity to derive a closed-form (deter-
ministic) expression for the survival function to calculate the true PPV of the diag-
nostic assay. The gamma process is attractive since PPV is non-constant over time 
and it also allows us to examine the properties of the proposed model (4) analyti-
cally. Another contribution of the paper is the ability to conduct inferential statistical 
analyses which makes it possible to examine the effect of an unequal proportion of 
misclassified outcomes between treatment groups. The derivation of the variance of 
our proposed estimator (Sect. 2.2.2) required new techniques since the delta method 
may not be applicable due to the variation in the parameters of our model under 
small sample sizes. Furthermore, we model the course of HCV by a Wiener process. 
In contrast to the gamma process, the closed-form expression of the survival func-
tion is not available and our methods are evaluated empirically through simulation 
studies. We then examine the performance of our methodology by applying it to data 
from the VIRAHEP-C study.

The previous two paragraphs deal with the first estimator of the survival func-
tion which incorporates a time-varying PPV of the diagnostic procedure with appli-
cation to the VIRAHEP-C study. However, we believe our methodology has broad 
applicability in the realm of misclassified outcomes such that by modeling the NPV 
(instead of the PPV) of the diagnostic tool, we obtain the other estimator of the sur-
vival function that can be applied to a very different therapeutic area, namely, Alz-
heimer’s disease(AD). Our research is applicable to the lower limit and upper limit 
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of detection framework. By modeling the time-varying NPV of the diagnostic tool 
in a similar fashion as done with the time-varying PPV, we construct the second 
survival rate estimator for application to the misclassified outcomes as observed in 
the ADNI data. We believe our two survival rate estimators broadly cover the prob-
lem of correctly estimating the survival function in the presence of disagreements 
between outcomes of the gold-standard and error-prone diagnostic procedures.

The rest of the paper is organized as follows. In Sect. 2, we provide a detailed 
development of the exact relationship between survival functions of G-S and E-P 
events, and their proposed models. We examine various properties of the proposed 
models, and provide inference procedure and implementation procedures. An exten-
sive study under stochastic processes is carried out in Sect. 3. Particularly, we con-
duct in-depth simulation studies to evaluate the operating characteristics of our 
proposed procedures. Namely, Sect.  3.2 models the viral load course via a stand-
ard Brownian motion (Wiener) process, and evaluates the performance of the meth-
ods detailed in Sect. 2.2.2 (Inference for Unknown Model Parameters). Unlike the 
gamma process, the Wiener process does not have a closed-form formulation of 
the G-S survival function. As a result, the Wiener process provides a framework to 
evaluate the properties of our proposed estimator through simulation studies. Sect. 4 
presents detailed analyses of clinical trial data, the analyses of the VIRAHEP-C data 
and ADNI datasets are given in Sects. 4.1 and 4.2, respectively. We conclude the 
paper with some discussion in Sect. 5. We provide proofs of theorems, lemmas, and 
propositions in Appendix A, as well as the extended results under the upper-limit 
detection problem paradigm process in Appendix B. The R codes to run our meth-
odology are provided in the Supplementary Materials.

2 � The Methods

2.1 � The Hazards for Mismeasured and True Discrete Survival Times

Data used in the preparation of this article were obtained from the ADNI database 
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private partner-
ship, led by Principal Investigator Michael W. Wiener, MD. The primary goal of 
ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of mild cogni-
tive impairment(MCI) and early AD.

The design of this study builds on the notion that there exist three populations of 
events, (i) population of misclassified or E-P events, (ii) population of G-S events, 
and (iii) population of the underlying absolute state (true) of events, or the ground 
truth; this population is latent and G-S aims to represent the ground truth as closely 
as possible. As a result of the use of an E-P diagnostic test or procedure, the events 
in (i) are subject to be observed with error; while the events in (ii) are assumed to 
be error free, the use of an E-P diagnostic test renders the G-S status of these events 
to be unobservable. The rest of this section provides notation for the hazards of E-P 
and G-S events as well as their respective survival functions.
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Define T to be a discrete random variable representing the survival time for 
the E-P diagnostic test, it takes only positive values t0(= 0) < t1 < t2 < ⋯ . The 
discrete-time hazard function for T at time tj is defined as

Using (1), we have the probability of T at time tj as

and the survival function of E-P events as

for j = 1, 2,… . Next, we discuss the basic formulation of the hazard and survival 
functions of G-S failure time.

Let T∗ be a G-S discrete random variable taking positive values t0(= 0) < t1 < … . 
The discrete hazard function of G-S events at time tj for T∗ is defined as

for j = 1, 2,… . In a similar fashion to survival function of E-P events (S(j)), the 
probability of T∗ at time tj is

therefore, the survival function of G-S events is

Ej = I(T = tj) for j = 1, 2,… denote the error-prone population and E∗
j
= I(T∗ = tj) 

for j = 1, 2,… , denote the true population. Under this notation, the probability of 
E-P events at time tj is P(T = tj) = P(Ej = 1) while the probability of G-S events at 
time tj is P(T∗ = tj) = P(E∗

j
= 1) . In our framework, once an individual is observed 

to have an event the individual is no longer followed, therefore, if Ej = 0 then Ek = 0 
for k < j . At time tj , define �j as the negative predicted value (NPV); �j as the posi-
tive predicted value (PPV). Their expressions are as follows:

for j = 1, 2,….

Remark 2.1  Under our notation we have the following relationships at time tj , 

(1)h(j) = P(T = tj|T ≥ tj), for j = 1, 2,⋯

P(T = tj) = h(j)

j−1∏
k=1

{1 − h(k)},

S(j) = P(T > tj) =

j∏
k=1

{1 − h(k)},

h∗(j) = P(T∗ = tj|T∗ ≥ tj),

P(T∗ = tj) = h∗(j)

j−1∏
k=1

{1 − h∗(k)},

S∗(j) = P(T∗ > tj) =

j∏
k=1

{1 − h∗(k)}.

(2)𝛾j = P(T∗ > tj|T > tj); and 𝜏j = P(T∗ ≤ tj|T ≤ tj),
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	 (i)	 S(j) = P(Ej = 0) ; and S∗(j) = P(E∗
j
= 0) are the probabilities of no event (sur-

vival);
	 (ii)	 P(T = tj) = P(Ej = 1) ; and P(T∗ = tj) = P(E∗

j
= 1) are the probabilities of an 

event;
	 (iii)	 �j = P(E∗

j
= 0|Ej = 0) is the NPV; and �j = 1 −

∑j

k=1
P(E∗

j
=0�Ek=1)P(Ek=1)

1−P(Ej=0)
 is the 

PPV.

2.2 � Assumptions and Proposed Methods

The main goal of our paper is to develop a link between the G-S and E-P popula-
tions of events which will allow the accurate estimation of the survival function of 
G-S events. We formulate an exact relationship between the survival functions of 
G-S and E-P events by using the NPV and PPV of the diagnostic tool, Lemma 2.1 
provides the details.

Lemma 2.1  The survival function of G-S events at time tj can be expressed as

If the G-S events are observable, the above formula provides the exact relation-
ship between the survival functions of E-P (S(j)) and G-S ( S∗(j) ) events. But the 
G-S outcomes are unobserved, thus, we develop a new method to estimate the sur-
vival function of G-S outcomes by using Lemma 2.1 and modeling NPV and PPV. 
A method to estimate the survival function of G-S events using a constant PPV was 
proposed in Adeniji et  al. [21]. We will extend their method by allowing a time-
varying PPV and the following assumption.

Assumption 1  A G-S event does not happen before an E-P event. That is,

Assumption 1 is especially reasonable for mismeasurement caused by lower detec-
tion limit, we will further elaborate with the application of our methods to the 
VIRAHEP-C data.

Proposition 2.1  Under Assumption 1, we have

	 (i)	 the NPV at time tj is �j = 1 for all j = 1, 2,… ; and
	 (ii)	 the PPV at time tj is �j =

1−P(E∗
j
=0)

1−P(Ej=0)
, j = 1, 2,….

Lemma  2.1 shows the importance of obtaining accurate measures of �j and �j 
in order to obtain an unbiased estimate of the survival function of G-S events. We 
derive the model of time-varying PPV by modeling the conditional probabilities of 
G-S events given E-P events. For a known �0 and for tk ≤ tj , we propose that the 

(3)S∗(j) = (1 − �j){1 − S(j)} + �jS(j).

P(T∗ ≥ T) = 1.



1 3

Statistics in Biosciences	

probability of the occurrence of a G-S event at time tj , given an E-P event at a speci-
fied time tk is

where �1 ≥ 0 , �2 ≥ 0 , and 0 < 𝜏0 ≤ 1 . The proposed model implies that given the 
prior occurrence of an E-P event, the probability of correctly classifying the G-S 
event increases with time. The following proposition presents properties of our pro-
posed model (4).

Proposition 2.2  Under our proposed model (4) and a known �0 we have the 
following:

	 (i)	 if P(E1 = 1) > 0 , �0 (i.e., P(E∗
1
= 1|E1 = 1) ) is the conditional probability of 

the G-S failure time at t1 given E-P failure time at t1;
	 (ii)	 for a fixed �0 with 0 < 𝜏0 < 1 , the logarithm of the G-S rate at tj , given observed 

event at tj , is proportional to �1(tj − t1) as

	 (iii)	 for a fixed �0 with 0 < 𝜏0 < 1 , the difference between the logarithm of the G-S 
rate at tj , given observed event at tj and given observed event at tk is propor-
tional to �2(tj − tk) as

	 (iv)	 the PPV at time tj is written as 1 −
∑j

k=1
P(Ek=1)(1−�0)

(tj−t1 )�1+(tj−tk )w2+1

1−P(Ej=0)
;

	 (v)	 if �2 = 0 , the survival rate of G-S event at tj given observed event at tk is con-
stant for all observed events at tk ( tk ≤ tj ) as 

{
1 − �0

}(tj−t1)�1+1 ; and
	 (vi)	 if �1 = 0 and �2 = 0 , the G-S survival rate at tj , given observed event at tk is 

constant as 1 − �0 for all tk ( tk ≤ tj ) and for any tj , which shows that the G-S 
survival function is a cure rate function.

The first three points of Proposition 2.2 explain and interpret the parameters of 
our model given in (4) in terms of probability of events and PPV, while (iv) through 
(vi) of Proposition  2.2 provide derivations of PPV under our proposed model in 
relation to the parameters from (i)-(iii).

We now advance toward the goal of obtaining the survival function of G-S (unob-
served) outcomes as formulations of the survival function of E-P (error-prone) out-
comes, NPV and PPV. Under Assumption 1, the formula below provides a way to 
obtain the survival function of G-S outcomes ( S∗(j) ) from the survival function of 
E-P outcomes (S(j)).

Theorem 2.1  Under Assumption 1 and the proposed model (4), the survival func-
tion of the G-S event time is given by

(4)P(T∗ ≤ tj|T = tk) = 1 −
{
1 − �0

}(tj−t1)�1+(tj−tk)�2+1,

log{P(T∗ > tj|T = tj)} = 𝜔1(tj − t1) log(1 − 𝜏0);

log
{ P(T∗ > tj|T = tj)

P(T∗ > tj|T = tk)

}
= 𝜔2(tj − tk) log(1 − 𝜏0);
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where �1 ≥ 0 , �2 ≥ 0 , and 0 ≤ �0 ≤ 1.

The proof of Theorem  2.1 directly follows from Lemma  2.1, (i) of Proposi-
tion 2.1, and (ii) of Proposition  2.2. The S∗(j) in Theorem 2.1 is non-increasing in j 
as S∗(j − 1) − S∗(j) = P(Ej = 1)

{
1 − (1 − �0)

(tj−t1)�1+1
}
(≥ 0) . Within the survival 

framework, we wish to eventually express Theorem 2.1 in terms of survival rates.
The probability of E-P events at time tj , P(Ej = 1) , can be expressed with prob-

abilities of non-events as

The next step is to express Theorem  2.1 in regard to PPV and the survival vec-
tor of E-P events. Let S∗(j)(S(j)) denote the survival rate of the G-S (E-P) events 
at time tj , for j ∈ {1, 2,… , J} . Also, define the error-prone survival vector, 
�0 = (S(1), S(2),… , S(J))T , for time points 1 to J. The following Eq. (6) obtains our 
goal, it expresses Theorem 2.1 as a function of PPV and the error-prone survival 
vector �0 as follows:

where ℙ = (�1,�2, �0) , fj(ℙ) = (1 − �0)
(tj−t1)�1+(tj−t1)�2+1 , and

Each gjk(ℙ) in gj(ℙ) is defined as

for �1 ≥ 0 , �2 ≥ 0 , and 0 ≤ �0 ≤ 1.
Situations exist for which inaccurate assessment of disease status is not the 

result of an ambiguous diagnosis or the lack of medical expertise, but rather, due 
to a lower-limit detection of the diagnostic procedure. For instance, if the analytical 
lower limit is below the detection of the assay, the outcomes may be misclassified. 
Although we develop methodology for the broad problem of estimating the survival 
function of G-S events from mismeasured outcomes, we focus our data analysis and 
simulation studies for mismeasured outcomes that originate from lower-limit detec-
tion. Note that within the framework of lower-limit detection, and as discussed in 
Proposition 2.1, the NPV (�j) at time tj equals 1 for all time points.

Thus far, we have worked under the framework that the timing of the observance 
of the G-S event does not occur prior to the observance of the E-P event. However, 

(5)S∗(j) = S(j) +

j∑
k=1

P(Ek = 1)
{
1 − �0

}(tj−t1)�1+(tj−tk)�2+1, j = 1, 2,… ,

P(Ej = 1) = P(Ej−1 = 0) − P(Ej = 0), for j = 1, 2,… .

(6)S∗(j) = fj(ℙ) +
{
gj(ℙ)

}T

𝕊0,

gj(ℙ) = (gj1(ℙ), gj2(ℙ),… , gjJ(ℙ))
T .

⎧⎪⎨⎪⎩

{1 − (1 − 𝜏0)
(tk+1−tk)𝜔2}(1 − 𝜏0)

(tj−t1)𝜔1+(tj−tk+1)𝜔2+1 for k = 1,… , j − 1

1 − (1 − 𝜏0)
(tj−t1)𝜔1+1 for k = j

0 for k > j,
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in the ADNI study, the G-S event almost exclusively occurs prior to, or by the time 
of the E-P event. As such, we develop a second assumption and proposition based 
on the second assumption.

Assumption 2  A G-S event does not happen after an E-P event. That is,

Proposition 2.3  Under Assumption 2, we have

	 (i)	 the PPV at time tj is �j = 1 for all j = 1, 2,… ; and
	 (ii)	 the NPV at time tj is �j =

P(E∗
j
=0)

P(Ej=0)
, j = 1, 2,….

Under Assumption 2, a proposed model for NPV ( �j ) at time tj is

where 0 < 𝛾0 ≤ 1 and �1,�2 ≥ 0.

Theorem 2.2  Under Assumption 2 and the proposed model (7), the survival func-
tion of G-S outcomes is obtained as

where 0 < 𝛾0 ≤ 1 and �1,�2 ≥ 0.

By setting ℙ = (�1,�2, �0) , fj(ℙ) = 0 and gj(ℙ) = (gj1(ℙ), gj2(ℙ),… , gjJ(ℙ))
T 

with each gjk(ℙ) = �
(tj−t1)

2�1+(tj−t1)�2+1

0
 for k = j and gjk(ℙ) = 0 , the model in (8) is 

expressed in the similar fashion to (6)—expressed as a function of NPV and the 
error-prone survival vector �0.

Thus far, we have presented two main results, Theorems 2.1 and  2.2, which per-
tain to Assumptions 1 and 2, respectively. Specifically, Theorem 2.1 deals with the 
case where the G-S event does not happen before an E-P event (Assumption 1). The-
orem 2.2 addresses the scenario for which the G-S event does not happen after an 
E-P event (Assumption 2). In Sect. 2.2.1, we present methodology for implementing 
Theorems 2.1 and 2.2 when the model parameters are known. Likewise, Sect. 2.2.2 
provides inference under a framework where the model parameters are unknown and 
need to be estimated.

2.2.1 � Inference for Known Model Parameters

As mentioned in the preceding section, there are two options for data analysis, 
we discuss the case where model parameters are known. We do not estimate any 
parameters from the clinical study. The three parameters, ℙ = (�1,�2, �0) in (6) 
under Theorem 2.1 ( ℙ = (�1,�2, �0) under Theorem 2.2) are acquired from medi-
cal experts. The data analyst in collaboration with medical personnel may obtain 

P(T∗ ≤ T) = 1.

(7)P(T∗ > tj|T > tj) = 𝛾
(tj−t1)

2𝜓1+(tj−t1)𝜓2+1

0
,

(8)S∗(j) = �
(tj−t1)

2�1+(tj−t1)�2+1

0
S(j) for j = 1, 2,… ,
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three parameters from previous clinical studies or literature. At first, we discuss 
parameters, ℙ = (�1,�2, �0) . These estimates are assumed to be known with con-
fidence prior to the conduct of the clinical study, for example, Adeniji et al. [21] 
assumed �0 was known before the beginning of the clinical trial. The measure for 
which the probability of misclassification changes over time is �1 , while �2 is the 
measure for which the probability of misclassification changes over time after the 
occurrence of an E-P event.

Since we assume that �1, �2 and �0 are known and fixed prior to the start of 
the clinical study, the variance–covariance formula for the variance of (6) is not 
very complex, this is because the variability of �1, �2 and �0 will be excluded 
from the variance–covariance matrix of S∗ in (6). The elements of �0 can be esti-
mated by the product limit estimator in Kaplan and Meier [35], which is also 
called the Kaplan–Meier (KM) estimator. We let S∗(j)(S(j)) denote the survival 
rate of the G-S (E-P) events at time tj , for j ∈ {1, 2,… , J} . Also, we define the 
error-prone survival vector, �0 = (S(1), S(2),… , S(J))T for time points 1 to J. This 
error-prone survival vector, �0 , does not take into account potentially misclassi-
fied events, as such it will be estimated by the KM estimator. The elements of �0 
can be estimated by the KM estimator as follows:

where Eij is the event indicator for the i-th subject at time tj (i.e., Eij = I(Ti = tj) ), 
the indicator �ij = 1 represents the i-th subject censored at time tj , and 0 otherwise, 
and nj is the number of subjects known to have survived (have not yet had an event 
or been censored) up to time tj−1 (i.e., nj =

∑nj−1

i=1
(1 − �i(j−1))I(Ei(j−1) = 0) ). Let 

�̂0 = (Ŝ(1), Ŝ(2),… , Ŝ(J))T . An expression for the estimator of the survival function 
of G-S events at time tj is given by

Breslow and Crowley [36] showed that as n → ∞ , 
√
n(Ŝ(j) − S(j)) converges in dis-

tribution to a Gaussian process with expectation 0 and a variance–covariance func-
tion that could be approximated using Greenwoods formula in Greenwood [37]. By 
adapting their techniques, we derive the asymptotic variance of the KM estimates 
and thus obtain the asymptotic covariance matrix of our proposed estimator in the 
presence of right censoring and mismeasured events. The estimated variance of the 
estimated survival rate of G-S events at time tj is given by

where

Ŝ(j) =

j�
k=1

�
1 −

∑nk
i=1

(1 − 𝛿ik)I(Eik = 1)

nk

�
, j = 1, 2,… , J,

(9)Ŝ∗(j) = fj(ℙ) +
{
gj(ℙ)

}T

𝕊̂0, j = 1, 2,… , J.

(10)�Var (Ŝ∗(j)) =
{
gj(ℙ)

}T
�Var (𝕊̂0)

{
gj(ℙ)

}
,
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V̂ar (⋅) is obtained from Greenwood [37] with

and Ĉov (⋅) is obtained from Breslow and Crowley [36] for j < k and j, k = 1,… , J 
with �Cov (Ŝ(j), Ŝ(k)) =

Ŝ(k)

Ŝ(j)
�Var (Ŝ(j)) . Log–log transformed (1 − �) CI at time tj , 

suggested by Borgan and Liestøl [38], is given by

where 𝜃 = exp
{

Z𝛼∕2𝜎̂S∗(j)

log[Ŝ∗(j)]

}
 and 𝜎̂2

S∗(j)
=

�Var {Ŝ∗(j)}

{Ŝ∗(j)}2
.

The next step is to prove consistency and asymptotic normality of our estimator 
of the survival distribution of G-S events.

Theorem  2.3  (Consistency) In model (5) under Assumption 1, the estimators 
defined in (9) are consistent.

The result follows from the fact that the KM estimator Ŝ(j) of S(j) is consistent in 
Gill [39] and the estimator Ŝ∗(j) is a linear combination of Ŝ(j).

Theorem 2.4  (Asymptotic normality) In model (5) under Assumption 1, the esti-
mators defined in (9) are asymptotically normal with mean S∗(j) and variance

where Var (�̂0) is a variance–covariance matrix, with Var (Ŝ∗(j)) along the diagonal 
and Cov (Ŝ∗(j), Ŝ(k)) , j < k; j, k = 1,… , J , on the off-diagonal.

The above approaches can be similarly applied to the model in (8) under Assump-
tion 2, which is for the case where the G-S event does not happen after an E-P event.

2.2.2 � Inference for Unknown Model Parameters

There are situations for which �1, �2 and �0 in the proposed model (4), and �1, �2 and 
�0 in the model (7) are not known and the aforementioned parameters, ℙ = (�1,�2, �0) 
in (6) under Theorem 2.1 ( ℙ = (�1,�2, �0) under Theorem 2.2), will need to be esti-
mated from data. In this framework, we estimate ℙ directly from the on-going clini-
cal study. We first need to obtain the “pilot data” (complete data), which is data on 

�Var (�̂0) =

⎛
⎜⎜⎜⎜⎝

�Var (Ŝ(1)) �Cov (Ŝ(1), Ŝ(2)) ⋯ �Cov (Ŝ(1), Ŝ(J))
�Cov (Ŝ(2), Ŝ(1)) �Var (Ŝ(2)) ⋯ �Cov (Ŝ(2), Ŝ(J))
⋯ ⋯ ⋯ ⋯

�Cov (Ŝ(J), Ŝ(1)) �Cov (Ŝ(J), Ŝ(2)) ⋯ �Var (Ŝ(J))

⎞
⎟⎟⎟⎟⎠
,

�Var (Ŝ(j) = Ŝ2(j)

j�
k=1

� ∑nk
i=1

I(Eik = 1)

nk
�
nk −

∑nk
i=1

I(Eik = 1)
�
�
, j = 1, 2,… , J,

(11)
(
[Ŝ∗(j)]

1

𝜃 , [Ŝ∗(j)]𝜃
)
,

(12)Var (Ŝ∗(j)) =
{
gj(ℙ)

}T

Var (𝕊̂0)

{
gj(ℙ)

}T

,



	 Statistics in Biosciences

1 3

a randomly selected small portion of the entire clinical study subjects with E-P and 
G-S outcomes and is used to estimate ℙ . The remaining (unselected) participants in the 
clinical study would only have the E-P outcomes, this set of observations we call the 
“analysis data.” Under this setting, the pilot data and the analysis data are independent.

First, we discuss parameters, ℙ = (�1,�2, �0) , using sustained virologic response 
(SVR), defined as lack of detectable serum HCV RNA in serum after 24 weeks of com-
pleting treatment was the primary endpoint in the VIRAHEP-C study. There were two 
assays used to test viral load, the quantitative PCR-based assay (E-P) and the qualitative 
PCR-based assay (G-S). Serum samples were tested for HCV RNA levels using the 
quantitative PCR-based assay which had a lower limit of sensitivity of 600 IU/ml, while 
the qualitative PCR-based had a lower limit of sensitivity of 50 IU/ml. Viral negativity 
was assessed by the more sensitive qualitative assay. If the qualitative assay (G-S) was 
not available due to costs or other reasons, it is reasonable to deduce that the outcomes 
from the less sensitive quantitative (E-P) assay are prone to error. Our research specifi-
cally addresses this issue, and we shall illustrate in Sect. 4.1 that the survival function 
of events from the G-S assay can be accurately obtained from a small pilot dataset.

We apply our methods to the study of the G-S event time to viral negativity from 
the VIRAHEP-C clinical trial. As discussed in Sect. 2.1, there are the G-S population 
(unobserved) and the potentially misclassified (E-P) population. In this view, the deri-
vation of the survival function of G-S events is intractable. Using the pilot dataset, the 
estimates ℙ̂ = (𝜔̂1, 𝜔̂2, 𝜏0) are obtained by minimizing the weighted sum of squared 
distances between the estimated KM survival rates of G-S events(S∗

P
(j) ) and the esti-

mated approximated survival rates of G-S events ( ̂S∗(j) ) based on (4). Under Assump-
tion 1, the estimates, (𝜔̂1, 𝜔̂2, 𝜏0) , are obtained as follows:

where the weight w(j) is {S∗
P
(j)}�1{1 − S∗

P
(j)}�2 for 0 ≤ �1, �2 ≤ 1 and j = 1, 2,… , J . 

Let 𝔻 = (𝕊T
0
,ℙT )T . Then, the �̂0 are the KM estimates using the analysis dataset and 

ℙ̂ can be obtained by (13) using the pilot dataset. The extended expression for the 
estimator of the survival distribution of G-S events is given by

Since ℙ̂ and �̂0 are correspondingly obtained from the pilot dataset and analysis 
dataset, they are independent.

Computing the standard error of Ŝ∗(j) in (14) is quite challenging since the delta 
method may not be applicable due to the small size of the pilot data. Here, we develop 
a new approach to estimate the variance of Ŝ∗(j) . Using the standard variance decompo-
sition formula, we have

Since Var
[
Ŝ∗(j)|ℙ̂] and E

[
Ŝ∗(j)||ℙ̂

]
 are functions of �0 and ℙ̂ , we write

(13)(𝜔̂1, 𝜔̂2, 𝜏0) = argmin
0≤𝜏0≤1, 𝜔1,𝜔2≥0

{ J∑
j=1

w(j)
(
S∗
P
(j) − Ŝ∗(j)

)2}
,

(14)Ŝ∗(j) = fj(ℙ̂) +
{
gj(ℙ̂)

}T

𝕊̂0, j = 1, 2,… , J.

Var
[
Ŝ∗(j)

]
= E

[
Var (Ŝ∗(j)|ℙ̂)] + Var

[
E
(
Ŝ∗(j)||ℙ̂

)]
, j = 1, 2,… , J.



1 3

Statistics in Biosciences	

and

Using (12), we have

Since the size of the analysis dataset is relatively large and KM estimates, �̂ , are 
consistent, 𝜇j(𝕊0, ℙ̂) can be approximated by

To estimate E
[
𝜎2
j
(𝕊0, ℙ̂)

]
 and Var

[
𝜇̃j(𝕊0, ℙ̂)

]
 at time tj , we use the bootstrapping 

method. Let {ℙ̂(b) = (𝜔̂(b)

1
, 𝜔̂(b)

2
, 𝜏(b)

0
), b = 1, 2,… ,B} denote a bootstrap sample of 

size B using the pilot dataset. For given �0 , we compute

and

where 𝜇̄j(𝕊0, ℙ̂) =
1

B

∑B

b=1
𝜇̃j(𝕊0, ℙ̂

(b)) . Finally, letting �0 = �̂0 in (15) and (16), we 
obtain an approximate standard error (se) of Ŝ∗(j) as follows:

Note that to compute Ê
[
𝜎2

j
(𝕊̂0, ℙ̂)

]
 in (17), we use {gj(ℙ̂(b))}T�Var (𝕊̂0){gj(ℙ̂

(b))} in 
(15), where �Var (�̂0) is given by (10).

In a similar fashion, the above approaches can be applied to the parameters, 
�1, �2 and �0 in (8)—the scenario for which the G-S event does not happen after an 
E-P event.

3 � Stochastic Process‑Based Discrete Survival Times

The latent course of a foreign body (e.g., viral load, bacteria count) which under-
lies disease progression may have a random probability distribution or pattern. In 
oncology, tumor growth could be studied as a stochastic process. Even the spread 
of a fatal disease within a closed community could be modeled through a random 
probability distribution. The opportunities of real-life applications of time-to-event 

𝜎2
j
(𝕊0, ℙ̂) = Var

[
Ŝ∗(j)|ℙ̂],

𝜇j(𝕊0, ℙ̂) = E
[
Ŝ∗(j)||ℙ̂

]
, j = 1, 2,… , J.

𝜎2
j
(𝕊0, ℙ̂) = {gj(ℙ̂)}

T Var (𝕊̂0){gj(ℙ̂)}, j = 1, 2,… , J.

𝜇̃j(𝕊0, ℙ̂) = fj(ℙ̂) +
{
gj(ℙ̂)

}T

𝕊0, j = 1, 2,… , J.

(15)Ê
[
𝜎2
j
(𝕊0, ℙ̂)

]
=

1

B

B∑
b=1

{gj(ℙ̂
(b))}T Var (𝕊0), {gj(ℙ̂

(b))}

(16)�Var (𝜇̃j(𝕊0, ℙ̂)) =
1

B − 1

B∑
b=1

(𝜇̃j(𝕊0, ℙ̂
(b)) − 𝜇̄j(𝕊0, ℙ̂))

2,

(17)se(Ŝ∗(j)) =
{
Ê
[
𝜎2
j
(𝕊̂0, ℙ̂)

]
+�Var (𝜇̃j(𝕊̂0, ℙ̂))

}1∕2

, j = 1, 2,… , J.
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analysis derived from stochastic processes are exciting. Thus, we examine the 
gamma process and Wiener process within the discrete time-to-event setting.

3.1 � Gamma Process‑Based Discrete Survival Times

We infer that the course of the viral load can be modeled via a gamma process. If 
this conjecture is approximately correct, it will mean that the closed-form expres-
sion of the true survival function can be derived analytically, therefore simulation 
studies are unnecessary. It will mean that the gamma process represents the underly-
ing absolute state of information (truth), thus allowing for inference as discussed in 
Sect. 2.1. This is a very favorable quality because the survival estimates from the 
gold-standard diagnostic tool can be directly calculated and �0 will depend on the 
diagnostic test. From the gamma process, we generate discrete-time survival data 
using a specified detection limit. For a gamma distribution denoted as Gamma (a, b) 
( a, b > 0 ) with mean ab and variance ab2 , suppose �(t) is an increasing and right 
continuous function on [0,∞) with �(0) = 0 . Furthermore, let W = {Wt, t ≥ 0} be a 
gamma process with the following properties: (i) W0 = 0 , (ii) W has independent 
increments in disjoint intervals, and (iii) for t > s , 
Wt −Ws ∼ Gamma (�(t) − �(s), b) , where b > 0 is a constant. Then W is called a 
gamma process (GP), denoted by W ∼ GP (�(t), b) . Let W∗

j
= Wj − E[Wj] and 

assume that we only observe Wj at integer times, i.e., j = 1, 2, 3,….
Let W = {Wj, j ≥ 0} be a GP (j, 1) , where Wj = X1 +⋯ + Xj and the Xj are i.i.d. 

from Gamma (1, 1) for j = 1,… . The survival function at time tj = j with detection 
level c is defined as Sc(j) = P(X1 ≥ 1 + c,X1 + X2 ≥ 2 + c,… ,X1 +⋯ + Xj ≥ j + c) . 
The survival function with a lower detection limit level c is expressed as

where Bj(c,wj) = ∫ wj

c+j−1
⋯ ∫ w2

c+1
dw1 ⋯ dwj−1 for j > 1 and B1(c,w1) = 1 . The follow-

ing lemma provides the closed-form expression of Bj(c,wj).

Lemma 3.1  The Bj(c,wj) in (18) is written as

for j = 2, 3, 4,….

Using Lemma 3.1, we obtain the closed-form expression of the survival function, 
which is given in the next theorem.

Theorem 3.1  Suppose W = {Wj, j = 1, 2,…} follows GP(j, 1). The survival func-
tion at time tj with a lower detection limit level c is given by

(18)

Sc(j) = P(X1 ≥ 1 + c,X1 + X2 ≥ 2 + c,… ,X1 +⋯ + Xj ≥ j + c)

= �
∞

c+j

exp(−wj)Bj(c,wj)dwj

Bj(c,wj) =
(wj − c)j−1

(j − 1)!
−

(wj − c)j−2

(j − 2)!
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Under the lower-limit detection framework, if c∗ ≤ c then P(T∗ ≥ T) = 1 , 
where ∗ denotes the gold standard, we examine our proposed model under this 
framework. We consider two detection limits for the G-S and E-P events as 
c∗ = −0.8 , and c = −0.4 . In this case, the G-S survival function is 
Sc∗ (j) =

j(j−1)

(j−1)!
exp {−(c∗ + j)} and the E-P survival function is 

Sc(j) =
j(j−1)

(j−1)!
exp {−(c + j)} . Let Ŝ∗

c
(j) be the approximate survival function based 

on (6), where �0 is computed using Sc(j) . It does not appear that there exist 
( �1,�2, �0 ) such that Ŝ∗

c
(j) is exactly equal to Sc∗ (j) . Therefore, we use (13) with 

S∗
P
(j) and Ŝ∗(j) replaced by Sc∗ (j) and Ŝ∗

c
(j) , respectively, to find the optimal values 

of (�1,�2, �0) . The optimal values of ( �1,�2, �0 ) based on the pilot data are 
( 0.00, 0.59, 0.48 ) for �1 = 1 and �2 = 0 , ( 0.31, 0.00, 0.53 ) for �1 = �2 = 0.5 , and 
( 0.22, 0.000, 0.59 ) for �1 = 0 and �2 = 1 . By considering Sc∗ (j) as P(E∗

j
= 0)  

and Sc∗(j) as P(Ej = 0) in (ii) of the Proposition 2.1, we obtain the vector of PPV,  
� = (�1 = 0.402, �2 = 0.667, �3 = 0.753, �4 = 0.798, �5 = 0.826, �6 = 0.845, �7 = 0.859, �8 = 0.871)T . The  
vector of PPV, � , shows that PPV is not constant over time and therefore supports 
the approach of developing our methodology from a time-varying PPV stand-
point. In addition, Table  1 shows G-S survival rates, E-P survival rates, and 
approximated survival for �1 = 1, �2 = 0 ; �1 = �2 = 0.5 ; and for �1 = 0, �2 = 1 
based on Theorem 2.1.

The approximated survival rates with �1 = 0.5 and �2 = 0.5 are robust. The 
approximation with �1 = 1 and �2 = 0 is best at t1 , but worse at t8 , whereas the 
approximation with �1 = 0 and �2 = 1 is best at t8 , but worse at t1 . The approxi-
mated survival functions ( �1 = �2 = 0.5 ; �1 = 0, �2 = 1 ) in Table 1 are illustrated 
in Fig.  1. The difference between the survival rates of E-P and G-S are due to 
mismeasured outcomes.

From Fig.  1, we observe that the approximated survival function is very 
close to the survival function of G-S outcomes. This shows that the model in 
Theorem 2.1 works well under the gamma process. We extend Theorem 3.1 with 
Xj ∼ Gamma (1, �) . Since Xj

�
∼ Gamma (1, 1) , we have

where Yj =
X1+⋯+Xj

�
 . Using (19), the formula of S(c,�)(j) with Xj ∼ Gamma (1, �) is 

given in Corollary 3.1.

Sc(j) =
j(j−1)

(j − 1)!
exp {−(c + j)}.

(19)

S(c,�)(j) = P(X1 ≥ � + c,X1 + X2 ≥ 2� + c,… ,X1 +⋯ + Xj ≥ j� + c)

= P(
X1

�
≥ 1 +

c

�
,
X1 + X2

�
≥ 2 +

c

�
,… ,

X1 +⋯ + Xj

�
≥ j +

c

�
)

= �
∞

c

�
+j

exp (−yj)Bj

( c
�
, yj

)
dyj = S c

�
(j),
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Corollary 3.1  Suppose that the Xj are i.i.d. from Gamma (1, �) for j = 1, 2,… . 
Then, the survival function at time tj with a lower detection limit level as c is given 
by

There is no information to adequately model the course of viral load to any spe-
cific stochastic process. However, under the scenario that the observed viral load 
originates from a gamma process, we have demonstrated an application of our 
method to the lower-limit detection problem and shown the favorable quality of a 
closed-form formulation of the G-S survival function.

3.2 � Wiener Process

We now model the viral load course via a standard Brownian motion process(Wiener 
process). Unlike the gamma process, this approach does not have the favorable 
quality of a closed-form formulation of the G-S survival function. As a result, we 
assess the properties of our estimator through simulation studies. The BM pro-
cess on the interval [0,  K] is a random variable, W(t), which depends continu-
ously on t ∈ [0,K] and satisfies the following: W(0) = 0 and for 0 ≤ ts < tj ≤ tJ , 
W(tj) −W(ts) ∼

√
tj − ts ∗ N(0,

1

18000
) , where tJ = 18000 and J = 8 , which is the 

maximum predetermined number of clinical visits.

S(c,�)(j) = P(X1 ≥ � + c,X1 + X2 ≥ 2� + c,… ,X1 +⋯ + Xj ≥ j� + c) = S c

�
(j).

(a) (b)

Fig. 1   The survival functions of G-S and E-P events and approximated survival functions with the lower 
detection limit levels as c∗ = −0.8 and c = −0.4 for �1 = 0.5 and �2 = 0.5 (a), and for �1 = 0 and �2 = 1 
(b)
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To simulate, we discretize the BM with unevenly spaced time step, 
t1 = 20, t2 = 30, t3 = 40, t4 = 50, t5 = 80, t6 = 200, t7 = 1000, t8 = 18000 . We con-
duct the simulation study as follows. For each simulated dataset of size n = 400 , 
we generate Bi = (Bik)

� as Bik ∼ N(0,
1

18000
) and obtain Witj

=
∑tj

k=1
Bik , for 

i = 1,… , n , j = 1, 2,… , 8 and k = 1,… , 18000 . By setting Wi0 = 0, t8 = 18000 , 
we have Witj

−Wi0 ∼ N(0,
tj

18000
) . We consider only 8 time points of Witj

 and the 8 
time points are selected to generate similar survival rates compared to HCV data 
described in Sect. 4.1.

Since we are comparing the E-P diagnostic test to the G-S, we therefore spec-
ify two detection levels, c = −0.04 (c∗ = −0.056) for E-P (G-S) survival time. The 
E-P ( Ti ) and G-S ( T∗

i
 ) survival times are generated as Ti = min{j ∶ Witj

≤ −0.04} 
and T∗

i
= min{j ∶ Witj

≤ −0.056} . We then generate 500 datasets with n = 400 . 
For the � th analysis dataset, a pilot dataset is randomly sampled with n0 subjects 
for n0 = 40 and n0 = 80 , which correspond to the 10% , and 20% of n. Using the 
pilot data, we obtain parameter estimates, ℙ̂

�1 = (𝜔̂
�1, 𝜔̂�2, 𝜏�0) and B = 200 sets 

of bootstrapping estimates, ℙ̂(b)

�1
= (𝜔̂(b)

�1
, 𝜔̂(b)

�2
, 𝜏(b)

�0
) , for b = 1,… ,B . For the � th 

analysis dataset with n − n0 subjects, the approximated survival function and esti-
mated variance of the approximated survival function are obtained using ℙ̂

�1 and 
ℙ̂
(b)

�1
 for b = 1,… ,B . For each simulated dataset of size n = 400 , the running times 

in minutes with the bootstrap sample of size B = 200 are 2.05 ( �1 = 1 and �2 = 0 ), 
2.74 ( �1 = 0.5 and �2 = 0.5 ), and 2.65 ( �1 = 0 and �2 = 1 ) for the pilot data with 
n0 = 40 . Likewise, for the pilot data with n0 = 80 the times (in minutes) are 0.90 
( �1 = 1 and �2 = 0 ), 1.29 ( �1 = 0.5 and �2 = 0.5 ), and 1.93 ( �1 = 0 and �2 = 1 ). 
Simulations were performed on an intel core i7 processor machine with 16 GB of 
RAM memory using a Windows 10 operating system for computing.

We evaluate the performance of the methods detailed in Sect. 2.2.2 by simulat-
ing 500 datasets. In Table 2, we present the average of the approximated survival 
rates (Approximated), along with the the average of standard errors (ASE), the 
Monte Carlo standard error (MCSE) and the coverage probability (CP) are also 
presented. Figure  2 shows the means of survival rates of G-S and E-P events, 
and the means of approximated survival rates from the analysis datasets using the 
estimated parameters (from pilot datasets) with n0 = 40 and n0 = 80 , respectively. 
The approximated survival function is very close to the G-S survival function 
across all time points.

These results from t1 to t8 suggest that (i) the differences between survival rates of 
G-S events and approximated survival rates are less than 0.012 (ii) the differences 
between ASE and MCSE are less than 0.005 (iii) except at t1 with small number 
of events, CPs for n0 = 40 and n0 = 80 are from 0.912 to 0.954 and from 0.924 to 
0.964, respectively.

Most importantly, the results of our simulation study validate the mathematical 
results from Sect. 2.2.2. When the course of the viral load does not follow a gamma 
process, we have shown that the parameters, �1 , �2 , and �0 can be estimated through 
a small pilot study. This is a useful development for clinical trial studies for which 
the parameters are unknown and the latent stochastic process of disease cannot be 
confirmed.
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4 � Data Analyses

4.1 � Analysis of VIRAHEP‑C Data

The VIRAHEP-C study is an international clinical trial sponsored by the 
NIDDK-NIH that was designed to test the hypothesis that African Americans 
respond less well to antiviral therapy than Caucasian Americans. A total of 
401 chronically infected participants with Hepatitis C virus (HCV) of genotype 
1 were enrolled. We study up to the 24-week timepoint as this was the time of 
the primary endpoint in the VIRAHEP-C study, the visit times are as follows: 
t1 = 1, t2 = 2, t3 = 7, t4 = 14, t5 = 28, t6 = 56, t7 = 84 , and t8 = 168 day. G-S 

(a) (b)

(c) (d)

Fig. 2   The means of G-S and E-P, and approximated G-S survival rates using n0 = 40 (a and b) and 
n0 = 80 (c and d)
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and E-P events at time tj are defined as E∗(j) = I{viral levels ≤ 50 IU/mlat tj} and 
E(j) = I{viral levels ≤ 600 IU/mlat tj} , respectively.

As described in Sect. 2.2.2, we assume parameters, �1 , �2 , and �0 are unknown. 
Two pilot datasets with n0 = 40 and n0 = 80 are randomly sampled from the 
VIRAHEP-C data ( n = 401 ). Estimates ℙ̂ and ℙ̂(b) for b = 1,… , 200 in Sect. 2.2.2 
are obtained using G-S and E-P survival functions from each pilot dataset. These 
parameter estimates optimize the distance metric,

where the weight w(j) is {S∗
P
(j)}�1{1 − S∗

P
(j)}�2.

The estimates of parameters for �1 = �2 = 0.5 are 
ℙ̂ = (𝜔1 = 0.018, 𝜔2 = 21.425, 𝜏0 = 0.169) for the pilot data of 40 sub-
jects ( n0 = 40 ), and ℙ̂ = (𝜔1 = 0.007, 𝜔2 = 0.14, 𝜏0 = 0.355) for the pilot 
data with 80 subjects ( n0 = 80 ). However, the estimated parameters for 
�1 = 0 and �2 = 1 are ℙ̂ = (𝜔1 = 0.036, 𝜔2 = 21.155, 𝜏0 = 0.111) and 
ℙ̂ = (𝜔1 = 0.015, 𝜔2 = 0.168, 𝜏0 = 0.291) for pilot datasets of n0 = 40 and 
n0 = 80 , respectively.

Using the aforementioned parameter estimates, Table  3 provides approximated 
G-S survival function (Approximated), the standard errors (SE) by the methods in 
Eq. (17), 95% confidence interval ( 95% CI) by the method in Eq. (11), and 95% con-
fidence interval ( 95% CI-Boots) based on Bootstrapping method. Table 3 shows that 
(i) for both ( �1 = �2 = 0.5 ) and ( �1 = 0, �2 = 1 ), the difference between the G-S 
and approximated G-S survival rates are less than 0.015 except at t6 for n0 = 80 ; and 
(ii) the approximated G-S survival rates for ( �1 = �2 = 0.5 ) and ( �1 = 0, �2 = 1 ) are 
robust, especially even for the small sample of n0 = 40.

Figure 3 shows G-S, E-P, and approximated G-S survival functions of the analy-
sis dataset using parameter estimates from the pilot dataset ( n0 = 40 ). The distances 
between the E-P and G-S survival rates at each time point are due to mismeasured 
outcomes. The G-S survival function, approximated G-S survival function, as well 
as the 95% confidence bands for each time point are displayed in Fig. 4. We observe 
from Figs.  3 and  4 that our proposed method performs very well using the pilot 
dataset with n0 = 40.

4.2 � Analysis of ADNI Data

We further evaluate the new methods using data from the ADNI-1 and ADNI-GO 
segments of the ADNI study (Wiener, 2012 [20]). For the analyses, we consider 
annual outcomes of the clinical (as E-P) and biomarker (as G-S) diagnoses. At the 
time of the data extract (December 2, 2016), there were 755 non-AD subjects and 
193 AD subjects according to clinical diagnosis. Of the 755 subjects, 185 subjects 
have both G-S and E-P outcomes (pilot data), 565 subjects have only the E-P out-
come (analysis data), and 5 are excluded due to Assumption 2 (G-S occurred prior to 
E-P). Table 4 shows the KM estimates of G-S (G-S) and E-P (E-P), and the standard 

8∑
j=1

w(j){S∗
P
(j) − Ŝ∗(j)}2,
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errors of G-S (SE of G-S) and E-P (SE of E-P) using the pilot data. These estimates 
optimize the distance metric

where the weights w(j) are defined as {Sp(j)}�1{1 − Sp(j)}
�2 for 0 ≤ �1, �2 ≤ 1 and 

j = 2,… , 8 , and w(1) = w(2) . The estimated parameters for �1 = 0.5 and �2 = 0.5 
are ℙ̂ = (𝜓1 = 0.007, 𝜓2 = 0.000, 𝛾0 = 0.438) , and for �1 = 0 and �2 = 1 are 
ℙ̂ = (𝜓1 = 0.008, 𝜓2 = 0.000, 𝛾0 = 0.440) . As no event is observed at t1 based on 
E-P test, constant weights at the early visit are used. The approximated G-S survival 

{ 8∑
j=1

w(j)
(
SP(j) − Ŝ(j)

)2}
,

(a) (b)

Fig. 3   The survival functions of analysis dataset using pilot dataset with n0 = 37

(a) (b)

Fig. 4   G-S and approximated G-S survival functions of analysis dataset, and 95 % CI’s using pilot data 
with n0 = 37
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functions of the pilot dataset for �1 = 0.5 and �2 = 0.5 , and for �1 = 0 and �2 = 1 
are obtained using the proposed model in (8). Our proposed model works well. 
The approximated G-S survival rates show that (i) the difference between the G-S 
and approximated G-S survival rates are less than 0.035; and (ii) the approximated 
G-S survival rates for ( �1 = 0.5, �2 = 0.5 ) and ( �1 = 0.5, �2 = 0.5 ) are robust (dif-
ference of approximated G-S survival rates < 0.007 ). For the analysis dataset, the 
approximated G-S survival rates are obtained using the ℙ̂ based on pilot data and the 
estimated E-P survival rates from the analysis dataset. The estimated standard errors 
of G-S survival rates are estimated by the bootstrap approach in a similar fashion to 
Eq. (11). In Table 5, we present the KM estimates of E-P (E-P), the approximated 
G-S (Approximated), standard errors of G-S (SE), and the confidence intervals of 
G-S (LCI, and UCI). We now evaluate the performance of our proposed estimator 
in estimating the survival distribution of the G-S outcomes by using 3 parameters 
(�1, �2, �0) and along with only the error-prone (E-P) outcomes. In Table  5, we 
see that the estimated E-P survival rates from the analysis dataset are consistent to 

Table 4   KM Survival Estimates based on ADNI Pilot dataset

Pilot data consist of 185 subjects (of a total of 755) that had both G-S and E-P outcomes

Ttime E-P SE of E-P G-S SE of G-S (�1 = 0.5, �2 = 0.5 ) 
Approximated

(�1 = 0, �2 = 1 ) 
Approximated

t1 1 0 0.405 0.036 0.438 0.440
t2 0.924 0.019 0.400 0.036 0.402 0.404
t3 0.843 0.027 0.389 0.036 0.360 0.361
t4 0.786 0.030 0.332 0.037 0.326 0.326
t5 0.759 0.032 0.318 0.038 0.302 0.300
t6 0.751 0.033 0.301 0.040 0.283 0.279
t7 0.705 0.038 0.215 0.059 0.249 0.244
t8 0.662 0.043 0.215 0.059 0.216 0.210

Table 5   Survival Estimates based on ADNI Analysis dataset

Analysis data consist of 565 subjects (of a total of 755) that had only E-P outcomes

Time E-P (�1 = 0.5, �2 = 0.5) (�1 = 0, �2 = 1)

Approximated SE LCI UCI Approximated SE LCI UCI

t1 1 0.438 0.019 0.401 0.474 0.440 0.020 0.401 0.478
t2 0.899 0.391 0.017 0.358 0.423 0.393 0.017 0.359 0.427
t3 0.780 0.333 0.013 0.307 0.360 0.334 0.014 0.308 0.361
t4 0.716 0.297 0.011 0.275 0.319 0.297 0.012 0.274 0.320
t5 0.671 0.267 0.012 0.243 0.291 0.265 0.015 0.237 0.294
t6 0.650 0.245 0.016 0.213 0.278 0.242 0.021 0.203 0.283
t7 0.617 0.218 0.022 0.176 0.262 0.214 0.028 0.162 0.270
t8 0.617 0.201 0.029 0.148 0.261 0.196 0.035 0.132 0.269
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the estimated E-P survival rates from the pilot dataset (Table 4). It is reasonable to 
assume the distribution of G-S outcomes from the pilot data (randomly selected) 
ought to be consistent with the unobserved distribution of G-S outcomes from the 
analysis data. Our proposed survival rate estimator of the unobserved G-S outcomes 
performs well, as the approximated G-S survival rates between the pilot data and the 
analysis data are similar. The results are robust to the choice of weights.

5 � Discussion

In this paper, we have developed a framework to correctly estimate the discrete-time 
survival function to handle mismeasured outcomes through the modeling of time-
dependent NPV and PPV. Our discrete-time survival estimator (i) allows for the 
probability of correctly classifying a G-S event to increase with time in a specific 
manner given the occurrence of an E-P event; and (ii) allows for the inclusion of 
estimated model parameters ℙ̂ = (𝜔̂1, 𝜔̂2, 𝜏0) through a validation subsample (“pilot 
dataset”). This is very useful in scenarios for which ℙ̂ is not known with confidence 
and must be estimated from the imminent clinical trial.

The prevalence does impact the PPV and NPV. For mismeasured outcomes 
caused by lower detection limit, we have that the G-S event cannot happen prior to 
the E-P event, this idea is formulated in Assumption 1 and given as P(T∗ ≥ T) = 1 . 
Under this assumption, Proposition 2.1 provides the behavior of NPV and PPV over 
time, namely that (i) the NPV(�j ) at time tj is 1 for all j = 1, 2,… ; and (ii) the 
PPV(�j ) at time tj is 

1−P(E∗
j
=0)

1−P(Ej=0)
 for j = 1, 2,… . Therefore under Assumption 1, we see 

that the PPV, �j , is dynamic across time. We applied (ii) to the G-S and E-P survival 
rates of Table 1 which has both low prevalence and high prevalence and observed 
that the PPV changes for every visit. In Table 1, we presented the true (or popula-
tion) PPV. The true PPV can be calculated since we have G-S and E-P outcomes for 
all. Here, we observed the true PPV is dynamic, with a value of 0.402 at t1 , and 
0.871 at t8 . In addition, we provide approximated PPV which are based on our 
approximated G-S survival rates for different choices of �1 and �2 . Additionally, by 
similar arguments as stated above, the PPV can be calculated under the Brownian 
motion process of Table 2 and the VIRAHEP-C data of Table 3. These results are a 
motivating reason for conducting our research with non-constant or dynamic PPV, it 
is in fact to adjust for low prevalence and high prevalence. Similar arguments can be 
made for dynamic NPV under Assumption 2 and Proposition 2.3.

With the assumption of a constant PPV using VIRAHEP-C data, Table S1 of the 
Supplementary Materials provides the approximated G-S survival function (Approx-
imated), the standard errors (SE) by the method in (17), the 95% confidence interval 
( 95% CI) by the method in (11), and the 95% confidence interval ( 95% CI-Boots) 
based on the Bootstrapping method. The results of Table  S1 show that for both 
( �1 = 0.5, �2 = 0.5 ) and ( �1 = 0, �2 = 1 ), the approximation of the G-S survival 
rates under the assumption of a constant PPV is not as good as the one under the 
time-varying PPV. Note that under the framework of a time-varying PPV (Table 3), 
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we observe that the differences between the G-S survival rates and approximated 
G-S survival rates are less than 0.015 (except at t6 for n0 = 80).

To further illustrate the need for a time-varying PPV, we conduct a simulation 
study under the Brownian motion process similar to Sect. 3.2, except that now we fix 
PPV, the results are shown in Table S2 of the Supplementary Materials. In Table S2, 
we report the average of the approximated survival rates (Approximated), along 
with ASE, MCSE, and CP. We see that under the framework of a constant PPV, the 
approximated survival function does not perform well in estimating the G-S survival 
function as compared to the framework of the time-varying PPV. Therefore, the PPV 
is indeed time-varying, which further supports our proposed research.

To assess the merits of our estimator, we model the course of viral load through 
two stochastic processes, the gamma process and the Wiener process. For the 
gamma process as shown in Sect.  3.1, one obtains elegant closed-form expres-
sions of the survival function. Such a result supports our approach of developing 
our methodology from a time-varying PPV perspective because it allows, through 
Proposition 2.1, the exact calculation of the PPV vector, the result of which is con-
sistent with a time-dependent PPV model. In Sect.  3.2, we take a different view-
point on viral load and model its course through a Wiener process. Since an analyti-
cal expression of the survival function under the Wiener process is unavailable, we 
examine the properties of our estimator through simulation studies. The findings of 
the simulation study under the Wiener process are important because it validates the 
mathematical results of Sect. 2.2.2. Namely, that our estimator performs very well 
even when ℙ1 is estimated through a very small pilot dataset.

In the real data example of Sect.  4.1, we illustrate the performance of our 
estimator under the notion that the parameters of our model, ℙ = (�1,�2, �0) are 
unknown (as described in Sect. 2.2.2). To estimate ℙ , we constructed two sets of 
pilot data which are a random sample of 10% and 20% of the VIRAHEP-C data. 
The results of the data analyses showed that our approximated G-S survival func-
tion is a good fit to the G-S survival function. Our method which produces an 
approximated G-S survival distribution is consistent to G-S survival distribution 
of G-S outcomes, hence, demonstrating that our method works well with a pilot 
data size of 10% and 20% from the VIRAHEP-C study. However, to assess the 
robustness of the result, we used data from the ADNI study which is different 
in trial design, objectives, disease indication, and primary endpoint. The VIRA-
HEP-C study was a randomized, interventional clinical trial, while ADNI is an 
observational and non-interventional study. In the ADNI data, indeed of the 755 
subjects, only 185 subjects have both G-S and E-P outcomes. The G-S outcome 
in ADNI represents the result of the cerebral spinal fluid (CSF) biomarker assay 
which involves a lumbar puncture, so it is often considered too invasive for many 
patients and therefore has limited availability. Given that the available sample 
(pilot data) constituted about 25% of the total data, there was no need for a smaller 
random sample. There is an inherent random selection in this pilot data since the 
likelihood of not getting a lumbar puncture does not depend on any study design, 
but on personal characteristics and circumstances. Therefore, we believe that the 
pilot data is a reasonable reflection of the targeted population. We found that pilot 
data of size 10% to about 20% performed well across both datasets. However, the 



	 Statistics in Biosciences

1 3

size of the pilot dataset depends on the study in question, it is contingent on the 
number of events at each timepoint, and the study’s total sample size.

We developed a new approach to derive the standard errors of Ŝ∗(j) in (14) due 
to the behavior of the variability of ℙ̂ = (𝜔̂1, 𝜔̂2, 𝜏0) under a small pilot dataset. We 
initially examined the utility of the delta method in estimating the standard errors of 
Ŝ∗(j) , however, the results were unimpressive. Hence, the motivation to develop a 
new method to estimate the standard errors of Ŝ∗(j) by way of the standard variance 
decomposition approach (provided in (17)). The results of Table 2 in Sect. 3 show 
the impressive empirical performance of our variance estimate, as the differences 
between ASEs and MCSEs are less than 0.005.

Regarding the selection of weights, we recommend setting �1 and �2 = 0.5 as 
the survival estimates with �1 and �2 = 0.5 are robust. Table 1 applies our proposed 
method to a course of viral load modeled after a gamma process. The table gives 
the approximated G-S survival rates under 3 different weights, namely, (1) �1 = 1 
and �2 = 0 , (2) �1 = 0.5 and �2 = 0.5 , and (3) �1 = 0 and �2 = 1 . If early in the 
study there are very few events as compared to later in the study, then placing a 
lower weight early on by setting �1 close to 0 and �2 closer to 1 could lead to a better 
approximation of the G-S survival rates for the earlier timepoints. However, if it is 
vice versa, where there are more events early and few later in the study, then setting 
�1 close to 1 and �2 close to 0 is reasonable. In Table 1, we see that the approxima-
tion is best at t1 when �1 = 1 and �2 = 0 , but worse at t8 . Whereas the approximation 
is best at t8 when �1 = 0 and �2 = 1 , but worse at t1 . We recommend setting �1 and 
�2 = 0.5 for a consistent performance over time.

A limitation of our work is that the estimation of the 3 unknown parameters 
requires a fraction (albeit small) of the data from the on-going study. An interesting 
further investigation would be to directly model the underlying stochastic process 
of the course of disease to serve as a bridge to between E-P and G-S survival func-
tions. Such a development would be important and useful for the lower-limit detec-
tion problem. It would have important clinical implications in the design of clini-
cal trials because it could be possible to directly calculate the probability of having 
an outcome at the design stage of a clinical trial. Thus, the timing and spacing of 
clinical trial visits could be more strategic. The work of Huang et al. [40] contains 
further insights, they directly modeled the course of viral load using latent variable 
and stochastic processes to capture the viral load between the predetermined discrete 
time points and the dependency of binary response over time. Under investigation is 
the extension of our work to develop Bayesian methods via the logistic regression 
model for the G-S hazard at each time point tj.

We have conducted extensive research of the performance of our methods using 
stochastic processes, namely a gamma process and a Wiener process. Our method-
ology performed well. Furthermore, we evaluated the performance of our methods 
using observed data from a multi-national HCV clinical trial and from the ADNI 
studies. Our proposed method with only 3 unknown parameters works well in 
approximating the G-S survival function. We demonstrated that our proposed meth-
odology works well under the lower-limit detection framework. Early detection for 
serious diseases is important, our method offers a way to conduct time-to-event 
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analyses that can be generalized to the broader population based on a validation 
subsample.

Appendix A: Proofs of Propositions, Lemmas, and Theorems

Proof of Lemma 2.1

 
Using the definition of PPV and NPV in (2), we obtain Lemma 2.1. 	�  ◻

Proof of Proposition 2.1  For (i), it is trivial by considering j=1, k=1 in 4. For (ii), 
Using iv) in Remark 1, it can be easily obtained. For (iii), it is obvious for the first 
part of (iii) and for the last part, since P(T∗ ≤ tj|T = tk) = 1 −

{
1 − �0

}(tj−1)�1+1 for 
all tk ≤ tj , which is constant for tk and 

∑j

k=1
P(T = tk) = P(T ≤ tj) , the proof is done. 

For (iv), it is trivial by considering P(T∗ ≤ tj|T = tk) = �0 for the proof of (iii). 	�  ◻

Proof of  Proposition 2.3  (i) We can rewrite 𝛾j(x) = P(T∗ > tj|T > tj) as 
𝛾j = 1 − P(T∗ ≤ tj|T > tj) . Under Assumption 1, P(T∗ ≤ tj|T > tj) = 0 . (ii) 
�j = P(T∗ ≤ tj|T ≤ tj) =

P(T∗≤tj,T≤tj)
P(T≤tj)  . Under Assumption 1, we have 

P(T∗ ≤ tj, T ≤ tj) = P(T∗ ≤ tj) , which completes the proof. 	�  ◻

Proof of  Theorem  2.3  By Theorem  5 of [36], let tJ < ∞ satisfy 
1 − S(j|x) < 1 . Then the random variable 

√
n(Ŝ(j) − S(j)) , for 0 < j < J , 

converges weakly to a mean zero normal random variable Zj . Moreover, 
Cov (Zj, Zk) = S(j)S(k)

∑j

m=0
(S(m))−2(1 − H(tj))

−1P(Em = 1), j ≤ k where 1 − H(tj) 
is the right censoring distribution function. Since Ŝ∗(j) is a linear combination of the 
KM estimator, it therefore follows an asymptotically normal distribution. 	�  ◻

Proof of Lemma 3.1  For n=2, B2(c, x) = ∫ x

c+1
B1(c, u)du = x − (c + 1) =

(x−c)

1!
− 1 , 

which is G-S. Suppose it is G-S for n = k , then Bc, k+1(x) is obtained as follows:

Since − kk

k!
+

kk−1

(k−1)!
=

kk−kk

k!
= 0 , we obtain that Bk+1(c, x) =

(x−c)k

k!
−

(x−c)k−1

(k−1)!
 , which is 

G-S for n = k + 1 . By induction, we complete the proof. 	�  ◻

Proof of Theorem 3.1  We have Sc(1) = exp {−(c + j)} , which implies it is G-S for 
j = 1 . To prove for j ≥ 2 , let Gn(a) = ∫ ∞

a
un exp (−u)du . Then, it is easily obtained 

that Gn(a) = an exp (−a) + nGn−1(a) =
∑n

m=0

n!

(n−m)!
a(n−m) exp (−a) . Using that fact 

and the Lemma 3.1, we have

S∗(j) = Pr(T∗ > tj|T ≤ tj)P(T ≤ tj) + Pr(T∗ > tj|T > tj)P(T > tj)

= {1 − Pr(T∗ ≤ tj|T ≤ tj)}{1 − P(T > tj)} + Pr(T∗ > tj|T > tj)P(T > tj).

Bk+1(c, x) = ∫
x

c+k

Bk(c, u)du = ∫
x

c+k

(u − c)k−1

(k − 1)!
−

(u − c)k−2

(k − 2)!
du

=
(x − c)k

k!
−

kk

k!
−

(x − c)k−1

(k − 1)!
+

kk−1

(k − 1)!
.
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Appendix B: Upper‑Limit Detection Problem Under Gamma Process

Now, we discuss the upper detection limit problem focused on gamma process and 
derive lemmas, theorem, and corollary for that. Under the gamma process discussed 
in Sect. 3.1, if we consider the upper limit of detection level as c, then survival func-
tion at time tj is

Using the same transformation for the low limit detection problem from (X1,… ,Xj) 
to (W1,… ,Wj) , where Wj = X1 +⋯ + Xj for j = 1, 2,… , we can rewrite Sc(j) as

Define a new sequence of random variables as Y1 = Wj,… , Yj = W1 . Then, Sc(j) is 
given by

To obtain a general expression of Sc(j) , define a new sequential function Un(y, b) as

for n = 2, 2,… , where U1(y, b) = exp (−y) . We derive an iterative expression for 
Un(y, b) in Lemma B.1.

Lemma B.1  The sequence Un(y, c + n) can be expressed as

Sc(j) = ∫
∞

c+j

exp (−wj)Bj(c,wj)dwj = ∫
∞

c+j

exp (−wj)

[ (wj − c)j−1

(j − 1)!
−

(wj − c)j−2

(j − 2)!

]
dwj

=

j−1∑
m=0

jm

m!
exp {−(c + j)} −

j−2∑
m=0

jm

m!
exp {−(c + j)} =

j(j−1)

(j − 1)!
exp {−(c + j)}.

Sc(j) = P(X1 ≤ 1 + c,X1 + X2 ≤ 2 + c,… ,X1 +⋯ + Xj ≤ j + c).

Sc(j) = �
c+1

0 �
c+2

0

⋯�
c+j

0

exp(−wj)1(w1 ≤ ⋯ ≤ wj−1 ≤ wj)dwj ⋯ dw2dw1

= �
c+1

0 �
c+j−(j−2)

w1

⋯�
c+j

w(j−1)

exp(−wj)dwj ⋯ dw2dw1.

Sc(j) = ∫
c+1

0 ∫
c+j−(j−2)

yj

⋯∫
c+j

y2

exp(−y1)dy1 ⋯ dy(j−1)dyj.

(B.1)Un(y, b) = ∫
b−(n−2)

y

U(n−1)(z, b)dz,

Un(y, b) = Un−1(y, b − 1) + exp (−b)
[ (b − y)(n−3)

(n − 3)!
I(n ≥ 3) −

(b − y)(n−2)

(n − 2)!

]
,
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for n = 2, 3,… , where U1(y, b) = exp (−y) and I(a) is the indicator function that 
takes a value of 1 if a is G-S and 0 otherwise.

From (B.1), we have

for n = 2,… where U1(y1, b) = exp (−y1) and Sc(j) = ∫ c+1

0
Uj(y, c + j)dy for 

j = 1,… . Using Lemma B.1 , we discuss a sequential relationship of the survival 
function, Sc(j) in the next Lemma.

Lemma B.2  Suppose that the Xj are i.i.d. from Gamma (1, 1) for j = 1, 2, 3… . 
Then, the survival function at time tj with an upper detection limit c has the relation-
ship as follows:

for j = 1, 2,… where Sc(0) = 1 , an explicit expression of the survival function is 
given in the following theorem.

Theorem B.2  Suppose that Xj is i.i.d. from Gamma (1, 1) for j = 1,… . Then, the 
survival function at time tj with an upper detection limit c is given by

The proof of Theorem B.2 directly follows from Sc(0) = 1 and basic algebra.
Similar to the low limit detection problem, we can extend Theorem B.2 with 

Xj ∼ Gamma (1, �) . Since Xj

�
∼ Gamma (1, 1) , we have

Using (B.2), S(c,�)(j) with Xj ∼ Gamma (1, �) can be obtained in the next corollary.

Un(yn, b) = ∫
b−(n−2)

yn

Un−1(yn−1, b)dyn−1

= ∫
b−(n−2)

yn

⋯∫
b

y2

exp(−y1)dy1 ⋯ dyn−1,

Sc(j) = P(X1 ≤ 1 + c,X1 + X2 ≤ 2 + c,… ,X1 +⋯ + Xj ≤ j + c)

= Sc(j − 1) −
exp {−(c + j)}

(j − 1)!

[
(c + j)(j−2){(c + j) − (j − 1)I(j ≥ 3)}

]

+
exp {−(c + j)}

(j − 1)!

[
(j − 1)(j−1)I(j = 2)

]
,

Sc(j) = 1 −

j∑
k=1

[exp {−(c + k)}

(k − 1)!

{
(c + 1)(c + k)(k−2)

}I(k≥2)]
.

(B.2)

S(c,�)(j) = P(X1 ≤ � + c,X1 + X2 ≤ 2� + c,… ,X1 +⋯ + Xj ≤ j� + c)

= P

(
X1

�
≤ 1 +

c

�
,
X1 + X2

�
≤ 2 +

c

�
,… ,

X1 +⋯ + Xj

�
≤ j +

c

�

)
.



	 Statistics in Biosciences

1 3

Corollary B.1  Suppose that the Xj are i.i.d. from Gamma (1, �) for j = 1,… . Then, 
the survival function at time tj with an upper detection limit c is given by

Within the upper-limit detection framework, if the upper limit of the G-S test is 
above that of the E-P ftest, then P(T∗ ≥ T) in Assumption 1 is reasonable, therefore 
P(T∗ ≥ T) = 1 if c∗ ≥ c.

To examine our proposed model in (4) for the upper-limit detection problem, for 
which P(T∗ ≥ T) = 1 , we consider two different detection limits for G-S and E-P 
events as c∗ = −0.4 , and c = −0.8 . After which, we obtain the approximated sur-
vival function using the optimal values of ( �1,�2, �0 ), which minimize (13) for 
�1 = 0.5 and �2 = 0.5 , and for �1 = 0 and �2 = 1 for w(k). The pairs of estimates are 
(0.135, 0.000, 0.701) and (0.124, 0.000, 0.710) for �1 = 0.5 and �2 = 0.5 , and for 
�1 = 0 and �2 = 1 , respectively. Figure 5 shows G-S (blue solid line), E-P (red solid 
line), and approximated (green dashed line) G-S survival function. Similar to Fig. 1, 
the approximated G-S survival function is much closer to the G-S survival func-
tion than the E-P survival function. The observation from Fig. 5 confirms that the 
proposed models in (4) work well for the upper detection limit problem under the 
gamma process.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s12561-​021-​09317-3.

S(c,�)(j) = P(X1 ≤ � + c,X1 + X2 ≤ 2� + c,… ,X1 +⋯ + Xj ≤ j� + c) = S
c

� (j).

(a) (b)

Fig. 5   G-S, E-P, and approximated G-S survival functions with upper detection limits with c∗ = −0.4 
and c = −0.8 for �1 = 0.5 and �2 = 0.5 (a), and for �1 = 0 and �2 = 1 (b)

https://doi.org/10.1007/s12561-021-09317-3
https://doi.org/10.1007/s12561-021-09317-3
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